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We consider the question of inelastic scattering of an electron in a metal by a paramagnetic impurity. 
An integral equation is obtained for the processes of the coalescence of an electron-hole pair and an 
electron (hole) into one particle, the solution of which depends only on the elastic scattering amplitude. 
This equation is used to investigate the influence of inelastic processes on the unitarity condition for 
elastic scattering, and it is shown that the role of the inelastic processes reduces to a renormalization 
of the exchange-interaction constant and of the Kondo energy. In addition, it is shown that the para­
magnetic impurities cause a peculiar interaction between the electrons. 

1. INTRODUCTION 

THE problem of the scattering of an electron in a me­
tal by a paramagnetic impurity was solved by the method 
proposed by Suhl [1' 2 J , based on the use of the unitarity 
conditions and the analytic properties of the scattering 
amplitude (see the papers of Suhl and Wong(3 J and of the 
authors [4 ' 5 J. 

This solution method is apparently based on two as­
sumptions. First, the contribution from the many-parti­
cle intermediate states is neglected in the unitarity 
condition for the scattering amplitude, and second, it is 
assumed in the determination of the function satisfying 
the unitarity conditions that there are no Castillejo­
Dalitz-Dyson poles (CDD-ambiguity, for details see[3 ' 4J ). 

The second assumption seems to us exceedingly reason­
able, but the proof of its validity is possible only within 
the framework of the solution of the dynamic problem. 

The present paper is devoted to a clarification of the 
question of many-particle intermediate states. We con­
fine ourselves to the case of a pointlike scatterer and 
zero temperature, so that this paper is a direct continua­
tion of an earlier paper[4J, which is henceforth cited as I. 

The present paper deals in detail with the question of 
the role of three-particle states, and it is shown that 
allowance for these states leads in the main to a re­
normalization of the exchange-interaction constant, and 
consequently to a renormalization of the Kondo energy. 
A qualitative discussion of the role of states with a large 
number of particles also leads to the conclusion that they 
can be taken into account with the aid of renormalization. 

In addition, it is shown here that impurities with spins 
give rise to a peculiar interaction between the electrons. 
The presence of such an interaction was already noted 
earlier by Solyom and Zawadowski [SJ. This interaction 
should be responsible for the change of the supercon­
ducting-transition temperature in the presence of im­
purities (see the papers of Abrikosov and Gor'kov(7J and 
Ginzburg£8 J), but a detailed discussion of this question 
is beyond the scope of the present article. 

2. UNITARITY CONDITIONS 

We shall use the retarded scattering amplitude F, 
introduced in [5J (henceforth cited as II), for which the 

following unitarity conditions hold when T = 0 (I, II): 

i(F+- F)~~~M= + ~ (ilFiia• !nJ'l,) (M,n!j,.TIJi)o(Eno- £), 
1'.\11 

E>E,·; 

i(F+ -- F)~~~' 1= + L (M'Ii"'+!nMti(M,nliwiJI>.S(F:on -- R), 
!l.lfl 

(1) 

In the intermediate states n, we can have here, besides 
an electron (E > EF) or a hole (E < EF), also any num­
ber of electron-hole pairs. The total number of elec­
trons and holes will be called simply the number of 
particles. Separating the single-particle terms in (1), 
using the connection obtained in II between the corre­
sponding matrix elements j and the scattering ampli­
tudes, and also recognizing that F =A + BR, where 
R = S ·a, we can represent the unitarity conditions in the 
form 

{ 
1 . 

JmA = k IAI 2+IBI 2S(S+ 1)+ 21~ L\d~)), 

ImB = k{ AB' + A'B -IBI 2e(~)+ ~k An(O}, (2) 

where?;= E- EF, and t:..A B(?;) is determined by the 
equations ' 

(/\A+ dnR)~~~M 
1 

= 2] (M'Iiot•!nM,)(Mtnljo;+!M/6(Eno- E), E > EF, 
n:\!1 

1 
= 2 ~ (M'Iia+!nM,)(M,nliw!M)Il(Eon -E), E < EF, (3) 

Jl;\11 

where now there are not less than three particles in the 
intermediate state n. 

Nontrivial behavior of the scattering amplitudes near 
the Fermi surface (the Kondo effect) is due to the fact 
that the jump of the analytic function1l Bat E > EF and 
E < EF are expressed in different manners in terms of 
the square of the modulus of the same function. We deal 
here essentially with the so-called threshold singularity 

!)We recall that the jump of the function <I> is defined as the quan­
tity (2ir1 [<I>(E +ill)- <I>(E- ill)], which in our case is simply equal to 
Im<P. 
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of the amplitude. Namely, the scattering amplitude is an 
analytic function of E with a cut along the real axis from 
E = 0 to E = co, and it describes the scattering of a hole 
or an electron by the impurity when E < EF and E > EF, 
respectively: the unitarity conditions for these proces­
ses are different. Therefore a decisive factor in what 
follows is the extent to which the many-particle states 
change the form of the unitarity conditions when E > EF 
and when E < EF· We shall see below that this change 
is insignificant. 

