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A study is made of the effect of gravity on specific heat measurements in an experiment carried out 
without mixing of the fluid. The main contribution is determined not by the potential energy but by the 
dependence of the density, and therefore also of the specific internal energy, on height. The hydrostatic 
effect leads to the disappearance of the singularity at the critical point: in the immediate vicinity of 
this point the specific heat varies linearly with temperature, while in more remote regions the concept 
of a specific heat discontinuity between the one- and two-phase states remain valid. The specific heat 
maximum shifts into the two-phase region. The law of motion for the meniscus (or the location of 
maximum gradient in the one-phase region) due to a variation of temperature is also examined in de­
tail. The calculations are compared with experiments carried out with and without mixing; the latter 
case is apparently consistent with the presence of a logarithmic singularity in the isochoric specific 
heat. 

1. INTRODUCTION 

As is well known, measurements of specific heat at 
constant volume Cv have demonstrated a logarithmic 
singularity when the critical point is approached which 
goes outside the framework of the classical theory of 
the critical point. In view of the great importance of 
such experiments, they were carried out on different 
substances for different degrees of proximity to the 
critical point; moreover, a careful analysis was made 
of the various factors which affect the result and the 
interpretation of calorimetric experiments. 

The hydrostatic effect, i.e., a sharp increase in the 
inhomogeneity of the substance along the height of the 
vessel due to the infinite increase in compressibility, 
is one of the most important factors determining results 
of measurements near the critical point. 

The effect of gravity on measurements of specific 
heat can be illustrated by an interesting problem [lJ : it 
turns out that due to the presence of gravity the specific 
heat of a column of an ideal gas of height H defined as 
the derivative with respect to temperature of the sum of 
the internal and the potential energy is close to the 
specific heat at constant volume Cv for H << RT /Mg or 
to the specific heat at constant pressure Cp for 
H » RT/Mg. The role of gravity is all the more sig­
nificant near the critical point where for vessel heights 
of the order of 10 em the values of the density of the 
ends of the vessel differ by 20-40%. Under such condi­
tions even though a reduction of the height of the vessel 
by a factor of 2-3 does lead to interesting results[21 , 

still it cannot appreciably eliminate the hydrostatic 
effect. 

On the other hand, the continuous mixing of the fluid 
utilized in calorimetric measurements introduces per­
turbations into the state of the system which are diffi­
cult to take into account. Having in mind these difficul­
ties and the aforementioned importance of calorimetric 
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measurements near the critical point the problem of 
estimating quantitatively the influence of the hydrostatic 
effect on the measurements of specific heat appears to 
be of immediate interest. 

Recently a number of papers has appeared[3 ' 41 in 
which the experimenters measure the specific heat with­
out mixing, and then try to establish the nature of the 
singularity by means of calculations. Although such a 
formulation of the problem is very interesting, never­
theless it is doubtful that it can lead to reliable results 
in view of the large number of adjustable parameters. 
We start with the existence of a logarithmic singularity 
in Cv at the critical point, calculate the effect of the 
gravitational field on the measured quantity in the ab­
sence of mixing and compare the results with experi­
ment. 

In order to solve the problem formulated above we 
utilize the results of our previous paper [SJ on the distri­
bution of the density of the fluid along the height of the 
vessel. In terms of dimensionless variables 
(t = (T- Tc)/Tc, p = (P- Pc)/Pc, P = (9'- Y'c)/Y'c, 
h = Y'cgH/Pc, where the height h is measured vertically 
upwards from the level of maximum density gradient, 
h0 = 2B(A!t 1/B)312 /3 is the characteristic height deter­
mined by the proximity of the temperature to the critical 
temperature) we have 

p = ± 2rsh~-, h r=( ~_!~_)''' · sh<p =-
.J ho , lJ / ' 

t < C: (1.1) 

± 2r~1l-}, 
h 

for ihJ>JhoJ, ch<p = 1 
·lo 

p= 
h 

± 2rcos---;, COS<p=- for JhJ<Jh0 J. ho 

For the average density 
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we obtain from (1.1) fort< 0: 

- 3 (·3/7,_ j'" [ 1 + 2'1·(· ho \'' + .. ·l 
1;lJI h/ for lhl~lhol, 

±(_}At \'h[ 1+-l_.::lt__-[- ... l 
B ! G y::l h0 i 

Ph= 

for lhl~jh,rl; 

fort > 0: (1.2) 

for lhl}>!hol' 

for lhl<lhol. 
Pn= 

r - 3 ( :l~ !'h l- 1 -- ')'!·( ~- \_ ·;, + .. ·l 
~ 't}] ·'-' hi 

I - h 
2At 

We make a few remarks relative to equations (1.1), 
(1.2). 

