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It is shown that the cross section for the emission of n photons with small perpendicular momenta is 
described in the doubly-logarithmic approximation by the Poisson formula. 

1. Gribovr11 has shown that at high energies the regions 
of applicability of the known formulas for the accom­
panying radiation become much simpler. Namely, the 
amplitude of the accompanying radiation, given by the 
formula 

V Uo ( p,,, [!'" \ F- . -e,, ---------.J(s,t), 
2k0 fhk -.,k I 

(1) 

(k0-fourth component of the photon momentum) is valid 
under the conditions 

'2p,k 
----~'1, 

.; 

2p,k 
----"'-"{ 1, 

s 

s = (p, + !12)' ;;,, u', (2) 

where f(s, t) is the amplitude of the main process with­
out radiation, ell and k are the polarization and momen­
tum of the photon, k 1 is the photon momentum compon­
ent perpendicular to the momenta of the charged parti­
cles P1 and P2, and J.1. is the characteristic mass (the 
pion mass in the case of hadrons). 

Formula (1) is determined graphically by the photons 
emitted from the free charged ends, the internal ampli­
tude being taken on the mass shell. The cross section 
corresponding to formula (1), integrated over the photon 
momenta k subject to the limitations (2), contains a 
term proportional to aoln2s. The approximation under 
which the remaining terms are assumed to be small and 
discarded is usually called the doubly-logarithmic (d.l.) 
approximation. This approximation is valid if 

(3) 

It is shown in this paper that in the d. l. approxima­
tion the cross section for the emission of n photons 
under the condition (2) is described by the Poisson 
formula 

(4) 

where the symbol f!i denotes that the integral is taken at 
p1k > J.l.E. and P2k > J.l.E., and -k~ « J.L 2; af is the contri­
bution of the real bremsstrahlung photons, and e- a is 
the contribution of the virtual bremsstrahlung photons; 
E. is the experimental resolution lJ; d a 0 is the cross sec-

1 lThe energy resolution e is the smallest admissible photon energy in 
the rest systems of both charged particles (see the Appendix). We shall 
assume that e ~ Jl. It is easy to see that a change of e by several times 
does not change the d.!. contribution (5). 
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tion of the main process without radiation, containing no 
d. l. contribution from the virtual bremsstrahlung pho­
tons limited to the region (2). Generally speaking, dao 
contains a d. l. contribution from the virtual photons 
limited by conditions opposite to (2): 

(6) 

In the case of certain lepton reactions, the proof of 
formula (4) for photons (2) and the calculation of the 
contribution of the photons (6) is contained inr2'31 • How­
ever, the photons (6) make no contribution to hadron re­
actions whose amplitude at high energies is large only 
at small momentum transfers t ~ J.1. 2 and is small when 
t » J.1. 2. This is connected with the fact that the appear­
ance of large perpendicular photons (6) is equivalent to 
the appearance of large momentum transfers t lll . In 
this case dao does not contain a dependence on the elec­
tromagnetic interactions in the d. l. approximation. 

Formula (4) is valid also in the case when the cutoff 
used in the experiment for the real bremsstrahlung pho­
tons differs from (2). In this case a1 is determined as 
before by the integral (5), but now taken between the 
appropriate limits. The values of a1 in different experi­
mental situations are given in the Appendix. We present 
below also a generalization of formulas (4) and (5) to 
include an arbitrary number of charged particles. 

2. To prove formula (4), let us consider the simplest 
case of production of a hadron scalar charged particle 
in the decay of a superheavy mass (Fig. 1a). The ampli­
tude f(s) of this process enters as a component part in 
the amplitude for the production of a hadron pair in high­
energy electron-positron collisions (Fig. 1b). 

Let us separate all diagrams with one virtual photon 
that satisfies (2) from the block of Fig. 1a. The corre­
sponding amplitude (Fig. 2) can be represented in the 
form 

(7) 

where :fl denotes: p1k > J.l.E., p2k > J.l.E., -k~ << J.1. 2. 
The amplitude of the five-point diagram F J.l.V' by vir­

tue of the equality of the momenta of the two photons, 
depends only on the four variables indicated in the 
parenthesis in (7). It satisfies the condition for gauge 
in variance 

a b 
FIG. I. FIG. 2. 
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(8) 

The function FJJ.v(s, P1k, p2k, k2) can be expanded in 
powers of k2 near k2 = 0, since it has singularities up to 
k2 ~ JJ. 2 only on the multiphoton sections. Such sections 
contain closed loops O!o and can be discarded in the d.l. 
approximation. The term proportional to k2 and the next 
terms in the expansion of F JJ.ll in k2 cancel out k2 in the 
denominator of the integral (7) and make no d.l. contri­
bution. We can therefore put k2 = 0 in the function F /J.ll' 
i.e., we can assume that all photons are real. 