3. DERIVATION OF THE FUNDAMENTAL EQUATIONS 

The matrix elements of the operators j and t which 
enter in (3) are S-matrix elements corresponding to 
inelastic scattering processes. 

Thus, the matrix element (M'Ija'lnM) at E < EF 
corresponds to the process of coalescence of particles 
that are in the state n into a single particle with energy 
E and spin projection a', while the matrix element 
(M'nlja'IM) atE< EF corresponds to the decay of a 
hole with energy E and spin projection a' _into the parti­
cles present in the state n. The corresponding processes 
for the case of three-particle states are shown in Fig. 1. 
This figure explains readily the notation used below. It 
is easiest to verify the correctness of such an interpre­
tation by considering, for example, the S-matrix element 
corresponding to the coalescence of n particles into one 
particle: 

(M'k' a'l S I nM) = (M'I ak'"' (t = + oo) S I nM) 

= .:.. \ dxexp{- ik'x + iEk,t} (M'I'¥a·(x, t)SinM>It~+~ 
-yv· 

i {} ) =----=r d'xexp{-ik'x+iEk.t}(i--Ho (M'IT('¥a·(:r)S)InM) -yv J at 

=- ~ ~ dtexp {iEt} (M'Iia•(t) lnM) 
-yv 

1 
= -2ni--=.S(Eno-E)(M'Iia·lnM). 

-yv 
(4) 

The derivation of this formula is analogous to the 
corresponding derivation for the scattering amplitude 
contained in I and IT. The operator ja' is defined in I 
and II, and is a Heisenberg operator. Before we proceed 
to a detailed analysis of the matrix elements contained 
in (3), we shall show that it is impossible to use pertur­
bation theory for their calculation. In fact, let us con­
sider, for example, the coalescence of three particles 
into one. In the first nonvanishing order of perturbation 
theory we have for this process the diagram shown in 
Fig. 2, where the internal dashed line corresponds to the 
propagation function of the impurity g(w) = (w +Hi f\ 
and each vertex corresponds to a factor -41Tf, where 
f = a + bR is the Born amplitude for the scattering by 
the impurity. In addition, the entire expression must be 
multiplied by V 312. As a result we obtain 

. _ (4n)Z ( Uw~, /Av) [/a•v, /A~] ) 
<M'Ila• I k2k1k3) <::::: - --y;;;- \ E 1 _ E _ i/) - Ea --E _ ;{, .. 

= __ (4n~_ZbZ ( [Ra,~, Rav] _[11_..-~, Ra~]_ \ . (5} 
y, E,-E-z.S E,.-E-ill' 

Here and below the bar over the momentum k2 denotes 
that we are dealing with a hole. The main feature of this 
expression is the presence of poles at E = E1 and E = E3. 

Fig. 1 

(k'a') 

-~~~lv) 
·.':..:-t!(j~! 

Fig. 2 

Because of this, substitution of (5) into (3) leads to the 
1: 

diverging integral jdl:1(1:- 1:1r1. 
0 

Let us consider in greater detail the matrix element 

<111' I ia lk2k,k,, .11; ~c (:lf' I ia a;;, (t • - - " l 1 k,k.,M> 

= /f" ~dte;E,I{)(-t)(.l/'l{iu(O), j,_(t)}lkzk,..1f) 

= ~-~ { (:~!'I ia_l n) (I~ I i,' I k,k".1~,) + <JT' I hI_ n) (11 I ia I ~c,k.M, ~ \ . 
Jfl' n h.-l~z-F3-t"fcn-l6 1:,-E,.-tl'! J 

(6) 
In the derivation of this formula we have used, first, a 
procedure analogous to that used in the derivation of (4), 
the only difference being that in lieu of the T-product 
we introduce the retarded anticommutator, in analogy 
with the procedure used, for example, in Appendix I of 
II, and, second, we expanded with respect to the inter­
mediate states of the free particles (the validity of this 
approach is also demonstrated in Appendix I of IT). We 
assume here that the states n pertain to the instant of 
timet= -co. 

We confine ourselves here below only to single-par-
ticle intermediate states. We have here 

<M I. lk k M) 4" {FM-"'(E) I'"'-"' (L' )' } 2q ]J.. 1 a = -==. 1 Av 3 6qlt1- 'lg Dt Vvk, 
-yv 