1. In obtaining these formulas the equation of state 
for the medium near its critical point was used in the 
form 

i.e., the singular part of the free energy which according 
tol61 has the form 1> 

nt2 ( t ) 
F sing = --;:;- ln I t + ~ r 2 + .. -I + t'h - .. , . 

..:: /)" 

(1.4) 

was not taken into account. 
Taking into account the additional singular term (1.4) 

in the equation of state (1.3) reduces to the replacement 
of the coefficient A by the following expression 

uf31 '2J' ( t \ 
.I·~,[-:-------+. h' -·.·· .J. 

t+i>/ p' p' 
(1.5) 

Similar additional terms enter into the other thermo­
dynamic derivatives. 

Mathematically such a renormalization of coefficients 
is completely natural and is associated with the fact 
that the limiting value of a function of two variables at 
a singular point depends on the path taken to approach 
this point. At the same time, all the additional terms 
which are functions of the ratio t/p2 are finite for all 
values of this parameter (the properties of the function 
h(t/p2 ) have been investigated in referencel61 ), can be 
expanded in power series, and taking them into account 
reduces to a renormalization of the constants and to 
small corrections. One should only keep in mind that in 
making comparisons with experiment the parameter A 
determined from relations containing different deriva­
tives can turn out to have different values. 

Thus, the singular part of the free energy (1.4) which 
completely determines the singularity in Cv and in a 
number of other derivatives of the free energy with 
respect to the temperature, for example, the adiabatic 
velocity of sound, is at the same time of little signifi­
cance for the equation of state, i.e., for the derivatives 
of the free energy with respect to the volume. 

2. From formulas (1.2) follows the existence of a flat 
region on the isothermals beyond the critical one. The 
experimental determination of the PVT-relations for 

1lThe argument of the logarithm is here written in a simpler form 
than in [6 ] where the condition that this expression should be positive 
was automatically guaranteed by the introduction of still another con­
stant. LM. Lifshitz has shown that the argument of the logarithm in 
formula (1.4) is guaranteed to be positive for homogeneous states if 
the curvet+ {3p 2 is a spinodal. 

T > Tc led to the existence of such a flat region, for 
example, in a number of papers by Canadian physicists. 

If the sensitivity of the apparatus which is used to 
measure the pressure is equal to ± p', then independently 
of the height of the piesometer an indeterminacy arises 
in the position of the maximum gradient of the density 
with respect to the height (in terms of our variables 
dh = -dp) lh'l = lp'l. Then for the flat region D.p on the 
isothermal we have 

I h.' I 
,·1 t 

: ( :31;;'1 f' [ I_'!' (/,',"} l (1.6) 

The magnitude of the flat region becomes small (less 
than 0.2% of .9'c) for It I > lh'l x 10-2 , i.e., (for Pc 
"" 50 atm, Tc"" 300°K, P' ~ 1 mm Hg) for temperatures 
It I > 10-3 or T- Tc > 0.3°K. 

We note that also for the analysis of the shape of the 
coexistence curve near the critical point one should 
take into account together with the inhomogeneity 
parameter Hm and the correlation radius rc (cf., refer­
ence lSJ) also the existence of an indefiniteness h' in the 
position of the meniscus . 

2. MOTION OF THE INTERFACE BETWEEN THE 
PHASES ALONG THE HEIGHT OF THE VESSEL 
At temperatures below critical one measures the 

specific heat of a heterogeneous system for the calcula­
tion of which it is necessary to evaluate beforehand the 
position of the interface between the phases (the menis­
cus) and its motion along the height of the vessel as the 
temperature t varies for a given density of filling 2 > p. 

