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We investigate the influence of the resonant-radiation yield on the electron energy distribution and on 
the electron concentration in a low-temperature plasma. We obtain a solution of the kinetic equation 
with allowance for inelastic collisions of the first and second kind in the case of a large electron con­
centration, and also the corresponding deviation of the system from the equilibrium value at relative 
low and relatively large yields of resonant radiation. The problem is also solved for the opposite case 
of low electron concentration and a strong electric field. 

INTRODUCTION 

T 0 describe any processes occurring in a nonequili­
brium plasma, it is necessary to find the electron 
velocity distribution function, the electron concentra­
tion, and the distribution of the atoms over the excited 
states. It is known(ll that the continuous electron en­
ergy spectrum is in equilibrium with the upper levels 
of the discrete spectrum. In some papers[2•31 it is noted 
that in a low-temperature plasma such an equilibrium 
in first approximation down to the lowest excited level. 
Thus, the last two problems combine into one in this 
approximation. On the other hand, the first problem 
reduces to solving the kinetic equation with allowance 
for inelastic collision [4- 71 . Allowance for the collisions 
between electrons requires knowledge of their concen­
tration, and allowance for inelastic collisions of the 
second kind, which eliminate the excitation, calls for 
knowledge of the concentration of the excited atoms. 
On the other hand, to calculate these concentrations it 
is necessary to know the electron energy distribution 
function. Usually all these problems are solved sep­
arately. When solving the kinetic equation for the elec­
trons, their concentration and the population of the 
excited levels are assumed known[ 5• 6 l, or else condi­
tions are chosen under which these concentrations and 
the corresponding terms in the kinetic equation are 
small [71_ On the other hand, when calculating, say, the 
electron concentration, the distribution function is as­
sumed known, usually Maxwellian[8 l. Biberman et al.[9l 
attempted to solve these problems simultaneously, 
However, as will be shown later, in a consistent simul­
taneous solution, one equation (for the number of the 
excited atoms) is used in a natural manner to determine 
the arbitrary constants that appear in the integration of 
the other equation (for the electron distribution func­
tion). On the other hand, when the solutions are ob­
tained separately, all the constants are determined 
only from the continuity conditions. 

Shaw et al. [wJ present the results of a numerical 
simultaneous solution of these problems for the case 
of an argon-cesium plasma. In calculating the electron 
energy distribution function, the authors solve a second­
order equation subject to the condition f( E)- 0 as 

E- oo, and stipulate a Maxwellian distribution at E = 0. 
However, in such a formulation of the problem one 
cannot expect a unique determination of the form of the 
distribution function in the region of the excitation 
threshold, where it can depend strongly on the intensity 
of the outgoing radiation. This dependence is not 
limited only to the indirect influence via the concentra­
tion of the excited atoms. 

In the present paper we solve the kinetic equation 
for the symmetrical part of the distribution function 
simultaneously with the kinetic equation for the number 
of excited atoms. It is assumed that all the excited 
levels are in equilibrium with one another and with the 
continuous electron spectrum. This is possible when 
the atoms are excited by electron impact, and all forms 
of radiation, except the resonant radiation, do not lead 
to a noticeable violation of the equilibrium. An explicit 
dependence on the spectroscopic characteristics of the 
plasma is obtained for the electron energy distribution 
function and also for the degree of deviation of the 
system from equilibrium. 

1. YIELD OF RESONANT RADIATION FROM A 
HOMOGENEOUS PLASMA 

The number of quanta radiated from a unit surface 
of a plasma in a unit time is[uJ 

(1.1) 

where s is the energy radiated from a unit surface in 
a unit time, hv is the energy of the quantum, y is the 
probability of the spontaneous emission, kv is the co­
efficient of absorption of a quantum of frequency v, 
Pv is the emission line shape (with f Pvdv = 1 ), -J is the 
angle between the direction of the beam and the normal 
to the surface, and n1 is the concentration of the atoms 
in the first excited state. We assume that pv ~ kv[ 121 : 

Pv Sn go 1 
k.,; }.i g I '\'no ' 

(1.2) 

where Ao is the wavelength at the center of the line, n0 

is the concentration of the atoms in the ground state, 
and g0 and g1 are the statistical weights of the atom 
in the ground and first excited states. For a homogene-
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ous plasma, expression (1.1) can be rewritten in the 
form 

where G is the unit vector in the direction of the beam, 
D.v is the equivalent line width averaged over a hemis­
sphere with weight cos ~, and p = p (G) is the thickness 
of the plasma in the beam direction. For the simplest 
hemispherical geometry with radius p we have in the 
case of a dispersion line contour l13 l 

- . 2::tr2 -, 1. 