(7) 

where a is the component of the particle spin with mo­
mentum q and 

with q"' k1, k3 and Eq + E2q = E1 + E3. The equality of T 

and the corresponding matrix element j can be demon­
strated with the aid of a procedure analogous to that 
used in the derivation of (4). Terms with a-symbols are 
obtained with the aid of a similar procedure; their ap­
pearance can be readily understood by taking into ac­
count the possibility that q in the left side of (7) may be 
equal to k2 or k2. A single-particle contribution to the 
right side of (6} can also be made by the three-particle 
intermediate states, if the momenta of two particles in 
these states coincide with k1 and k3. As a result we ob­
tain for T the equation 

aa(EE E E)=- (4n)'{[Fa~(Et),Fav(Ea)] 
't'J.I.v ' 1' 3' 2 Y3/ 2 E2 -Es- i6 



342 S. V. MALEEV 

_ _::: (E{,E,,E,,E')Faa(E') 1 
E'-E-i{J J• (8) 

where E + E2 = E1 + E3, E' = Eq, and we have omitted 
the projections of the spin of the impurity, since they 
follow in natural order. From this formula it follows, 
in particular, that 

T:,'(E + i{J, E,,E,,E,- ili)=-T~ (E,- iii, E,, E,, E + i6). (9) 

Taking this equation into account, and also the fact that 
F = A + BR, we can readily show that T can be repre­
sented in the form 

al. {4:rt) 2 aA 
T~v (E, E~o Es, E,) =- ----v;;;-B{Ei)B{Ea)/~v (E + ib). (10) 

We then have for the function f the equation 

t:..~-(E +iii)= ,[Ha,,,_R,4-- _ ~av,~AM]0_ + _!_ 1 dE' k' 
/!,-I~ - 11i /o:;- E - tli n ~ E'- E- i{J 

X {Faa(/.;')/1.~'(F:'- ii\)\J+(E')+ f,~:- (E'- ili)Faa(E')tt-(E')} 

1 oo dE' k' 
-- \ , .-~-:- {F,,a(E')/~~ (E'- ill) fr+(E') 

:rt ·,/;'- !;, + 11\ 

+ /,~~ (E'- i6)F,.a(E')fr-(E')}. (11) 

where ~.(E) = 1 when E > EF, ~.(E) = 0 when E < EF, 
and ~.(E) + ~-(E) = 1. 

Using a procedure perfectly analogous to that des­
cribed above, we can obtain an equation for the matrix 
element (M'k1k3k21j aIM), describing the decay of a 
hole. It turns out here that 

(JII'i.:,i.:,k,lja IM> = T~~ (E, E,, E,, E,)' 

where now E1,3 < EF and E2 > EF. But since E1 and E3 
enter in (8) as parameters, while E and E2 can be arbi­
trary, these matrix elements need not be investigated 
separately. 

As already mentioned in the Introduction, the para­
magnetic impurities lead to the appearance of a certain 
additional interaction between the electrons. It is per­
fectly clear that the amplitude of the electron-electron 
scattering, which is shown graphically in Fig. 3, should 
be directly connected with the amplitude for the coales­
cence of three particles into one, which we are consid­
ering. 

Inasmuch as in this case E2 > EF, it is natural to 
expect the scattering amplitudes to be obtained from the 
coalescence amplitude, by replacing in the latter E2- Hi 
by E2 + Hi. That this is actually the case can be readily 
verified by confirming the matrix element of the 
S-matrix corresponding to scattering, and by using a 
procedure similar to that employed above. As a result 
we obtain 

2:rti ~ 
(.1/'kk,ISik,k,M) = tV{J(E+E, -E,-E,)-r"v (E+ili, E,,E,,E,+ib) 

T:~-(E + ib,E,,E,,Ed- i{J) = -r:(E + ili,E,,E,,E,- i6) 

+ 2ik,F,.a(E2)-r:," (E + ib,E,,E.,E,- itJ) 

- {4:rt)' 
-- :!nt v7."- {6 (E,- E)F,.,(Es)Fo.~(E,)- b(E:~- E)F,.~(E,)Fav(Es)} 

(12) 
for the scattering of two electrons and 

(--lSI--) 2rri E E "'" ,ksk, kk, =lfyll( ,+Ea- -E,)-r~v(E-itJ,E,,E,,E2 -il\), 

-r:::(E- i{J, E1, E3, E2 - ib) = -r:(E +iii, E1, E3, E2 - iii) 

+ 2ikT:: (E, + ib, E,, E,, E- ili)Faa(E) 

(4rr) 2 
- :!rti ---;:;;:;-[6 (E,- E)F,.,(Ea)Fao(E!)- F,.o(E,)Fu.v(Ea)li(E,- E)] 

], - (13) 

for the scattering of two holes. In these expressions, the 
terms containing li-functions describe the scattering of 
particles by impurities, not accompanied by a redistri­
bution of the energy along the particles. Such terms are 
present also in pure potential scattering, when there are 
no inelastic processes. 