We denote the distance from the bottom of the vessel 
to the meniscus by h, and from the meniscus to the top 
of the vessel by h.; correspondingly we denote the aver­
age densities in the region (0, h.) by p + and in the region 
(h_, 0) by p_. We have the two obvious relations: 

h+- h_ = h.,, ph, = P+h+- p_h_, (2 .1) 

from which follow the generalized-taking the hydro­
static effect into account-laws of the lever 

h._= r- P+ h.,, 11 = P -p- /,,.. (2.2) 
fLt- - fL. p t- - fl 

These formulas contain the parameter p-the average 
filling density for the vessel. 

In the absence of the hydrostatic effect or in the case 
when mixing completely eliminates this effect in each 
phase it is obvious that 

IP-1 = IP+I = IPvesl = (-3At/B)'\ 

h _ = - h, ( 1 + _P -- \), = - ~c". f 1 -' " / ( - 3A t l, , (2. 3) 
2 I P ves I 2 L ' · I lJ 

2) LR. Krichevskii brought to our attention the independent 
interest of experiments on the visual observation of the motion of 
the meniscus with a change in temperature for different amounts of 
substance in the vessel. Such experiments can enable one to determine 
certain important characteristics of the substance near its critical 
point, for example, a quantity which is difficult to measure - the 
critical value of the density. In these experiments one should carefully 
observe the time for the establishment of equilibrium of density 
along the height of the vessel, since formulas for the case of a com­
pletely established distribution of density and for the case when the 
hydrostatic effect is eliminated turned out to be quite different. 
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i.e., in the immediate vicinity of the critical point the 
meniscus undergoes acceleration: dh/dt- oo, 

In order to calculate the motion of the meniscus in 
the presence of the hydrostatic effect we utilize formulas 
(1.2) for the average density which have different form 
for lhol > lh1 1 and lhol < lh1 1. Correspondingly we con­
sider different cases realized for a meniscus which is 
situated near the center or near the top (bottom) of the 
vessel. 

1. lhol > lh.l. Solving (2.2) and (1.2) simultaneously 
we obtain -

h,{ __ rl' 3At )'!, II, l' \ 
IL = -2 1 + P L\- -iJ-. -4A:t J· 

a;; =- t:~ I ~:I· (2.4) 

2. lhol < lh1 1. In this case we solve (1.2) and (2.2) 
approximately assuming that h_ = - hM/2 + ~ , h. = hM/2 
+ ~ and ~ « hM/2, i.e., p < (3hM/2B) 113 (meniscus 
near the middle of the vessel). Linearizing (2.2) with 
respect to ~ , we obtain 

__ hM{ -[(3hM)'''( (~)"')]-l} h-- 1+p 2B 1+ 1 • 
2 ~ 

dh- I dt = -Ar I 3. (2.5) 

3. lh.l < lhol, lh-1 > lhal. Here also we solve (2.2) 
and (1.2) approximately assuming that h_ = - hM + ~ , 
h. = ~, ~ « hM (meniscus near the top of the vessel). 
Finally we obtain 

h --h {i p- 3/~(3h.'I/B)'h[1_+2'h(h0/hM)'/']) 
-- M + (-3At/B)'h+(3h,/B)'" I 

dh-1 dt = --2A r/3. (2.6) 

4. lh.l > I hal, lh-1 < I hal (meniscus near the bottom 
of the vessel). In analogy with the preceding case we 
obtain 

p + 3/,(3h .. /B) 'f, [1 + 2'io(h0/h")'i•] h = - h --- ------- ------- ------
- M (- 3At/H) 'LJ- (3hM/B) 'f, , 

dh_ I rlt = -2Ap I 3. (2.7) 

Formulas (2.4)- (2. 7) give the solution to the problem of 
the motion of the meniscus for a given filling p as a 
function oft. If p = 0 (critical value) then the meniscus 
is situated at the middle of the vessel and does not move 
as the temperature varies. For p ;o< 0 the meniscus 
moves upwards, if p > 0, and downwards, if p < 0, and 
leaves the vessel for I "PI > I Pves I through the bottom 
(P < 0) or through the top (P > 0), i.e., only one phase 
remains in the vessel. For comparatively large values 
of tl(lhol » lhMI) its motion is described by formulas 
(2.4). Further, as t- 0 the formulas (2.5) is operative, 
if 1/51 < (3hM/2B) 113 , or alternatively formulas (2.6), 
(2.7), if IPI > (3hM/2B) 113 • 