~ "v = I'\\' ---~ ( .. - /liu \y c r ) . , 
\ !llf' 

(1.4) 

where e is the electron charge, m its mass, c the 
speed of light, f the oscillator strength, Ave the 
collision half-width of the line. As shown by appropri­
ate corresponding calculations, in a cylindrical 
geometry with diameter p, the radiation from a unit 
surface is practically the same as for a hemispherical 
geometry with radius p. If the resonant radiation cor­
responds not to one line but say to two (doublet), then 
the result must be summed over both components. 

The conversion from the energy S radiated from 
a unit surface to the energy W radiated from a unit 
volume entails no difficulty. Thus, for cylindrical 
geometry W = 4S/ p. 

We shall assume henceforth that the equivalent line 
width does not depend on the electron concentration. 
This will occur in the case of Doppler or collision 
broadening. The generalization of the theory to the 
case of the Stark broadening mechanism entails no 
great difficulty. 

2. FUNDAMENTAL EQUATIONS 

The problem of finding the energy distribution of the 
free electrons reduces to solving the kinetic equation 
for the symmetrical part of the electron velocity dis­
tribution function. In this equation, the terms describ­
ing the influence of the elastic collisions of the elec­
trons with the atoms, ions, and other electrons, and 
also of the field can, as is well known, be written in 
the form of the divergence of the certain flux j in 
velocity spacel141 . Collisions which transfer the atom 
from the ground state to the first excited state and 
back should be written separately. 

The difference in the number of collision of the first 
and second kind, which change the number of particles 
in the unit volume of phase space in a unit time, is 

Ql (v) = cn0nq (t')f(v) -- v'nn 1q' (v')f(u'), 

where f( v) is the symmetrical part of the electron 
velocity distribution function, n is the electron concen­
tration, q is the cross section for the excitation of the 
atom by electron collision, q* is the cross section of 
the collision of the second kind, v' = ( v2 - 2hv/m)1/ 2 , 

and hv is the excitation energy of the atom. 
Each collision of the first kind leads not only to a 

vanishing of a fast electron, but also to a production of 
a slow one. Analogously, a collision of the second kind, 
as a result of which a fast electron appears, leads to 
the vanishing of a slow electron. In the kinetic equa­
tion, the terms describing the vanishing and creation 

of slow electrons can be combined into a single term 
designated <l>(v" ): 

_rlf_+<!J(u)-<ll(v")- -~-8- u2j= 0 (2.1) 
ot c2 du ' 

where v" = (v2 + 2hv/m)112 • 

The cross section of the collisions of the second 
kind can be expressed in terms of the excitation cross 
section with the aid of a relation that follows from the 
detailed balancing principle: 

(e- /iy)q' (e- hv) = !<J_eq(F), 
g, 

where E = mv2/2. We change over in the kinetic equa­
tion (2 .1) from a unit element of phase space to a unit 
energy interval ( E, E + dE) and from the velocity dis­
tribution function to the energy distribution function 
f( E), normalized to unity with weight /E: 

D - --- iJ 
- n 1r .I-+ <D(e)- cD(e + hv)-12m --=-- ej(r) = 0, (2.2) 
dt rh .. 

where 

V 2 [ ni go l <D(e) = nn0eq(e) - /(e)---- /(t- /iy) _. 
m Hu gt -

Each inelastic collision changes not only the state of 
the electron, but also the number of excited atoms. We 
write down the kinetic equation for the number of atoms 
in the excited state under the assumption that all the 
excited levels are in equilibrium with one another: 

(2 .3) 

In the stationary case, the total difference of the 
number of electron collisions leading to excitation and 
de-excitation of the atoms is equal to the number of 
the resonant radiation quanta leaving the plasma. 