In conclusion, let us consider briefly the question of 
a five-particle amplitude. As will. be shown later, the 
character of the contribution of the three-particle states 
to the unitarity condition is determined by the pole term 
in T. The same should take place also for five-particle 
terms. Leaving out the corresponding cumbersome 
although straightforward calculations, we present di­
rectly an expression for the pole term of the amplitude 
of coalescence of five particles into one, shown graph­
ically in Fig. 4: 

<M'I" 1-- k M) {4rt)' Jo. k2k4k1 3k5 = lf'i;-B(El)B(E3 )B(E5 ) 

X { [[Ra~, R,.,0 ,], R,.,~J + .. _1 ' 
(E1 -E-ill)(E5 -E4 ) J (14) 

where the dots denote terms obtained for the first term 
by all possible permutations of the "incoming" 
(k1, k3, k5) and "outgoing" (k, k2, k4) particles, and the 
sign of each term is determined as the product of the 
parities of these two permutations. 

4. ANALYSIS OF THREE-PARTICLE AMPLITUDE 

We shall consider below only the case of "antiferro­
magnetic" interactions (b < 0), since in "ferromag­
netic" interactions (b > 0) the problem was solved by 
Abrikosov[lOJ with the aid of a graphic technique, and 
needs no proof. All the results obtained below can be 
readily rewritten for b > 0; it turns out here that the 
three-particle state makes a negligibly small contribu­
tion to the unitarity condition. Before we investigate the 
three-particle amplitude T, we recall several proper­
ties of the scattering amplitude F = A + BR, obtained 
earlier in the single-particle approximation (see I, II, 
and ruJ); we shall henceforth denote the amplitude in 
this approximation by F0). As i; - 0 we have 

i ( 1 rt2S(S + 1)) ;1 

Ao::::::: kb' -ln2 (eo/ I W ' Bo::::::: - 2kF ln (eo/ 161) · (15) 

Here E:o = EF exp(-1/lgl) is the Kondo energy, and 
g ~ 2kFb/1T. 
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These formulas are valid when ln ( f.o/ I~ I) » 1. In 
addition, in the expression for Ao we have neglected the 
small term -a ·which is due to the nonexchange interac-

' 2 tion. We shall need later an expression for IBo I . It can 
be readily obtained from the formulas of I and is of the 
form 

IBol'~(i;.J[(rn ltrY+:'<zs+1J'r, (16) 

This formula is valid when I~ I « EF. It follows from it 
that IBol:::: [kF(2S + 1)]-1. 

We now proceed to analyze Eq. (11). We seek its 
solution in the form 

P(~+ili) Q(~+ib) (17) 
/(~+ib)= ~~-~-ib+ ~3 -1;-ill 

Substituting this expression in (16), we obtain 

P(~+ i~)= [U~,R,] +~ r d~'k'(F(~'),P(I;'- ib)), n . 
-EF 

·x: (--! _______ 1 -. ) +_!_ ~ d~'k'(F(I;'),Q(I;'- itJ))z 
· I;'-\;- io ~, -~;,- 1/l n -".:, 

x( ~' -1\;,- ib-1;' -1~a-i6)- 2ik,(F(1;;,), Q(l;,- if!) )z, 

O<s+ io)= -[R,,Ii;J+_! ~ dl;'k'(F(s'), O<s'- i6))• 
1(. -Ep 

X (., 1 . _ ~' ~ . )+-1_ ~ dl;'k'(F(~'), P(~'- iii) )2 
; - ~- 10 ~ - ~3- l0 1t ->'F 

( 1 1 ) X --, ---.. -2ik2 (F(I;,),P(I;,-ic'J))2. (18) 
\~'-~,-ill ~ -- \.t-11\ 

where we have introduced the notation R1 =Rai-L' 

R2 = RA 11 , the bar over the product R1R2 denotes permu­
tation of the indices f..L and 11, and 

" "" GA - I ) (F, Z)i == Fao(\,)Z~v (1;)ir+(l;) + Z,,. (S)Fa.o(,)>L ,\, , 

(F, Z) 2 = F,,a(~)Z~~(\,)>h (0 + Z~~([;)F>.o(~) D-(U. (19) 

It is easy to verify with the aid of (18) and (19) that the 
quantities P and Q have the following properties: 

(20) 

In addition, it follows from (9) and (18) that 

!'~; (s + io, ~~- ~ . ~"- iii) Q~~ (~ + io, ~~. \.,, ~'- i~)_ ----·-·--.--.. . ------+ - ·-· ..... - ., -· 
~t - ~ -- tb S3 - ~ - fu 

_ P.~~ (~2 - io, ~;,,~,_,,\.+iii) -1- Q,~~ (\.z- if'J, \.t. ~"' \. --t_itJ) _ (21 ) 
- \,z-~-ili ~~-1;-ib 

We now consider the question of the behavior of the 
quantities P and Q at the pole, i.e., when ~ 1 or ~ 3 tends 
to ~. We assume here that as ~ - 0 the amplitudes A 
and B behave in the same manner as the amplitudes Ao 
and Bo. 

We shall show below that this is indeed the case. Let, 
for example, ~ 1- ~; then by virtue of the energy con­
servation law ~ - 0 and ~ 3 - 0, and we obtain from (18) 

P~~" (\, + i{i, \,. 0, 0) = [Ra.1,, R,v] + 20:: (0, ~. 0, ~ + io). (22} 

On the other hand, it follows from (21) that 
paA (~, t, o, O) = QAa (0, ~, 0, ~),and therefore 

j.LII f..L II 

paA(L ?;, 0, O) =-[R , R, 11 ]. We similarly obtain 
J.LII a f..L .fl. 