All these results have been obtained from the equa­
tion of state (1.3). Taking into account higher order 
terms in this equation, specifically Ctp + Kp\ leads to 
an asymmetry in the coexistence curve[BJ, to an asym­
metry in the flat regions (1.6) on the isothermals, and 
also to a motion of the meniscus with temperature even 
for p = 0. The effect of these terms on the shape of the 

coexistence curve has been taken into account in the 
work of one of the authors [BJ. In a completely analogous 
manner one can take into account corrections in formula 
(1.1) for the hydrostatic effect, in (1.2) for the average 
density and, finally, in formulas for the motion of the 
meniscus. A study of the motion of the meniscus can 
serve as a method for determining critical parameters 
and the coefficients in the equation of state of the fluid 
near the critical point. 

In future we shall also require the knowledge of the 
law of motion of the level of maximum density gradient 
for temperatures above the critical temperature (t > 0). 
We give the simultaneous solutions of (1.2) and (2.2) ob­
tained by an analogous method. 

1. lhol > lh!l ("far" from the critical point): 

I h,. r , 2pAtl 
L = ----;;-[I J ;- /, ~-~, 

.c. - ), . 

dh_ I dt = -Ap. (2.8) 

2. lhol < lh.l ("near" the critical point, the maximum 
gradient is situated near the middle of the vessel): 

,,_=,-'~]{ 1 +P[(-:li~l~- ( l--(;i~.Y')l'1 · 
dh-ldt=-Apl3. (2.9) 

3. lhol > lh.l, lhol < lh-1 (the maximum gradient is 
situated at the top of the vessel): 

"-=-h {i+ p- 3/4 (3it,JB)'f,[~-2'"(h0/h,)_'fj_) 
"' · (3h,./B)'I•[1-~h 0/2h,)':,j I' 

dh-1 t!l ~~ - 2A"f: I:;. (2.10) 

4. lhol < lh.l, lhol > lh-1 (maximum gradient is situa­
ted near the bottom of the vessel): 

dh_ I dt = -2Ap I 3. (2.11) 

We emphasize once again that in studying the motion 
of the meniscus near the critical point an insufficiently 
long period of waiting for the establishment of equili­
brium can lead to a situation intermediate between (2.3) 
and (2.4)-(2.11), or to one which is even closer to (2.3) 
than to (2.4)-(2.11). 

3. SPECIFIC HEAT OF THE SYSTEM IN THE PRES­
ENCE OF GRAVITY 

The total energy of a fluid situated in a gravitational 
field in a vessel of height H with a mean filling density 
9 is equal to 

%0 H 

E= ~,9Z''(E'+gz)dz+ ~.9'"(E"+gz)dz. (3.1) 
0 '• 

Here we have introduced the coordinate of the maximum 
density gradient with respect to the height of the vessel 
zo (in the case of a two-phase system zo is the position 
of the meniscus); fl>" and 9' are the densities of the 
upper and the lower phases. The effect of the gravita­
tional field in addition to the potential energy fl> z in 
(3.1) also manifests itself in the z-dependence 8f. fl>(z), 
and consequently also of E(z). 
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The specific heat of such a system is equal to 
Z. H 

Co ___ --~ _ _c!_ [ ~ .9'' (E' + gc)dz -j- I !1'" (E" -1- gz)dz]. (3.2) 
if'N d:" . J 

l) z, 

In differentiating in (3.2) one must take into account the 
fact that z 0 is a function of the temperature and that the 
total mass of the fluid in the system is constant: 

11 

.\ fidz =-c const. 
u 

Expanding the internal energy in a series near the 
critical point 

( dE ' _ ( {)2£ ) (V- y )2 
E =~ E + -- -) !l' --- >' ) -1- -_- - c -1- ... 
~ C Jl' c C, J! c c 2 ' 

we obtain after a simple calculation 

_ 1 \ I ,;/"C/ ~- --··-- · f1;' --· ~'c) ------1 " - ~ ( a'E' \ ( a:r ) 
.:t'fi I · l .1'' u:·-- 10 ' JT , 

_;__ _j<;,,~·-_\ -,. --'-'<"''-----~-··\_-._'!3'!J___) -, , . --\ ,. j , -- , ,» ,, " , ; g ~o ,,. f . 
• l' .J (..,1 

(3.3) 

The last term in (3.3) is the change in the potential en­
ergy dependent on the temperature associated with the 
motion of the meniscus (£1'~ and £1'~ are the densities of 
the upper and the lower phases at the interface). If the 
system is a single-phase one, then g>~ = £1'~ and this term_ 
is equal to zero. 