We note that <I> (E) .,t 0 only beyond the excitation 
threshold, when E > hv. The elastic collisions may 
play an important role only on a segment of order kT 
beyond the excitation threshold, where the rapidly de­
creasing distribution function can still make a notice­
able contribution to the inelastic- collision integral. 
Accordingly, <I>(E + hv) .,t 0 in the region E "'=' kT. How­
ever, it is known that the role of the term <I> ( E + hv) 
reduces mainly to a description of the source of elec­
trons in the low-energy region l14 l, It is essential when 
writing down the particle or energy balance, but has 
practically no influence on the form of the distribution 
function in this region. 

For the dependence of the excitation cross section 
on the energy in a segment of order kT beyond the 
threshold hv) we assume the linear approximation 

ne• 
eq(e) = 13 ----;-(E- hv), 

(hv )' 
(2 .4) 

where i3 = 1 corresponds to the Thomson cross section. 
The interelectron interaction in the "tail" of the 

distribution function can be approximately taken into 
account with the aid of the simple expression [141 

4ne• ( of ) 
Bjee=--An2 f<T-+f . 

m '- Be 
(2 .5) 

This approximation is perfectly sufficient for energies 
much higher than kT. 

Inasmuch as the elastic collisions of the electrons 
with atoms, ions, and other electrons are expressed in 
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the form of the divergence of a certain flux, we can 
write 

--- df 
j2m ej(e) = q; 1 i;-; + cp,f, (2.6) 

a 0 is the Bohr radius, IH is the ionization energy of 
the hydrogen atom, Mi is the ion mass, qa is the 
cross section for elastic collision of the electron with 
atoms having a mass M and a concentration na, Ta is 
the temperature of the heavy particles, and E is the 
intensity of the electric field. At low energies (2.5) no 
longer holds, and it is necessary to use a more com­
plicated nonlinear expression, and '('1 and '(Jz become 
accordingly more complicated. For simplicity, we 
shall henceforth neglect the dependence of the electron­
atom elastic collision cross section on the electron 
energy (the elastic-sphere model). We confine our­
selves only to the stationary case. 

We integrate both parts of (2.2) with respect to E 

from a certain value of E to infinity, and introduce the 
function 

h 00 

ljl(e)=~ I ()_)(e)de: 
wJ 

e 

i)j w 
q;1-+ cp,j = --[ljl(e)-ljl(e+ hv)], 

iJe hv 

H a4 11 2 f lit go J -- -- ~ nnoelJ(e) V- f(e)- --/(s- hv) • 
hv iJe m L llo g1 

(2 .7) 

(2.8) 

These two first-order equations with two unknown func­
tions f( E) and zj!(E) and with the condition 1/J(E) = 1 when 
E ::<.=: hv are equivalent to the single second-order equa­
tion (2. 2). It may be convenient to solve the second­
order equation beyond the excitation threshold, after 
using the substitution 

I= z 11 'Pt(hv) exp (- ~·~ cp, de) 
v (jlt(E) \ 2hv'PI 

to eliminate the terms with the first derivative: 
-- - e 

iJ2z 1/ 2 [ n, g0 . ( 1 1 cp~ ) J cp,--cpaZ=IU1u81j(e) v- z----exp1·, J --de f(e-hv) , 
iJe2 m llo g, \ 2 I<V (jlt 

where ~.9) 

'P3 = __!__ {_1 r C(lz2 - ( iJ'Pt_ )']- !.!: + 8''£!. 'I _ 
2l 2cp1L iJe iJe iJE' J 

In the absence of inelastic collisions, Ej = 0. The 
solution for this case is known [l4J: 

where 

f(e) = Ce--•<' 0'. 

. 
\ 'f'' cp(e,a)= J ---rif. 
a 'Pt 

C is the normalization constant. 

(2 .10) 

The inelastic collisions influence principally the 
"tail" of the distribution function, and we can there-

fore expect that in the presence of inelastic collisions 
in the region of sufficiently low energies ( E ::<.=: E1 << hv) 
the distribution function is of the form (2.10). We take 
into account in this region only the indirect influence 
of the radiation yield via the energy balance. 