QaA ( ~, 0, ~, O) = [R , R, "], and consequently the 
f..LII all .rt.~ 

residues of the function f at its poles differ only in sign 
from the residues of the pole term in the equation that 
determines f. 

We now examine the question of the contribution of 
the pole terms of the amplitude T to the unitarity condi­
tion. Taking (8) into account, we obtain after simple 
calculations 

• (p) (t) = ss(s + 1)_k .a f ay tr'' d. IB B 12<Y-. )-2 
Ll A ... .,....2 F J ':.-:oi J ~ 1 3 'o S1 , 

0 0 

~k 3 t t-t, 
11ii>m= _.!....!:._ ~ d~;, ) d\.ziB,Bal'l(\;- ~,)-' 

112 0 0 

(23) 

where Bi = B( ~ i) and I~ I « EF. Let us ascertain now 
the structure of~ (p) if we substitute in them Bo in 

A,B 
place of B (see (17)). Integrating by parts, we readily 
obtain the formula 

< 1 ( :rt L) 11!:('· 0> ~- 2S(S + 1)/!,"p, O)e(\,) ~ 2S(S + 1)kFIBol 2d 2- arctg-d , 

(24) 
where L = ln(f.o/1 ~I) and b = (1/2)JT(2S + 1) > 1. In the 
derivation of this equation we have neglected the terms 
that are of order ILI- 4 when ILl » 1, and of order d-4 

when ILl -;:; 1. When L » 1 we have 6.<p,o> ~ L-3, and 
A,B 

substitution of (24) in (2) leads to unitarity conditions 
that practically coincide with the single-particle condi­
tions. When- L » 1 we have 

k 111P· O) ~ 2nS(S -l-1) ; IBol 2, 

and in this case the unitarity conditions differ strongly 
from the single-particle conditions. This is connected 
with the fact that at large values of ~ (EF » It I » f.o) 
and when {; 1 - ~ and t 3 - f.o the amplitude of the coal­
escence of three particles into one is anomalously large 
(of the order of bkF( ~ - t 1r1}, and therefore the contri­
bution made to the unitarity condition by the three-parti­
cle state turns out to be of the order of b2 , and not b 4 

(at such values of t we have IBol 2 Ri b2). It can be shown, 
by using the exact formulas for Bo (cf. I) that the three­
particle contribution becomes of the order of b4 only 
when I{; I > EF; this is the real condition for the appli­
cability of perturbation theory to the Kondo effect. It 
will be shown below that the allowance for the three­
particle states reduces in the main to a renormalization 
of the Kondo energy, i.e., to replacement of f.o by f.1 
> f.o. 

If this is so, then we can replace, with logarithmic 
accuracy, IB112 in the expression for 6.t), by IB(~)I 2 and 

IB3 I2 by IB( t - t 1} 12 , since the principal role under the 
integral sign is played by t 1 - t and t 3 - t - t 1· With 
the same accuracy, we can neglect the second term in 
the expression for 6.(P). As a result, the unitarity condi-

B 
tions assume the following form: 

ImA = k{IA I'+ JBI 2S(S + 1)(1 + 2y) }, 

ImB = k{A'B-j-AW -IBI 2 (1 + y)e(~)}, 
t 

y(l;) = _i (~k_F__ )2 ) ~IB(\:- \:1) 12· 
2 1t 0~-~~ 

(25) 



344 S. V. MALEEV 

These formulas are valid in the region I L11 = lln( E 1/ I b" I) I 
» 1. When I L11 ~ 1, the functions ~ ~) B differ from the 

' approximate values used in the derivation of (25) by 
terms of order d- 4• As will be shown later, the concrete 
form of the functions ~A B when I b" I - E1 is immaterial 
for our purposes. ' 

We shall seek the functions A and B satisfying the 
conditions (25) by a method analogous to that used in I. 
We introduce the function u = B-1(1 + 2ikA). By virtue of 
the unitarity condition for B, we have 

u(~ + ili)- u(~- i6) = 2ike(~) [1 + y(~)]. (26) 

Reconstructing u( b") with the aid of the dispersion integ­
ral, we obtain 

Ep 

u(") = uo(~)+ ~ I d~'e(~')y(~') 
~ n J ~~- \;- i6 ' 

-El' 

2kF ( 1 ~ . n ) 
uo(~)=-- --In-+!- . 

n ' g E,. 2 
(27) 

Here uo( b") is a function of u, calculated in the single­
particle approximation (see I). The region of integration 
with respect to b"' in (27) is bounded from above by the 
quantity EF, for when b"' > EF the function y(b"') should 
decrease rapidly (perturbation theory becomes applica­
ble). 