From (3.3) it is easy to obtain the discontinuity in the 
specific heat at the critical point in going over from a 
two-phase system into a single-phase one in the absence 
of gravity. In this case g = 0, E and P do not depend on 
the height within the boundaries of each phase. Then 
£1'' = £1'~es, £1'" = £1'~es. utilizing the equation of the co­
existence curve (in terms of dimensionless variables) 
Pves = ± (- 3At/B) 112 we easily obtain from (3.3) for all 
points of the coexistence curve, except for the critical 
point, ~cv = cvhet- cvhom = 3A2/2B (here we have in­
troduced the dimensionless specific heat 
c = CTc/PcVc)-a well known resultl 7l. It is of interest 
that the critical point turns out to be distinctive. For 
example, for Cvsing = -a ln It + {3 p 2 ! in the ho~og~neous 
region for p = 0 we have Cvsing =-a ln It!, wh1le m the 
heterogeneous region we have Cvsing = 
-aln It+ f3Pves(t)l, i.e., 

~c-(T )=-~A2 -alnl1--~~_13_il_ 
' c 28 B 

At the same time, both from (3.3) and also from sim­
ple physical considerations it is clear that the existence 
of gravity in the case of high compressibility of sub­
stance in the vessel essentially changes the picture of 
this phenomenon. If previously in the appearance of the 
new phase in the vessel near the critical point the small 
value of the latent heat of vaporization (q ~ It 1112) was 
compensated by the large amount of the appearing phase 
of different density (d Pves/dt ~ It r- 112 over the whole 
volume), now the hydrostatic effect leads to a strong in­
homogeneity over the whole vessel and dp/dt- oo only 
over a narrow layer near the meniscus, while for the 
derivative of the average density of each phase dp./dt 
the critical point is not distinguished in any way. A de-

crease in the latent heat of vaporization as the critical 
point is approached leads in the presence of the hydro­
static effect to the disappearance of the discontinuity of 
the specific heat of the critical point. 

Transition to dimensionless variables introduced in 
Sec. 1 enables us to utilize the equation of state (1.3) 
near the critical point and to take into account in the 
simplest possible manner the dependence of zo, 9'(z) and 
(o9'/BT) on the average filling density. 

In terms of these variables after a simple calcula­
tion formula (3.3) can be reduced to the form 

h_J_, h + h l-

c=~J I c,dh-J- ~ (Ar-J-h)( 8P) dh-J-dl:=-\ (Ap-J-h)( 8P) ahl 
" L J - · iJt ., dt • iJh - • ' 

h h_ ' ,,_ (3.4:) 

The height as before is measured from the point of 
maximum density gradient. In evaluating c for p = 0 the 
last term in (3.4) is equal to zero, since dh/dt = 0, i.e., 
zo does not move. 

We shall in future be interested in the following 
ranges of variation of heights: for p = 0: 

1) lh.l << h0-"far" from the critical point, 
2) lh:l » h0-in the immediate vicinity of the critical 

point; for p"" o: 
1) lh.l « lhol-"far" from the critical point, 
2) lh:l » !hoi-close to the critical point, 
3) lh=l » lhal » lh.l or 4) lh-1 « lhol « lh.l-near 

the coexistence curve. 
The regions 1-4 on the phase diagram are schem­

atically shown in Fig. 1. 
Far from the critical point the regions 1 and 3-4 

overlap since starting with certain values oft we have 
lhol » ihMI and in the vessel we always have lh:tl « lhol. 
Near the critical point the difference in cases 2 and 3-4 
will manifest itself by the fact that for p = 0 the last 
term in (3.4) associated with the motion of the meniscus 
with varying t is absent. The behavior of c will be de­
termined both in case 2 and also in cases 3-4 by the 
parts of the vessel with lhl » lhol. 