With increasing electron energy, the inelastic­
collision cross section beyond the excitation threshold 
increases linearly from a zero value, and is quite 
small at sufficiently low energies. Thus, there always 
exists a small region beyond the excitation energy, 
where the right-hand side can still be neglected in (2 .9 ), 
and consequently also in (2.7): 

kT 
0 ,s;;e-hv~-. 

a 
nn0 ~ne' v 2 

a= kT (hv) 2cp,(hv) --;;;· 
(2 .11) 

The main contribution to the inelastic collision inte­
gral is made by a region of the order of kT beyond the 
threshold hv, so that we can expect that when a « 1 
the inelastic collisions practically do not change the 
form of the distribution function even in the ''tail.'' 

Let us find the distribution function in the pre­
threshold region. Equation (2. 7) simplifies to 

of w 
<ft- - + rp2/ =- -, kT~ <t ,s;; f ,s;; hv, (2.12) 

do hv 

and has a solution 

[ w c 1 ] 
f(e) = /(et)--- ~ - e'PI'·'•idt ·e-"''·'''· 

In ,,'Pt(t) 
(2 .13) 

The presence of the lower limit of the region is 
connected with the requirement that the quantity 
1/J( E + hv) be small, Later we shall verify, using con­
crete examples, that the distribution function is prac­
tically independent of the choice of the lower limit E 1 • 

The form of the distribution function beyond the exci­
tation threshold will be obtained later for individual 
particular cases. 

Let us write down the electron energy balance equa­
tion. Multiplying both sides of (2.2) by E and integrating 
over all the energies, we have, after simple transfor­
mations, 

1 \ , e2E2 (" j(e)de } + 2naqa- J ( e -- 2kTa) fe de+--;-- J ---- -c W. 
M 3m naqa + nqc, (2 _14 ) 

In the energy balance equation it is usually possible to 
neglect the singularities of the behavior of the function 
in the "tail," and we can confine ourselves to the 
solution (2.10). 

We assume that the concentration of all the excited 
atoms and the concentration of the electrons have 
identical [2 ' 3 1 deviations from the corresponding equili­
brium values, defined by the Boltzmann and Saha 
formulas: 

_n~=y 2g; ( _2~_;!)'he ,,;kr, (2.15) 
llo 15o ' h-

where gi is the statistical weight of the ion, and Ei is 
the ionization energy. Here y ::<.=: 1. Knowing the distri­
bution function, we can determine from relations (2.14) 
and (2.3), taking (2.15) into account, the average energy 
of the electrons (or a suitably defined temperature) and 
the degree of deviation of the system from the equili­
brium state at a given electron temperature. 
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3. CASE OF LARGE ELECTRON CONCENTRATION 

As seen from (2 .6 ), the relative role of the terms 
describing the interelectron interaction decreases with 
increasing electron energy. Let us consider a case 
when these terms remain principal in a sufficiently 
large region, up to energies E >::~ hv: 

m ( lw )2 1 ~- ---~1, 
M 2fH, :!Anao2 nl 

(3.1) 

where l = ( naqa + nqei )-1 is the electron mean free 
path, and M is the mass of the atoms to which the 
electrons give up energy in the elastic collisions. It is 
easy to verify that in this case the distribution function 
ahead of the excitation threshold (2.13) is given by 

/(e)= Ce-•lkT _ ACe-hvikT(1- e·-(•·-•-·1•''1') ~ C(e-•·.hr _ Ae-"''/hT), 

where 

e, ~ e ~ hv, (3.2) 

n "o 8. v 1 1 A=--=--- .--ec,,hT, 
4 g, Ry .\ p/,2no 

Ry is the Rydberg constant. It is assumed here that the 
normalization factor remains practically the same as 
for a Maxwellian distribution: C = 2-~r-112 (kTf312. 