We shall henceforth use the method of Low[ 4 J and 
Gribov[1l. The amplitude F JJ.ll with k2 = 0 can be repre­
sented in the form of one tensor invariant 

(9) 

In formula (9), the first term contains simultaneously 
poles in the variables P1k and p2k at p1k = 0 and p2k = 0. 
This term corresponds to the diagram of Fig. 3a, in 
which both photons are emitted from free charged lines, 
and the internal amplitude is taken on the mass shell. It 
is easy to see that this amplitude coincides with the 
amplitude fo{s) of the main process with the electro­
dynamics disconnected, for photons satisfying the condi­
tion (2). The second term of (9) is the contribution of the 
singularities which do not contain simultaneously poles 
at p1k = 0 and p2k = 0, i.e., 

F(s, 0, 0) = 0. (9') 

This term contains contributions of the diagrams 3b, 3c, 
and 3d, and also part of diagram 3a in which the internal 
amplitude is taken off the mass shell. 

When the first term of (9) is substituted in (7), we ob­
tain an integral of the form (5), containing a d.l. contri­
bution. We shall show that the second term of (9) is of 
the order of (kJ/JJ. 2 )f(s), i.e., it is small if the condition 
(2) is satisfied. This, generally speaking, is not obvious 
and does not follow from (9'). Thus, for example, the 
equality (9') is satisfied by the quantity 
(p1k)(p2k)j(p1k- M 2)(p2k- M2), which is of the order of 
unity when p1k, P2k ~ M2, and does not contain any small 
quantity. Similar terms making a d. 1. contribution are 
actually present in the individual diagrams of Fig. 3 
(see[2l), but no such terms are contained in the total 
sum of the diagrams, determining the second term of (9). 

For the proof, we consider the imaginary part of F JJ.ll 
with respect to the variable p1k at the two-particle divi­
sion (Fig. 4). By virtue of the gauge invariance (8), this 
imaginary part is given by 

F'"' ~= \ d1'1 (~':'-- _!~-) f, (ptk, lp,)Q>v(s, p1k, p,k, lp2), (10) 
. . p,k /k 

where l is the momentum of the intermediate charged 
particle. We resolve the momenta k and l in longitudinal 
and transverse components 

k = P1~ + p,u + kJ., k2 = 0: 
set= 2p1k, s~ = :.,,,k, -kJ.' = sa~, 

I= p1b + p,,, + /'J.· (11) 

Recognizing that the only perpendicular left after 
averaging over the angles is k1, we have replaced l1 in 
(11) by k1. With the aid of (11), we can rewrite the round 
bracket in (10) in the form 

FIG. 3. 

FIG.4. 

Pt~ l~ ( Pt~ P2~ \ 1 ( sa ) ----= 2 -- --- sa~- -+ 1 . 
p,k lk sa ·'P I lk su 

(12) 

It is seen from (12) that the usual vector variant arises 
(see (9)), multiplied by the small quantity s 0!{:3 = -kJ.., 
and the first term p 11_/p1k which leads to the d. 1. con­
tribution, cancels out[1J. 

Since the amplitude f1 enters in (10) in the physical 
region, the square of the momentum transfer does not 
exceed the square of the energy 2p1l =sa ~ 2p1k =SO!. 
By virtue of this, the sum in the last brackets of (12) 
turns out to be of the order of unity. Substituting (12) 
in (10) and averaging over the angles, we obtain 

( PI~ P•~) [ ft(>a; sa) J- -F,~,= --- lkJ.2 1 l cD,(p1k,p2k,s;sb)dfl. (13) 
p,k p,k k 

The amplitude f1 ~ SO!/JJ. 2 at small (p1l ~ JJ. 2, lk ~SO!) 
and large (p1l ~sO!, lk ~ JJ. 2) angles, when drz ~ 1/sO!. 
At intermediate angles (p1l ~SO!, lk ~SO!), where drz 
~ 1, f1 is small. It can therefore be assumed that 

It (sa, sa)/lk :S:: 1/~t-2 . 

The function ~v(p1k, p2k, s; sb) contains a contribution 
from the pole at p2k = 0 as well as a non-pole term. The 
contribution from the pole, by virtue of (8), can be 
written in the form 

( PI~ P2~ \ 
-~- ~-jct:ll(sa,s), 
p,k p,k 

where the amplitude ~1 is represented by the diagram 
of Fig. 5. When the mass of the compound particle lK 1 
= SO! ~ JJ. 2 , the amplitude ~1 will obviously be of the 
order of the amplitude f(s), Fig. 1. We assume that when 
SO! increases the function ~1 does not increase2 >. It can 
therefore be assumed that ~1(s0!, s) ~ f(s). Thus, the 
pole term with respect to the variable p2k makes the 
following contribution to (13) 

Fl~v = ( P1~ _ P2~ )( ~ _ P2:~_\ f',, 
p,k pok p,k p.J, } 

(14) 

F, :E:0J.,'I /(s). 
w 

(15) 

To estimate the non-pole part of (13) it is necessary 
to consider the imaginary part of (13) with respect to 

FIG. 5. 