Since, as has been shown in Sec. 1, dhjdt depends 
only weakly on the proximity to the critical point, the 
difference between cases 2 and 3-4 will not be great 
near the critical point. Depending on the filling density 
in the vessel one can have with decreasing t the succes­
sive appearance of cases 1-2 (IPI < 3(3hM/B) 113/4, 
1-2-3 or 1-2-4 (IPI < (3hM/2B) 113) and 1-3 or 1-4 
(IPI > (3hM/2B) 113). 

We now go on to evaluate the specific heat for differ­
ent specific cases noting that since near the critical 
point one can neglect the variation of the regular part ~ 
compared to the logarithmic term, then for cv for each 

FIG. I. Position of the regions in the 
p, t-phase diagram near the critical point: 
1-lh+l < lh0 1, 2-lh±i ~ ihol, 3-lh_l ~ 
~ lh0l ~ lh+l, 4-lh_l < lho I < ih+l (h+, h_ 
are defined by (2.2) ). 
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phase we assume 

c, = -alnlt + llP'I + ~, (3.5) 

where t::. is the regular part of the specific heat. All the 
derivatives appearing in (3.4) can be easily obtained 
from the equations of Sec. 1. 

First of all we note that in all the cases of interest 
to us we can neglect in the integrals of formula (3.4) the 
additive term h compared to Ap. Physically this means 
that the gravitational field affects the specific heat being 
measured much more strongly not directly through the 
potential energy ( ff'gz in (3 .1)), but due to the inhomo­
geneity in the density P(z) brought about by the gravita­
tional field, and due to the dependence of the internal 
energy on the height of the vessel (E[T, .9-'(z)] in (3.1)). 

The remaining four terms in (3.4) are associated 
with the dependence of Cv on the height, with the redis­
tribution of the density along the height for a motionless 
meniscus and with the redistribution of density due to 
the motion of the meniscus. 

We consider different cases for temperatures greater 
in the critical temperature (t > 0). 

1. lh.l < lhol ("far" from the critical point, t >to 
= (B/ A): (3hM/2B) 213). After straightforward calculations 
utilizing the values of h± from (2.4), we obtain 

c=-alnl t+llr'+ll h,:-;;! +~~+~+o(-""-~)- (3.6) 
1.cl+ · t hu-

Thus, "far" from the critical point (t > t 0 = 10-4 H~, 
where HM is expressed in centimeters[5 J) the specific 
heat remains logarithmic. 

2. lh.l > lhol ("near" the critical point, t <to, the 
maximum density gradient is situated near the middle 
of the vessel). For this case we have 

_A2 2 ( 2 -) I ( 3hM )'1"] 
(o- 8 -:---:Ta 1-Tp -atn\.fl --2/J- +il 

___ 3A' ( 1 + uB2
)( t _ 2Afl)(~'!_)'1• . (3.7) 

fJ [3A" B h" 

For p = 0 we have 

and at the critical point itself we have 

A' 2 1 (3ft,. , ,_,, 
i; = H- + 3 u + ..1- a lnlfl '!.B-) J 

As can be seen from (3.7) and (3.8), near the critical 
point the hydrostatic effect leads to a linear (and not to 
a logarithmic) dependence of the measured specific heat 
on the temperature. At the critical point itself the 
specific heat remains finite, while its value depends on 
the height of the vessel. 

The cases lh.l < lhol, lh-1 > lhol and lh.l > lhol, lh-1 
< lhol for t > 0 are of no interest, since the whole co­
existence curve now lies at t < 0. 

We now go over to studying the specific heat at tem­
peratures lower than the critical temperature. 

For the case lh±l ~ lhol (ltl < ltol, meniscus at the 
middle of the vessel): 

,p 2 ( 2 -) [ (3hM)'''] i;= 8 +-:Ju 1-~-r -aln ll 28 

3A" ( al/2 )( 2Afl) I ho I '1• +~-- 1+-.. 1--- -, . 
JJ f\.1 B h." 