Beyond the excitation threshold, Eq. (2 .9) reduces 
to 

a'z 
. a{l- tz = 0, (3.3) 

where 
t = (~a)--'''(1 +ax), 

a = .:"~( ~!_)2 !___' x = E__~_hv 
n hv A kT 

A solution decreasing at infinity is expressed in terms 
of a modified Bessel function of the second kind 
(MacDonald function) or in terms of an Airy function[ 15l: 

z = const·Yt~'/,(2/3t''•) = const·v(t), (3.4) 

Let us transform from the function z back to the func­
tion f, and determine the integration constant from the 
requirement that the distribution function be continuous 
at the point E = hv: 

1 = Ce··hvfhT 

+ {.ve-x+ ( 1-A - y)e-xf2 ( 1 +ax) '1• A:,.J ( 1 +_3ax) 'h ]r>7,1 { -i-)} 
L a . \.JU 

(3.5) 
We substitute the obtained distribution function in 

(2.3): 
f , , [(1+ax)':,J __ 1 t1 \ 4A 

(1-A-y)) e-x2(1+ax) ''A'/, , £.'1, (-:--;lxdx=---;--· 
,ia .ia a 

0 

(3.6) 
Since a = a*y-112, where a* is the value of a at the 
equilibrium electron concentration corresponding to 
the given temperature, Eq. (3.6) determines a compli­
cated implicit dependence of the degree of nonequili­
brium of the plasma on its gas-kinetic and spectro­
scopic characteristics. We shall simplify this in par­
ticular cases when the role of the inelastic collisions 
is very small or, conversely very large compared with 
the elastic collisions. 

As is well known, the main contribution to the in­
elastic collision integral is made by the distribution 
function in a region of the order of kT beyond the exci­
tation threshold, at x >::~ 1. When the inelastic collisions 
make a small contribution in this region compared with 
the elastic collisions, i.e., when a << 1, the argument 

of the function K1;3(x) assumes large values, and it is 
possible to use its asymptotic expression[ 16l 

k·· [J~.:±-~C J /\' 1 (_1_)"" r '' "-
, ') < ., 

t)a "·>a 

The distribution function retains a Maxwellian energy 
dependence: 

/(e) =C(1-A)e-e'kT, O~e-hv~kT(a, (3.7) 

and Eq. (3.6) is transformed into an equation quadratic 
in -./y: 

1- A- y = 4Ayy( a'. (3.8) 

In (3.8 ), the right-hand side is smaller than unity, so 
that it is compatible with the condition a « 1 only 
when A < a/ 4 << 1, when the emission of the radiation 
disturbs the equilibrium little. Hence y >::~ 1 - 4A/a*. 

Let us consider the opposite case, when the inelastic 
collisions prevail over the elastic collisions almost 
immediately beyond the excitation threshold, a >> 1. In 
the interval 0 < x < 1 the argument of the tunction 
K1;3 varies in a wide range, %a < t < vli!3, and the 
function K1;3(t) decreases much more rapidly than the 
exponential function under the integral sign in the left 
side of (3.6). Let us replace the exponential by unity 
and change over to the integration variable 
t = (1 + ax)3/ 2/3a. Replacing further the lower integra­
tion limit Y3a by zero and using the equationr161 

r (m+n) rm-n) .\ tn>-~Kn(t)dl=2"'-2 f - 2- 1',--z~- • 
0 

where r(x) is the r function, we obtain tor the inte­
gral in the left side of (3 .6) 

2 '3'!. ( 5 ) [ ( 1 ) J I~ a-':. --=-- r - 1- (Ga)-'i•f - ' ~ 1,84a-%; 
l"n 1 6 3 

whence 

(3.9) 

In the case of a small radiation yield, A« 1 and the 
equilibrium is disturbed little; y >::~ 1 
- A [ 1 + 2 .17 (a* )113]. In the opposite extreme case we 
have A>::~ 1 and .fYR; a*[( 1 - A)/2.17A]3. Here, how­
ever, it is already necessary to exercise caution. If 
we increase the role of the radiation, by decreasing, 
for example, the geometrical dimensions of the plasma, 
then we have y - 0 when A - 1 and accordingly 
n- 0. An analysis of (3.6) shows that when inequality 
(3.1) is satisfied we always have A< 1. 

At not too low an electron concentration, when the 
inequality (3.1) is satisfied and the source of the 
equilibrium is upset by the emission of the resonant 
radiation, we have a simple criterion for the applica­
bility of the Saha equation: A<< 1. 

