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Closed expressions are obtained for the amplitude describing the scattering (elastic and Raman) of a 
photon by a hydrogen atom; these formulae are exact in the sense of taking the external field into ac­
count. With their aid the Lamb shift of the energy levels of a hydrogen-like atom is calculated in the 
nonre lati vis tic approximation. 

INTRODUCTION 

As is well known, an expression for the amplitude 
describing the scattering of a photon by an arbitrary 
system was obtained by Kramers and Heisenberg in 
1925, just before the development of quantum mechan­
ics Y l It has the form 

A;t= etez.S;1 _ _!_ 2; r (pet)tn(pez)n; + (pez)tn(Pet)ni ] . (1) 
m "LEn-E;+ffiz En-E;-ffit-iB 

Here In) labels the complete set of states of the 
scatterer, En denotes its energy levels, e1,2 are the 
polarization vectors of the incident and scattered pho­
tons, and w1,2 are their energies. The amplitudes are 
normalized such that do/ dO = r~ I A 12, where ro 
= e2/mc2• 

In general it is impossible to calculate the ampli­
tude with the aid of a sum over states; in this connec­
tion, up to the present time the only way of using this 
formula has been an analysis of its individual terms. 
From here, in particular, originated the idea of reso­
nance scattering, which is described by one of the 
terms in the second sum for w1 Rl En- Ei. Here the 
remaining terms play the role of a nonresonant back­
ground. The derivation of the analytic properties of the 
scattering amplitude was another important application 
of formula (1 ). 

With the aid of the Green's function for the scatter­
ing system, 

- "' ln)(nl 
G(Q)- LJ E -Q 

n n 

(2) 

G(r.,rziQ)= ~ Yzm(nt)Yzm*(n,)G,(r.,r.jQ), 
lm 

(here k = v' 2m0, v = Zam/k, and the Jn are Bessel 
functions). 

(4) 

(4a) 

We shall calculate the amplitudes for scattering by 
a hydrogen atom in the 1s and 2s states, and also the 
amplitude for the 1S - 2S transition (Raman scatter­
ing) is calculated. In turn, knowing the scattering am­
plitude one can determine the radiative shift of a level, 
the so-called Lamb shift. 

GROUND STATE 

First we note that in the absence of external fields 
formula (3) may be written in the form 

Att = e1e2 lltl1--1-pG(Et- ffiz)p--1-pG(E; + ffit + ie)p I i) (5) 
\ 3m 3m • 

and we shall evaluate the quantity 
1 

X(Q)= 3m (flpG(Q)pli) 

= 3~ ~ V')l/(rt)·V¢t(r2)G(rt,rziQ)dr1 dr2. (6) 

For the 1S state 

')l;(r) = "J''A,ajn e-Ar, A.= Zam, (7) 
one can represent the scattering amplitude in the follow- so that 
ing form: (7a) 

(3) 

The problem consists in whether it is possible to eval­
uate this matrix element. It turns out that if the scat­
tering system is a hydrogen atom, then the problem is 
completely solvable. It is only necessary to use the 
coordinate representation for the wave functions and 
for the Coulomb Green's function[2l 

Having substituted (7a) and (4) into (6), we obtain 

4A.' "' co 
Xts(Q) = -· ~ dr, ~ drz(r,rz) 2e-A<r,+r,J Gt(r1, r2 JQ), 

3m o o 
(8) 

If we use expression (4a) for G1, then the radial inte­
gral which is evaluated in Appendix A appears; from 
Appendix A we take the result 

(9) 

Thus 
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X1s(Q)= J6ii_5k' ~d~(~+ l)'+'"(s-1)'-'"P-'-k'-:nki.~)-'• 

' 

where 

s='~+ikk)". (lOa) 
J.-l 

We have used the following integral representation 
of the hypergeometric function: 

~ 

~ dW + ~u)"(~ + l)''(s-1)' 
1 

=(1 +n)"F(-a, c+ 1; --a-b; -~ ~~) 
X 21*+1 f(c+1)1'(-a-b-c-1) 

------------- ---------

f(-a-b) 
(11) 

Expression (10) was previously obtained by Gavrila, 
who used the momentum representation. [3 l His method 
is overly complicated and does not enable one to calcu­
late the scattering by excited states of hydrogen atom. 
In the following section we shall see that our method 
can be applied to any states without any complications. 