2 >This may not be the case if the main process is forbidden by virtue 
of an approximate conservation law, and the emission of the photon lists 
the forbiddeness [ 1 ]. In the latter case our analysis is not valid. 
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the variable p2k. We then arrive, using a similar 
reasoning, at the inequality (15), which is enhanced by 
the appearance of a second factor lkl_l. 

In the presence of several charged particles in the 
intermediate states, the quantity in the round brackets 
in (10) is replaced by 

which, by virtue of the charge conservation ~iEi = 1, 
leads to the same results. 

We see thus that the imaginary part of F in (9) turns 
out to be, by virtue of (2), much smaller than f(s). We 
note that the integral (7) with respect to sa will contain 
only the imaginary part of the function F with respect to 
the variable sa, since the integration contour piles up 
around the pole and the cut of the function F with respect 
to this variable. It is easy to verify that substitution in 
(5) of a factor proportional to lkj_l leads to a vanishing 
of the d. l. contribution. 

We have considered only one virtual photon. In ex­
actly the same manner we can show in succession that 
for an arbitrary number of virtual phonons the d.l. 
terms arise only upon emission and absorption of pho­
tons on the free ends, with the internal amplitude taken 
on the mass shell. All the photons are emitted and ab­
sorbed independently of one another and of the charged 
particles. Taking into account the identity of the pho­
tons, it is necessary to divide the contribution of n pho­
tons by n!, after which the summation over n leads 
immediately to the result 

f(s) == .'o(s) e--a:', (16) 

where f0(s) is the amplitude of the Fig. 1, which does 
not contain the d. l. contribution of the virtual photons 
with kj_ « J.1. 2 , and the value of a is determined by the 
integral (5). 

The analysis of real photons does not differ in any 
way from that of virtual photons, since the latter con­
tribute only when k2 = 0. In the determination of the 
cross section it is only necessary to take into account 
the fact that the real photons are emitted in one ampli­
tude and are absorbed in another amplitude which is the 
complex conjugate of the first (it can also be assumed 
that the amplitudes are identical and the photons are 
emitted at their two ends), making the sign of the con­
tribution of the real photon opposite that of the virtual 
photon. 

For the cross section of a process in which n real 
quanta are emitted, we obtain an expression in the form 

" 1 
dn, ~, !f,(x'l !' e , TI- -a(a;, ~i, h_L;) 

._, n! 

·-· i- c\ ( !>- 1 - ~ B; J ll (a- 1 - ~ a,) ll'( X.L- ~ k.Li J d'p1 d3p2, 

' . . 

x = p 1a + p2 1> + X_L, x2 = .wzl> + x_;_2. (17) 

In (17), the functions a(ai, {3i, kli) are the integrals 
(5) with respect to the photon variables (11); the 
a-functions of the parallel and perpendicular components 
of the momenta are separated in the integration over 
the phase volume. 

The Poisson distribution (4) corresponding to inde­
pendent photon emission is obtained from (17) after dis-

carding the photon variables in the a-function, if account 
is taken of the fact that 

s 
j/,(x2) / 2 2 1l(b -1)/l(a -1)1l'(x.L)d"p1 d'p2 

= /fn(s) /2 1i'(Pt + 1'2- x)d"pt d3p, =dan. 

Let us see what limitation this imposes on the pho­
tons. From (4) we find that the significant n making the 
main contribution to the total cross section are of the 
order of a: 

Expanding the a-function in (17) in a series in the 
parallel components of the photon variables, we obtain 

/(x')b (a- 1- ~ u,) ~ /(x2)/i(a- 1) + iiCI/,' (x2)1l(a- 1).(18) 

Multiplication of the integral a( a, {3, k 1) (5) by a leads 
to the loss of one logarithm, and therefore the mean 
value is a'""' 1/lns (if (2) and (11) are taken into account, 
the resultant a is even smaller). H we assume that the 
function f(s) varies in a power-law form with varying 
energy, then f~(K 2 ) '""'f(K 2), and in order for the second 
term in (18) to be small compared with the first it is 
necessary to satisfy the condition 

i'i - 1--<%: 1 or _tlll_ ln s-<%: 1. 
Ins 2rr 

(19) 

this condition coincides with (3), i.e., no additional limi­
tation arises. For the three-particle process (see Fig. 
1), which does not depend on the momentum transfer, 
the discarding of the perpendicular components of the 
photon momenta likewise does not lead to additional 
limitations. 