When the inelastic collisions play a minor role com­
pared with the elastic collisions, the radiation yield, 
as expected, can be only small and the distribution 
function remains Maxwellian. On the other hand, when 
the frequency of the inelastic collisions beyond the ex­
citation threshold is very large, the radiation yield can 
be both small and relatively large, greatly disturbing 
the equilibrium. In the former case the distribution 
function also remains Maxwellian (the first term in the 
curly brackets is the principal term in (3. 5) ). In the 
latter case, the concentration of the electrons and of 
the excited atoms decreases, and accordingly the role 
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of collisions of the second kind decreases, and the 
principal term in the distribution function beyond the 
excitation threshold will be the rapidly decreasing 
term connected with the excess of the number of colli­
sions of the first kind over the number of collisions of 
the second kind as a result of the radiation yield. 

4. CASE OF WW ELECTRON DENSITY IN A STRONG 
ELECTRIC FIELD 

Let us consider the case when the field is so strong 
that the energy acquired by the electron from the field 
during the time between two collisions exceeds the en­
ergy that the electron can be obtained from the atom 
as a result of elastic collision, 

kT.~ ~~' a=~ V ~eEl, 
and the electron concentration is sufficiently small to 
be able to neglect the interelectron interaction in the 
"tail" of the distribution function. Nevertheless, the 
electron concentration should exceed a certain mini­
mum corresponding to the equilibrium concentration 
at the temperature of the atoms, n » n*( Ta ). The 
presence of equilibrium between the excited levels also 
presupposes a certain minimum of the electron con­
centration. In the energy region E Rj kT, the distribu­
tion can be Maxwellian 

kT kT ne• M 
-~b-~1, b=-Anl--, 
hv hv 2a2 m 

or of the Druyvesteyn type ( b « 1): 

(4.1) 

In the latter case a Rj kT. 
When the inelastic collisions are infrequent 

M (2a) 4 
a1 =-~n0ne4l--~1, (4.2) 

m 2(hv} 6 

and have little effect on the distribution function, which 
at high energies has the form (4.1), Eq. (2.3), accurate 
to small terms, reduces to the form 

"" ( '} 2 ) 4B' 
Ce-(1tv/2a)2_ye-1tvthT \/1 ... a_x xdx=fY- -, 

' 'hv a1 ,, 
(4.3) 

where 
/n·(e-hv) - 1 W ZM 

X= B'iy = B = -- - -----~. 
2a2 n (hy) 3 2y2m 

Under the integral sign, the function f( E - hv) can be 
close to Maxwellian or to the Druyvesteyn type. From 
(4.3) we can obtain the degree of non-equilibrium of 
the system in the case of trapped or almost trapped 
radiation. When a1 « 1, the radiation yield cannot be 
large, since B < ( 7'4 )a1C exp[- (hv/2a)2]. The condi­
tion (4.2) may be satisfied, for example, in a helium 
plasma with a very small admixture of argon. 

Let us consider now another case. We introduce in 
lieu of the condition (4.2) that the number of inelastic 
collisions of the first kind be small the condition that 
the number of collisions of the second kind be small 
compared with the number of collisions of the first 
kind: 

(4.4) 

Near the excitation threshold, when x changes by unity, 
the distribution function changes by a factor e. It is 
easy to verify that when E 1 satisfies the condition 

hv(hv-ei) (h\-)2 
1 ~ -------~ ·-- - -

2r12 2a2 ' 

the distribution function in the pre-threshold region 
(2.13) can be written, accurate to small terms, in the 
approximate form 

f(ej = Cr.-<•f2a)'- B, 81 ~ e ~ hv. (4.5) 

Beyond the excitation threshold, when 2 a 2 1 ( hv )2 « 1, 
Eq. (2.9) can be rewritten in the form (3.3), whereas 
V = eX/ 2 f, t = (2al f 213 ( 1 + a1x). 