With regard to formula (10 ), it is necessary to say 
that the quantity X(O) determined by it represents, to 
within a factor, the polarizability of a hydrogen atom 
so that formulas (5) and (10) contain the theory of dis­
persion for this atom. In particular, the poles of the 
hypergeometric function, which appear when 3 - iv 
= 0, -1, -2, ... ,describe resonances in the photon 
scattering. 

THE 28-STATE 

In this case 

\j)(r) = )'j:;3/n e-"'(1- J.tr), 1-' = Zam /2, (12) 
\ lj:( · \ 'i'; = JC1J.l5 cos Se-•<r•+•·''(2- ~tr,) (2 - Wt), (13) 

q'"';:, ~ r 
X"s(Q)= -3 \ dr1 _\ dr2 (r1r2)2e-•<r,+r,J(2- f.ll'!) (2 - .. r2 )G,(r,,r2 IQ). 

Ill. • 

,, 0 (14) 

Having evaluated the radial integral (see Eq. (A.4)), 
we obtain 

24k"W -O''(rt"- k'- 2ik~tsl-'[(~t" + k')'- f.l'k'(~' -1)]. (15) 

and having used the representation (11) we find 

512iJ.t''k3 { f(2- iv) 
X··s(Q)=--- 2(••2 +k2) 2 ---F(62-iv· 5-i\" l:) 

-· (rt-ik)'" ,... 1'(5-iv) ' ' '" 

---F(63-iv· 4-iv· £) 16 4f.l2k2 } ( ) 

:~-i\' I t I • 

In similar fashion one can evaluate even more com­
plicated amplitudes, which describe elastic scattering 
by other excited levels of a hydrogen atom. 

RAMAN SCATTERING lS- 28 

In view of the orthogonality of the 18 and 2S states, 
the 5-function drops out of formula (3). In addition, 
the product of the gradients 

\ 1j·,". ~'lj·; = :r-'l''-'fl'' cos 8P_;.,,-.,·,(2- [Jrz) (17) 

loses its symmetry with respect to r1 and r2. Let us 
write down only the result of the radial integration: 

-12k3 (s2 -1)''LI·I-'- k'- ik~(t. + f.l)]-'['-f.l + k'+ ikW. -I-')] (lB) 

and the final expression 

256ik3l''-'1-'' { (1..-ik) (1-'+ik) 
(2,IXI1s) =- ·F(52-iv·3-iv·Ti) 

(t.-ik) 5 (J.l-ik) 5 2- iv ' ' ' 

(1. + ik) (I-'- ik) } 
-· ·F(53-iv·4-iv·n) 3 • I I I 'I I 

-1-v -
(19) 

in which 
A.+ik ~-t+ik 

l1 = A.- ik J.t- ik ' (20) 

This amplitude may be used not only to calculate the 
Raman scattering, but it may also be used to calculate 
the probability for two-photon decay of the 28-state. 
For this purpose, in formula (5) it is necessary to 
change the sign in front of w1, since both photons are 
emitted. In this connection, the arguments 01 = Ei 
- w1 and 0 2 = Ei- w 2 both become negative, the 
momenta k1 and k 2 are pure imaginary, but the ampli­
tude is real. 