(3.9) 

For temperatures which are "far" from the critical 
temperature, lho:l < !hoi (itl > Ito!, the meniscus near 
the middle of the vessel): 

:M 2 3Afll c =--alnl1--- +~-alnltl 
' :21i B 

-(13_ _all~-- A-p2 \I hM I 
li (3/lfl-- B) 1213t! hn I. 

(3.10) 

For t < 0 it is also of interest to consider the cases 
lh-1 > lhol > lh.l and lh-1 < !hoi< lh.l, to the extent to 
which they correspond to an approach to the coexistence 
curve. For lh-1 > lhol > lh.l (the meniscus is situated 
at the top of the vessel, the filling density is close to the 
fluid density on the coexistence curve) after simple cal­
culations taking into account the fact that lh-1 » I h. I, we 
obtain 

c = A'+ 2.a( 1-- 2.p-)- aln [B( 3h'=)'i•J + ~ 
13 :-l . :-l , '!.B -

3.t!"l , aB')!, 2Afl)l h_~j'1• 1 - ( I hoi'!.) --1 j ,--- • 1---- -= T"+\1- - .(3.11) 
B \ . r;/r'~;\ ~~ !·.'-,r I ' h,,l ' 

Here we have 

-{- 3 ( 3h,. )';,[ , ( h0 )'I•] 1 h+- p--- -- 1-2 -- f. 
4 B :.~h,, 

[( 3At,•;, ·(3h,..)'']-1 
X . - B -;--- ~ B- hlol• 

On the coexistence curve itself we have h. = 0 and 
P = Pves 

c = ~2 +fa( 1- ~Pves )-- ulalll( -~~--)'1 + ~ 
_ 3Az(i+ uB2)( 1 _2Afl)l.!!3__1'i•. 

B flA 3 B hM 

The calculation is completely analogous for the case 
!h. I > lhol > lh-1 (the meniscus is at the bottom of the 
vessel, the filling density is close to the density of the 
gas on the coexistence curve). 

From a comparison of formulas (3.8) and (3.9) it can 
be seen that the specific heats of the two- and the one­
phase systems in approaching the critical point become 
equal; the discontinuity in the specific heat in passing 
through the critical point is equal to zero. With an ac­
curacy up to terms written out in (3.11) there is no dis­
continuity in the specific heat not only at the critical 
point itself, but also near it in crossing over the coexis­
tence curve. 

"Far" from the critical point (lhol > lh±l) the differ­
ence between the specific heats of the two- and the one­
phase regions is determined by formulas (3.6) and (3.10). 
From these formulas it can be seen that for filling 
densities equal to or sufficiently close to the critical 
density the difference in the specific heats in the first 
approximation is equal to 

3A'· I 3..4~1 (L~,-) crit o.= '2B -- u In 1 ---- B- . 

For densities "far" from the critical density, i.e., for 

I-:-; ( 3hM )'/.(-!_!__)'/, ( h0 \'/, 

ii·l> 2B All h,)' 

this difference is close to 3A 2 /2B. In order that in 
agreement with experiment the discontinuity found at 
the critical point (t::..cv)crit would be greater than the 
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discontinuity far from it (3A2/2B) we must have 
0 < 3Aj3/B < 2. 

The distribution of density along the height of the 
vessel for the case lhol > lh+l in the first approximation 
coincides with the one which-holds in the case of mixing 
of fluid (cf., the discussion of formula (3.3)). 

4. DISCUSSION OF RESULTS 

As can be seen from the formulas exhibited in Sec. 3 
the gravitational field exerts a significant influence on 
the measurement of specific heat at the critical point. 
It turns out that the principal role is played not by the 
change in the potential energy of the system in an ex­
ternal field, but by the redistribution brought about by 
the field of the density along the height of the vessel 
which leads to a change in the specific internal energy3 > 

The value of the specific heat at the critical point re­
mains finite. Physically such a "cutoff" of the singu­
larity is associated with the small height of that layer 
of the fluid where the density is equal to the critical 
density compared to the noncritical layers. In the im­
mediate vicinity of the critical point the temperature 
dependence of specific heat is not logarithmic but linear. 
From a comparison of formulas (3.7) and (3.9) it can be 
seen that at the critical point not only do the values of 
the specific heat themselves coincide but also of their 
derivatives, i.e., the critical temperature is now not 
distinguished in any manner. 