We assume that the influence of the three-particle 
state should reduce in the main to a renormalization of 
the Kondo energy. If this is so, then when L1 
= ln( E1/ I b" I) » 1 the function y should have the form 
YoLi\ and when-L1 » 1 we have y(b") ~ Y1, where Yo 
and y 1 are constants and therefore u( b") can be repre­
sented in the form 

2kF { Et in ) 
u(~)=-- ln-+-+u((;)f, 

n ~ 2 

v(q= 

(28) 
, 

y0 lnln~ ln~:;;..1 
?; , 1~1 

where 

e, = EF exp {-[I g I (1 + y,)]-1}, 

and, in addition, when b" -Eo we have v( b") - 1. 
We now introduce the amplitudes a.= A± B(S + 1/2 

± 1/2). We seek them in the form -
1 

a±= 2ik(S±-1), S±=exp(2i6±)- (29) 

Using the definition of u, we obtain 

S+(~) u + 2ikS 
S_(?;) = u-2ik(S+1). 

(30) 

From (28) and (30) it follows, in particular, that S.(O) 
+ S_(O), and therefore ll .(0) - ll_(O) = m1T, where m is an 
integer. It is shown in I that in the single particle ap­
proximation ll. ~ ± 1T /2 and m = -1. We represent the 
phases ll z in the form 

'"' k r d?;'ln1J±2 i k c d?;'lnTJ±' 
!Jl±=- 4n}EF k'(\;'- ?;- il\) = -2lnTJ±- 4nlk'(?;'- ?;)(31 ) 

where k = v'EF + b" ~ kF, and the phases 11± are real. 
The integral representing cpz has in I limits from 

- EF to zero. In our case it is necessary to use the 
limits - EF and infinity, since the expression for Im A 
contains terms describing inelastic scattering. With the 
aid of (25) we get 

(S + 1)TJ+' + STJ-2 = (2S + 1) [ 1- HI.''I!J l'yS(S + f)]. (32) 

From this, taking (30) into account, we can readily de­
termine 11~: 

TJ±' = [1-8k'IBI'vS(S+1)]{1±1(S+'h 

+ 1/ 2)k2D '[e{~) (1 + y) -- 1]}, 

D = lui'+ 4S(S + J)k' = u, 2 + k'['IS(S + 1) + (1 + y)'j, (33) 

where u1 = Re u. These formulas contain the unknown 
functions I B 12 and y . 

Using (29), (30), (33), and the formula 
B = (28 + 1r1(a.- a_), we get an expression relating 
these functions: 

1131'= [D+8k'yS(S+ J)] '· (34) 

Substituting (34) in the expression for y, taking (28) 
into account, and introducing a new integration variable 
L~ = ln(t:Jib"- b"1l), we obtain 

'V (L,) = -~- ~ dL 1' { (l.1' + 1·1 ( {,1'))' 
2 . 

L, 
n' ) _, 

+ -[y2 (f.t') + 2(28 + 1 ) 2y(/./) + (~S + f)']/. , (35) 
4 

where v1 =Rev, from which it follows that 
J 2 I 

rty =--.j{(L1+c·,(L1))'+: [y2 (1.,)+2(2S+I)'y(l.t)+(:!S+I)']l 
dl., - i (36) 

and the boundary condition y(oo) = 0. By virtue of (36), 
y decreases monotonically with increasing L1, with 

y(J:,) = (2£,)-•, Lt-+ + oo; 

1 
y(Lt)=yd-, --, 1. 1 ~-oo. (37) 

2/., 

These equations justify the assumptions made above 
concerning the properties of the function y. 

We now determine y 1· From (35) we have 
1 co 'l t 

"' = -- ~ dL, {(L, + ,-,)' + _,;~[(2S + 1 )' + 2(:!.S + 1 l'v + v'l 11- . 
2 . 4 

--oo (38) 

The second term in the denominator of the integrand can 
be assumed large compared with unity, and therefore 
the main contribution to the integral is made by the 
region ILd » 1, in which we can use for v1 and y the 
asymptotic formulas (28) and (37). As a result we ob­
tain for y 1 an equation whose solution can be readily 
obtained in the form of a series in powers of (28 + 1r1: 

1 ;j ) 
'Vt=(2S+1)-'(1- 2(28+1) + '1(2.'f+l)"- .... (39) 

The obtained formulas make it possible to write the 
solution of our problem in the regions I b" I << E1 and 
I b" I >> E1, or more accurately, when IL1I >> 1. 