RADIATIVE SHIFT OF THE 18-STATE 

The major part of the Lamb shift is made up of the 
well known Bethe term [4 1 

Ms = -~~ ~ wdw-~ ~ IPonl' (21) 
nm o' 3m , En-Eo+o• 

(K is the cutoff energy), in which it is not difficult to 
see the already calculated above "crossing" part of 
the scattering amplitude X( Eo - w ). Taking into con­
sideration the fact that Eo - w < 0 and k 
= v'2m(E 0 - w) = U 2m(Ry + w), it is convenient to 
write formula (10) in the form 

X18 (E0 -- w) = 128x5 (1 + x)-8 (2- x)-1F(4, 2- x; 3- x; £), (22) 

where 

( 1- X )' £= --
1+x 

(22a) 

Changing from w to x as the variable of integration in 
formula (21 ), we obtain the following expression for the 
shift of the ls-level: 

~EB(1S) 

4am(Za)• t 1-x 
----'--~(-96) .1 dx F(4,2-x;3-x;£), (23) 

3rc ;, (1+x) 7 (2-x) 

(23a) 

As K- oo the integral diverges at the lower limit, 
and it is necessary to use regularization. In order to 
do this, we extract from the hypergeometric function 
the terms which are singular as x- 0. In order to do 
this it is convenient to use the formula 

6 • 2 3-b (3-b)(2-b) 
-F(4 b· b+1· ~)----+--+-----

b '' ,_-(1-[;)" (1-6)' t-t 

+(3-b)(2-b)(1-b) ~-£n_ 
n~on+b 

from Appendix B. The first three terms produce a 
contribution to ~E(lS) which is given by 

(24) 
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1am(Za)''{ K K 11 ' 
--'---~- - ----- -1- In-- - 21n 2-- 1 

3:r 1 Hy Hy 6 f ' 

in which all the divergences are contained. 

(25) 

The linearly divergent term represents a correction 
to the mass of a free electron and, in accordance with 
the concept of mass renormalization, it should be dis­
carded. The logarithmically divergent term arises as 
a consequence of the inapplicability of the dipole ap­
proximation in the region of high frequencies-upon 
matching the Bethe part of the level shift with the rela­
tivistic result, m/2 appears instead of K. 

Thus, after mass renormalization the following 
formula is obtained for the level shift: 

, 4um(Zu)'{ Ry } Mn(lS)= --- ln(Zu)-2 -j-ln-- , 
3:rt (E)ts 

containing the Bethe logarithm 

In-~= -21n2 _ __!__!_ 
\E>ts li 

~1 x(1-x) 2 
-j-16 dx F(12-x· 3-x· ') 

0 (1-j-x) 6 (2-x) ' ' ' ' · 

This expression replaces the definition given by 
Bether41 

Ry 3n03 

In (E)'= -W ~ /onVon21nj Von j, 

(26) 

(27) 

(28) 

which contains a summation over the complete set of 
states of a hydrogen atom and is usually found numer­
ically with the aid of tables of oscillator strengths. 
Formula (27) permits us to avoid this laborious work, 
and at the same time it enables us to attain a higher 
degree of accuracy. 

We note that the terms already found, -2ln 2 
- ( 1 'l's) = -3.2196, constitute a good approximation to 
the value -2.9842 found by numerical methods.f5l It is 
not difficult to improve this result by separating the 
following series in Eq. (27): 

1• x(1-x) 2 "' ~n "' 1 
1G \ dx~- -- ~ -- = 4 '5'. -~~ 

·,, (1-1-x)•,~"n-j-2 ,;:2 n(4n 2 -1) 

= 8(1n :l- 2/a) = 0.211R. (29) 

This gives 
R ' 00 __ Y ___ . _ 1 x2 (1-x)~'V s" 

ln (H),s- .l00i8-j-16,~1 d.r (t-j-.r)" ,::,,0+2){n-j-i~x)·(30) 

Repeating this step, we obtain the following correction: 

:!.;, ---1·=2(81n2-~-~(3))=00HJ6 (31) 
,;:2 n3 (4n2 -1) 3 - · · 

so that 
Ry r x"(1- x)' tn 

In--=- 2.9882-1- 16 _\ dx--- Ll-....,..,.----
(E)18 0 (1 -1- x)• n~on -1- 2)'(n -1-2- x) (32) 

As is evident from Eqs. (29) and (31 ), each step gives 
a correction of the order of a small quantity, and the 
whole process converges rapidly. 