The maximum in the specific heat lies in the two­
phase region and is situated at temperatures lhol :;::: ihMI, 
i.e., t :;: t 0 (t ~ 10-4 H~, where HM is expressed in 
centimeters). Indeed, from (3.9)-(3.11) it can be seen 
that the specific heat in the two-phase system increases 
for lhol » ihMI and decreases for lhol < ihMI· At the 
same time everywhere in the one-phase region the spec­
ific heat remains a monotonic function which increases 
as the critical point is approached. 

Figure 2 shows experimental data for calorimeters 
of two heights (8 and 2.5 em) for p = 0 taken from[ 2 J. 
An obvious qualitative agreement exists between the 
formulas obtained in Sec. 3 and experiment. For a quan­
titative comparison one should choose definite values of 
the parameters A, B, a, j3. 

From the experimental data it can be seen that the 
gravitational effect in the region lhol > lhM I leads to a 
decrease in the specific heat of the two-phase system. 
The same result also follows from formula (3.10) if 
3A j3/B > 1. Also taking into account the estimate given 
at the end of section 3 we obtain 2 > 3A j3/B > 1. When 
this inequality is satisfied it follows from formulas (3.9) 
and (3.10) that the addition to the first term in the 
specific heat at the critical point (A2/B in (3.9)) and the 
differences in the specific heats of the one- and two­
phase systems in the "distant" region lhol > lh±l (a 
quantity of the order of 3A2/2B in (3.10)) differ by a fac­
tor of 1.5. The same ratio also holds experimentally. 

The best agreement between theory and experiment 
is obtained from the following values of the constants: 

3lwe call attention to the fact that taking into account only the 
first term in (3.4) (dotted curve in Fig. 2 fort >0) leads to a systema­
tic deviation from experiment while the remaining terms in (3.4) 
obviously improve the agreement. 

--~I 

- -+--------
0 0 " 

·J -z Lg It I 

FIG. 2. Comparison of the experimental [ 2 ) and the theoretical 
(sec 3 of the present paper) data on the specific heat in the absence 
of mixing. The scale is semilogarithmic, i.e., the critical point lies 
at - =. Triangles denote the experimental points for a calorimeter 
of 2.5 em height, circles denote points for a calorimeter of 8 em 
height with black symbols referring to the two-phase system and white 
symbols referring to a one-phase system. Solid lines are the result of a 
calculation of the specific heat; dotted lines take into account only the 
first term in (3.4); the dash-dotted lines give the logarithmic dependence 
of the specific heat obtained in an experiment with mixing. 

A= 3.8; B = 0.6; a= 7.5; j3 = 5.5 x 10-2 (cf., solid 
curves in Fig. 2). The first three quantities agree com­
pletely with those determined previously from indepen­
dent experiments[s,sJ, while the value of the constant j3 
turned out to be considerably smaller than that deter­
mined by Voronel' [SJ. It should be stated that the value 
j3 = 0.1-5 adopted in[a,sJ was by no means reliable. Ap­
parently just the experiments being analyzed by us now, 
and also an investigation of the discontinuity of the 
specific heat in experiments including mixing, present 
the most reliable method of determining the constant j3. 

It appears to us to be useful to study experimentally 
the motion of the meniscus and to measure the specific 
heat without mixing of the fluid. Such experiments (for 
different heights of the vessel and filling densities) could 
to some extent clarify the problem of the nature of the 
singularity in the specific heat at the critical point, and 
also could serve as a means of studying the critical 
parameters (for example, density in experiments involv­
ing a meniscus) and the parameters in the equation of 
state A, B, a, j3 and others. We also note that in calori­
metric experiments involving mixing such mixing is 
never ideal, i.e., there will always remain a certain 
inhomogeneity (in the limit-the correlation radius of 
density fluctuations). Naturally our formulas are valid 
also in this case if we interpret hM as the characteristic 
dimension of the inhomogeneity (smaller than the height 
of the vessel). Perhaps it might be possible to obtain 
this parameter from comparison with experiment, i.e., 
to judge in this manner the extent of mixing. 
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