Taking (33) into account, the phases cp± can be repre­
sented in the form 

(1) 1 (2} 
Cf..t==-=C(_. Tft.:'::' 

(!) 1 ':' d';,' j " , " • • 1 • 1 q: ~ ---- \ ------------ 1 ln[l- Sk,-·1 h 1-y.'i (5 T 1) 1 
± .-. •hr - '· ;' - ~ - ib \. · 

r ( 1 1) ll + lnll ± l S + 2- + 2- k,.'ylJ 1 I , 
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rp~~~--.1_ ~o _ ____tZL_ 1nD+4_(S'_-t~0''/,)(~+v)~'F' _ 
4n _, ~'-~-i/) D±4(S-t-'/,+'/,)kF2\' (40) 

These formulas are valid only when It I << EF, and 
therefore, just as in I, we have replaced k by kF 
throughout. In addition, in the expression for cp? 1 we 
replace the lower limit by - oo, since the integral con­
verges well. In the formula for cp~21 this cannot be done 
for the same reason as in the expression for 'P± in I. 

Further, cpi 11(0) = 0, for in this case the correspond­
ing integrand is an odd function of l;'. 

Using the limiting expressions for y, IBI 2 , and D, we 
can readily obtain an asymptotic expression for cp? 1(l:) 
in the region L 1 >> 1. To this end it suffices to deter­
mine the imaginary part of cp! 11 , and then reconstruct its 
real part by using the fact that cp~ 11 is an analytic func­
tion of l; and Re cp! 11 is odd; such a reconstruction is 
possible accurate to the constant cp~ 11 (0), which, as we 
know, equals zero. As a result, taking (28), (33), (34), 
and (37) into account, we obtain 

rn (l' (") ~ irr' l')S + 1 '! (s _L L +~-)(ln.':'_-+ _in 
-r± \- ~ 8 ~ I 2 2 \ ; 2 

h.' (• 1 1 ) ··( _ 3rri " \ =---(28-j-1) S+ -+--To,-" 1---£(•.)). 
8 2 2 2L, ---, 

(41) 

The last part of this equation is valid only on the real 
axis (we define ln(Edl;} in such a way that when l; > 0 it 
is real). In the region- L 1 » 1, the functions cp1 11 de­
crease like L12 • 

In analogous fashion, we obtain expressions for the 
phases cp? 1: 

(2)(")= (:') (0)+-~+'h+~ 
<P± ~ if± - 2ln(<'J/s) 

/2) n ( S' 1 - 1 ) (! . ' + - l ___ ,_,, ( ")) ~ 'f± (0)±-2 '+T---r-2- o' l;r"' -v -s ' 

1, 1 1 f (L,-t-v,(L,)) 2 -t- 1f<.;t2 [2S-t-1+(2-t-y)]2 
<f± (O) ~ -4rr- J dL,ln-- (L1 +-c:-;(z~))'-=f-li,n'(2S + 1 ± vl' (42) 

In the derivation of these formulas we replaced the 
lower limit of integration in ( 42) by - oo. Just as in I, it 
is necessary in this case to introduce a correction term, 
which together with v± gives a general phase v""' kFa· 

The integrals (40) can be calculated in the same 
manner as the integral in (38). As a result we obtain 
cpi21 (0)""' ±JT/2, i.e., when the three-particle states are 
taken into account at l; = 0 the phases reach the maxi­
mum possible value from the point of view of the uni­
tarity condition. Moreover, the asymptotic form of the 
phases (40) coincides exactly with the co.cresponding 
asymptotic form in I. 

Thus, three-particle states essentially lead only to 
a renormalization of the constant that characterizes the 
exchange interaction, and a renormalization of the Kondo 
energy. Such a renormalization was obtained earlier by 
Appelbaum and Kondo[12 J. Further, inasmuch as the 
asymptotic behavior of the phases is the same as in the 
single-particle case, it is to be expected that at finite 
temperature allowance for the three-particle states will 
lead only to a renormalization of the Kondo temperature, 
i.e., all the limiting formulas for the conductivity, 
thermal emf, and specific heat, obtained in[llJ, remain 
unchanged. 

We now consider the extent to which our results de-

pend on the made approximations which enabled us to 
represent the single-particle unitarity condition in the 
form (25). Once this was done we have >sentially used 
only the limiting formulas (37) for the function y, and 
the concrete value y 1 for the final result was practically 
immaterial, since y 1 entered only in the definition of the 
quantity E 1 , which should be regarded as the main 
parameter of the theory. 

Allowance for the terms discarded in the derivation 
of the equations in (25) would lead to their replacement 
by the formulas 

I rn ,1 = k {I A I' + s ( s + J) In I' ( l + :ly \)). 
imli = k{AW -t-A'JJ · -1111'(1 + \n)d~)}, 

1 \; d~1 (.\ II) 
y, n==-- - ----rll- c [.LB] • ' - 2 °() ~ -- ~1 ~' ~I , l 

(43) 

where <I>(A,B)[A, B] are certain functionals of A and B. 
Lt1 

In this form, the unitarity conditions can be represented 
not only by taking into account the three-particle terms 
which we have discarded, but also in the more general 
case, for example if account is taken of the pole term of 
the five-particle amplitude (14), and in all cases we 
shall have y A""' YB""' (2Lt1 when L >> 1 and constant 
y A and YB when- L >> 1. It should be noted, however, 
that generally speaking when- L >> 1 we have y A,B 
= y A B + E(l;)y A B' i.e., at large values of l; the 

1 ' 2 ' 
values of y A B depend on the sign of t. This behavior 
of y A B has 'a general character and does not depend on 
the as'sumptions made. 