SHIFT OF THE 2S- LEVEL 

In order to calculate the displacement of this level 
it is necessary to use the scattering amplitude (16), in 
which it is again convenient to introduce the variable 

x = J..L/1 k 1. Then the following expression is obtained: 

am(Za) 4 { (1-x) { 4x' 
( -192) J dx --F (6 3-2x· 4-2x· s) 

6n x, (1 -j-x) 11 3-2x ' ' ' 

-j-2 ~~;=::; (1-x2) 2 F(6,2-2x;5-2x;6) }, (33) 

V Ry 
Xt = Ry + 4K' (33a) 

Extracting the singular terms by the same method used 
previously, we arrive at the result (some of the details 
are given in Appendix B) 

amiZa)' {--__!__-1-ln-~-E_) (34) 
:rt 2Ry Ry 7 I' 

so that after renormalization we obtain 

LlEn(2S)= am(Za)• {In(Za)-2 -1-ln~}. (35) 
6n (E) 2s 

In~= -~-I-E._r1 dxx(1-x) 2 (1-4x2) ~ n[4 1-4x'-l-x' 
(E),g 7 5 ~ (1-j-x) 10 ;:} n-j-3-2x 

-l- (3-j-2x)(1-j-x)(1-x')-l- .. (3-2x)(1-x)(1-x2) J (36 ) 
n-j-2-2x n-j-4-2x · 

Term-by-term integration in this formula leads to 
a slowly converging series which was previously ob­
tained in article[sJ by a clever but more complicated 
method. The convergence can be improved if one uses 
the above-described method for extraction of the inte­
grable parts. We note that since the term -22/7 
= -3.1428 for the 1S-state is very close to -2.8177, 
hence the integral term only amounts to a ten percent 
correction. 

CONCLUSION 

It was shown above how it is possible to obtain a 
closed expression for the scattering amplitude, taking 
the external Coulomb field in which the electron is 
bound into account exactly. It is easy to see that two 
factors make this result possible: 

a) Use of the coordinate representation instead of 
the momentum representation which is usually applied 
in scattering problems, but which is inadequate for the 
physical situation realized in a hydrogen atom: 

b) Application of a non-closed expression as the 
Coulomb Green's function, and expansion in partial 
waves, as a consequence of which the majority of inte­
grations are trivial to perform. It should be especially 
emphasized that perhaps both of these circumstances 
also remain in force in the relativistic theory. 

On the other hand, the presence of an expression 
for the amplitude, which contains in it all Coulomb 
effects without approximations of the Born type, en­
ables us in a new fashion to raise and solve the ques­
tion of evaluation of the radiative corrections to the 
binding energy. As a result formulae are developed 
for the principal part of the Lamb shift, and these 
formulae give the Bethe expression. 

APPENDIX A 

A radial integral of the form 
"' "' 

I= ~ dr1 \ dr2 e-«•·,-ff,·, rt'' 1'2'1 /, (2y l'~·1 r2 ) (A.1) 
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is easier to evaluate by making a series expansion of 
the Bessel function 

~= ~ (-ilk _J''k+'~ ~(p + k + 1 -1- n/2), ~q + ': + 1 + ~/2)_ 
,,~o k! (n + k)! aP+HH-n2 Bq+k+lh.2 

_ y" f(p + 1 + n/2)flq + 1 + n/2) 
-~ --(!l•+t+n • B;;+'+"·' r~ --

XF(p-f-1-f-n/2,q-f-1-f-n/2:n-f-1; -y2/ap). (A.2) 

Actually, the resulting hypergeometric function turns 
out to be elementary. Thus, in the integral appearing 
in Eq. (8) we have 

a= p = ;_- ik\,, p = q = 3/2, n = :1, y = k l's'- 1, 

y3 I '\'2 ) 
/(8)=--gf(4)F 4,4;4;--2 

a a . 