3. We have proved formula (4) using as an example 
the simplest three-particle process represented in Fig. 
1. This formula, however, remains valid also for more 
complicated processes. Such processes contain a larger 
number of tensor invariants for the function F J.lll in (7), 
among which the invariant (9) is always present. Only 
this invariant contains poles p1k = 0, p2k = 0 and leads 
in (7) to an interval of the type (5). The remaining in­
variants do not lead to a d.l. contribution. This can be 
readily verified directly. 

The Regge dependence of the asymptotic amplitude 
on the square of the momentum transfer t = q2 

f(s,t) =BsA(t)lll' ~ BsACO)etA'(O)ln", (20) 

leads to a new limitation on the perpendicular compon­
ents of the photon momenta. Indeed, recognizing that at 
high energies and small momentum transfers the quan­
tity q is a perpendicular vector [1'31 , we replace K 1 in 
(17) by qi- qf, where qi and qf are the momentum trans­
fer at the start and at the end of the reaction. 

As follows from the a-functions in (17) 

q;= q!+ ~k.lj· 

At small qi, if one of the lkj 1 I » qi, then lqj I ~ lki1 I 
» qi. The behavior of the amplitude (20) will apparently 
be determined by the largest momentum transfer. 
Therefore, when kj1 >> qi the amplitudes (20) becomes 
negligibly small. Thus, if the asymptotic amplitude has 
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the Regge behavior (20), then formula (4) is valid under 
the conditions 

kj_2 «'; 1/ A'(O) ln s (21) 

for each photon, and the contribution from larger kj 1 
drops oue). 

We call attention to the fact that in the case of a 
four-particle hadron process, the diagrams of Figs. 3a, 
b (3a, c) turn out to be small as the result of the de­
crease of the hadron amplitude FiJ.v in (7) with increas­
ing mass sa(s{3), i.e., the contributions of the pole and 
of the cut with respect to sa (s{3) cancel out. The main 
contribution, on the other hand, comes from the diagram 
of Fig. 3d, which does not contain any poles in sa(s{3). 
The result obtained above signifiles that after all the 
diagrams are added the contributions of the cuts cancel 
each other and only the contribution of the poles re­
mains. 

In the presence of several pairs of charged particles, 
which form large invariants (Pi + Pj)2 = sij » Jl. 2, form­

ula (4) is valid in the d.l. approximation with respect to 
all these invariants, provided the photon momenta per­
pendicular to all the momenta of the charged particles 
are small: 

(2') 

It is then necessary to replace the integral a (5) in (4) by 

A= Lai_iZiZj8iOj, 

i>j 

where aij is defined by the same expression (5), with 

(5') 

P1, P2, and s replaced by Pi, Pj, and sij; Zi and Zj are the 
particle charges, and e i equals + 1 for the initial 
(incoming) particles and -1 for the final (outgoing) par­
ticles. The quantity A1, corresponding to the contribu­
tion of the real photons, given by the same integral (5'), 
in which the limits of integration are determined by the 
experimental conditions (see the Appendix). 

The author is grateful to A. A. Ansel'm, v. N. Gribov, 
and L. P. Lipatov for discussions and criticism. 

APPENDIX 

In (5) we introduced the experimental resolution E, 

which cuts off the infrared-diverging integral. Such a 

3 lThe author is grateful to V .N. Gribov for pointing out this circum­
stance. 

FIG. 6. 

cutoff means that an infinite number of photons is emit­
ted, the energy of which in the rest systems of the two 
charge particles does not exceed E. These photons are 
usually called infrared. The integral (5) in the region 
p1k < IJ.E, p2k < IJ.E contains neither infrared divergences 
nor d. l. terms. The sum of the contributions from the 
virtual and real photons is completely canceled in this 
region. Figure 6 shows the d. l. contributions of differ-­
ent regions of the integral (5) in units of (a 0/27T) ln2s. 

We note that in calculating the infrared-divergent 
part of the integral (5), using an arbitrarily small photon 
mass A for regularization, there are no d. l. terms at 
all in the complete integral limited by the condition (2). 
Thus, in this case the d.l. terms from the regions p1k, 
P2k < EIJ. and P1k, p2k > EIJ. are equal and opposite in 
sign. Such a regularization signifies that an infinite 
number of infrared photons with kj_ < A 2 is emitted; the 
integral (5) then becomes equal to 

ao s 1.2 
a= --ln-ln 

.:t f1:.! pl 
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