With the aid of conditions (41) we can construct the 
function u. The renormalized Kondo energy will then de­
pend only on the constant y 1B. Furthermore, we can 
introduce the phases cp±( ?;) in the same manner as above. 
The expressions for 7)~ now take the form 

'1±' -~ [1-- 8k2y 1 [iJI'S(S -:-1)] {J ± 'I(S -i- 'h 
+ 1/,)k'D 'ls(1 +- yn)- 1]}, 

JJ = n 12 -I k2 [4S(S --j--1) -1- (1 + y")'], 

IRI'~[Df-Sk'y,S(S-t-1)] 1 (44) 

and the function u 1 = Re u is described by the limiting 
formulas (28) in which y 1 is replaced by y 1B· Substituting 
the expression for A and B in the formula for YA,B' we 
obtain an equation for the constants y 1 2 • A B· The ex­
pressions for the phases 'P± are best r'epr~sented in the 
form similar to (40), where the combination of the logar­
ithms in the integrand expression for cp? 1 is an even 
function of l;, in any case in the region I Ltl > 1, and 
therefore cpp>""' 0, and the asymptotic formula (41) is 

valid for cpF- 1• The function cp?1( ?;) can also be represen­
ted in the form (42) when L1 » 1, but the expressions for 
cpi21 (0) are now much more complicated: 

1, 1 1 "? [/J_ + 88 (S + l)y_~-> k, 2][D: + I,Sk1,2y;;-1 ] 

'P+ (UJ = 4;- -~oo dL l"[ZJ;:-+ HS(S +- lJy~ kl,"](IJ - \Sk,'y'si] , 

121 _ 1 ":' [D-+8S(S-t-l)y~->k,2][LJ,-4(S+I)kr)ltJ 
'P- (0)=4., }d(]a [/Jr-1-~S(S+J)ylilk;'J[D_--:~4-(S-t--l)k,'y'~'] 

_..,.,_, .1 .D 

(45) 
where Z± = Z 1 ± Z2 , and Z1 and Z2 are respectively the 
even and odd parts of Z. 

These integrals can be calculated already by the 
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method described above, and as a result we obtain 

(?) J( 

'1=- (0)=+-:!-+i., 

:t '28 + I ----- --- -------
1.=- -~--~-- nt+c,+c,--r'l+c,-c,). 

_,_ ,.,, 

c, = (~S + 1)- '[:.\u: + Y>H' + y,n' + RS(S + l)yu], 

c,= (2S+J) '[2yn(l+y1n)+6S(S+l)y,,/. (46) 

Thus, in this case one of the phases will be larger 
than 1f /2 in absolute value, and the other smaller. At the 
same time we expect that ;\. << 1, since the terms 
Y 2A,BE( /;) in the expression for y A,B appear, as a 

minimum, only in the fourth power of the terms contain­
ing IBI, and each IBI introduces into the corresponding 
term a small factor which roughly speaking is propor­
tional to (2S + 1r1 (we recall in this connection that in 
the simplest case y 1B is equal to (2S + 1r1). 

In conclusion let us stop to discuss one more ques­
tion. As already noted in Sec. 3, the inelastic-process 
amplitudes considered by us are connected with the am­
plitudes for scattering of two electrons (holes) by an 
impurity. On the other hand, the scattering amplitude 
should satisfy the reciprocity theorem (see, for exam­
ple, the book of Landau and Lifshitz (13 1), according to 
which the interchange of the initial and final particles 
can change only the sign of the amplitude. At the same 
time, in the pole approximation employed by us the 
scattering amplitude does not possess this property. 
But the pole approximation, obviously, is valid only near 
the pole, i.e., when !; 1,3 ~ !; . This suggests that the 
indicated violation is only illusory. In order to verify 
this, we solved Eqs. (16) for f with allowance for the 
non-pole terms in the limiting case L >> 1. The corre­
sponding rather complicated calculations will be pub­
lished separately in connection with the question of scat­
tering by impurities and the influence of this scattering 
on superconductivity. We present here only the final 
result: 

-r(s + tb, ~~. s.,, s'- io) 

~ _/_!!___ \" (L1L 3L 2L)-'h( [R,, R,] - ~~] .) 
\zkF J \,,- s- io s.,- ~- il\ · 

(47) 

The corresponding scattering amplitude 
T(/; +io, &1, /;3, &2 +i6) differs from T(/; +io, 1; 1, !; 3 , 

&2- 6) only in sign, as can be readily verified with the 
aid of (12) and satisfies the reciprocity theorem. It is 
also easy to verify that substitution of (47) in the expres­
sion for t.A,B leads to formulas that coincide with (24) 

when L » 1. 
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