6k3 (\,'- 1)'h 
= Bv'(u' + v'l -·· = ~[(-~.-----ik--r.-'), + k'(~' -=-m (A.3) 

Similarly, in formula (14) the integral becomes 

4v' ( v2 \ 4f.lv' ( v' ) /(14)= 7 r(4)F 4,4;4; -~) -~;;-;;-f(5)F 4,5;4; --;:,2 -

r'v' 1'(5)f(5) (- _ v2 ) -+~ F ;, ;,·4· ---
a" 1'(4) ' ' ' a 2 

APPENDIX B 

In order to extract the terms which are singular at 
~ = 1 from the hypergeometric function, we utilize the 
following series expansion: 

F(4b·b-f-1·i:)=!_~~n (n-f-1)(n-f-2)(n-f-3) (B.1) 
' ' '· 6LI- n-f-b ' 

n=O 

in which we successively divide each factor in the 
numerator by the denominator: 

6 "" "" (n-f-1) (n-f-2) 
bF(4,b; b -1- 1; ;)= ~ s"(n-f- 1) (n-1- 2)-f-(3- b)~ ;;n n-f- b 

11=0 H=O 

2 "' "" n+ 1 
= (1- s)' -1-(3- b) L: ;n(n+ 1)-1-(3- b) (2- b)~ s" n + b 

n,=fl n=O 

=-2-+~+ (:l-b)(2-b) 
{1-s)' (1-;)' 1-£ 

-1-(3-b) (2-b) (1-b) ~ ___r__ 
v==On + b (B.2) 

which then leads to formula (24) given in the text. 
In formula (33) as a preliminary let us transform 

the expression appearing inside curly brackets 

l'(fi) { 1_±!_2 -F(G3-2x· 4-2x ~) 
\. 3- ~X ' ' '-

l'(2-2x) , _ } 1- 2----(1-12 ) 2 } (6 2- 2x· ,, - 2x· :0) 
l'('>- ~.r) , , , -

_ ~ ""_Ij'~±-~-{-~--c- 2 1 _x2 2 f(n-f-2-2x) -1 £ n! 11 + :J- 2x + ( ) J'(n + 5- ~.r) 
11-,--_() 

o= L: r;n(n-1- 1) (n-f-2) ... (n-f-5) ( ~+-__!!_-+~c~) 
· n-f-a n +a - 1 11 ·!-a + 1 

(B.3) 

where 

a=3-2x, A=4x'-2(1-x2)2, B=(1-r2) 2 =!. (B.4) 

Again dividing in succession by the denominators, we 
obtain 

4' 31 K1 Ks--·- -L K 4 • -1- ' 
(1-;) 1 ' (1-1;)• .,, 1-; 

(B.5) 

where 

K5 =A -1- B -1- C = 4x2, K4 =A (5- a) -1- B(6- a) -1- C(4- a) 
= 8x2 (1 + x), 

K, =A (5- a) (4- a) + B(6- a) (5- a)+ C(4- a) (3- a) 
= 8x2 (1 + x) (1 + 2x) + 2(1- x2) 2, 

/(2 = 2(1 + 2x) [3(1- x2) 2 + 8x"(1 + x)], 
/(1 = 4x(1-i- 2x) [4x2 (1 + x) (2x -1) + G(1- x2) 2], 

a =A(5-a)(4-a) ... (1-a), 

B = B(6- a) (5- a), .. (2- a), 

v=C(4-a)(3-a) ... (-a). (B.6) 

These same expressions may also be obtained from the 
integral Mellin-Barnes representations. 

1 H. A. Kramers and W. Heisenberg, Z. Physik 31, 
681 (1925). 

2 L. Hostler, J. Math. Phys. 5, 591 (1964). 
3 M. Gavrila, Phys. Rev. 163, 147 (1967). 
4 H. A. Bethe, Phys. Rev. 72, 339 (1947). 
5 J. M. Harriman, Phys. Rev. 101, 594 (1956 ). 
6 C. Schwarz andJ. J. Tiemann, Ann. Phys. (N.Y.) 

6, 178 (1959). 

Translated by H. H. Nickle 
75 