We substitute the solution 

f=[Ce-l"":""'-B]e-<12(1 +a1x)'i•K•1 ,(t)l(•/,1 C~J, x;;;. 0. (4.6) 

in Eq. (2.3): 

(Ce-(l<v/2al'- B]K•/,1 {-1-) 1 e-' 2(1 + a1x) 'hJ01,(t)x dx = ~. (4.7) 
'3at 0 a1 

When the role of the inelastic collisions is very large 
(a1 » 1), we have 

Ce-<"" 12"'>' -l'yB*(1 + 2,17al-'f,) = 0. (4,8) 

In the general case 

y=(B/B*)'. (4.9) 

As follows from (4.7), the quantity B cannot be large: 
B < ce-(hv/2cr)2. On the other hand, B* cannot be an 
arbitrarily small quantity, for otherwise the inequality 
(4.4) must be violated as a result of the increase of the 
electron concentration. 

The quantity a1 does not depend on y, and therefore 
B, which is proportional to the outgoing radiation, is 
determined completely by Eq. (4.7). Thus, the distribu­
tion function (4.5) and (4.6) does not depend on the 
spectral characteristics and is determined entirely by 
the gas kinetic properties of the plasma, and can be 
determined without calculating the degree of deviation 
of the system from the equilibrium state. This is con­
nected with the fact that in the case when collisions of 
the second kind are neglected, each act of excitation of 
the atom leads to subsequent emission of a quantum out 
of the plasma. 

5. ON THE CONDITIONS FOR JOINING TOGETHER 
THE DISTRIBUTION FUNCTION 

The kinetic equation (2 .2) is a differential equation 
of second order. The solution is determined in three 
different regions, and the distribution functions are 
then joined together, In the low energy region 0 :s E 
:s E1, the flux j increases from zero to a certain value, 
but has practically no influence on the form of the dis­
tribution function, and was therefore neglected. The 
only arbitrary constant that appears in the solution of 
the corresponding first-order equation that the majority 
of the electrons must satisfy (kT « E1) should 
naturally be the normalization constant. 

In the pre-threshold region E1 :s E :s h, the electrons 
can still not excite the atoms, but the influence of the 
radiation yield on the distribution function can already 
be noticeable. The solution of the second-order 
Fokker- Planck type equation gives rise to two arbi­
trary constants. One of them, which determines the 
magnitude of the flux, is expressed with the aid of the 
imposed condition (2 .3) in terms of the intensity of the 
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outgoing radiation. The second is chosen in such a way 
as to ensure continuity of the distribution function at 
the point E = E1. 

Finally, beyond the excitation threshold E > hv, both 
the flux and the distribution function should decrease at 
infinity. One of the two arbitrary constants obtained in 
the solution of the corresponding equation must be used 
to satisfy this physical requirement, and the other to 
satisfy the condition of continuity of the distribution 
function at the point E = hv. 

We note that, within the framework of the employed 
approximation, the continuity of the first derivative 
would be simultaneously a sufficient condition of the 
continuity of the second derivative of the distribution 
function, since it is easy to see from the very form of 
Eq. (2.2) that the derivative of the flux j is continuous. 
In the presence of resonant radiation from the plasma, 
the electron energy distribution and concentration de­
pend not only on the gas-kinetic characteristics but 
also on the equivalent width of the spectral line and 
optical thickness of the plasma. Only when the number 
of elastic collisions of the second kind is negligibly 
small compared with the number of collisions of the 
first kind is the electron distribution function (but not 
their concentration) independent of the spectroscopic 
characteristics of the plasma. 

Note added in proof (7 January 1969). By equating the flux of the 
electronic states to the flux of the quanta leaving the plasma we have, as 
it were, left no constants with which to satisfy the requirement of the 
continuity of the derivative of the distribution function. However, the 
very manner in which the differentiated terms are written out and their 
physical meaning require this continuity. Indeed, as noted in a recent 
paper by Yu. B. Golubovskil, Yu. M. Kagan, and R. I. Lyagushchenko 
(Zh. Tech. Fiz. 38, 1934 ( 1968)) [Soviet Phys.-Tech. Phys. 13, 1553 
(1969)] the continuity of the derivative of the distribution function is 
fulfilled automatically. The continuity of the collision flux was essen­
tially used already in the derivation of expression (2.7) or (2.12), 
and if the distribution function itself is continuous, the continuity of the 
flux is equivalent to continuity of the derivative of this function. 
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