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The domain structure of metals is investigated under the conditions of the de Haas-van Alphen effect. 
The boundary conditions on the phase interfaces are determined and an estimate is obtained for the 
layer width (see (25)). It is shown that the interfaces should move when the current flows perpendicu
lar to the layer. 

1. INTRODUCTION 

IT was shown earlier that a domain structure may be 
produced in metals under the conditions of the de Haas
van Alphen effect£1'21 • This structure appears only when 
the magnetization oscillations have a sufficiently large 
amplitude, and the dependence of the magnetic field H 
on the induction B has the form shown in Fig. 1. That 
part of the curve between points B 1 and B2 which i.s de
termined from the condition that the shaded areas be 
equal corresponds to unstable states. At a given H, the 
stable phase is the one with the lowest value of the 
thermodynamic potential 

1 H 
Q= -- ~ BdH. 

4n 0 

The states with 8H/8B > 0 can exist when B1 < B < B2 
as metastable states, and states with 8 H/8 B < 0 are 
absolutely unstable. The thermodynamic potentials of 
phases with inductions B1 and B2 are equal, and these 
phases can coexist. Therefore, in a long cylindrical 
sample in a longitudinal external field H0 = He, a first
order phase transition should occur, namely a jumplike 
change of the induction from B1 to B2!31 • 

In the case of a thin plate in an external field Ho 
perpendicular to it, a domain structure, i.e., stratifica
tion into regions of the first and second phase, becomes 
thermodynamically favored in the interval B1 < Ho < B2. 
If the domain structure is realized, then the dependence 
of the average induction and magnetization of the sample 
on the external magnetic field should be smooth. 

The first to point out the possibility of domain forma
tion was Condon£1:1. His experiments confirmed indi
rectly the existence of domains in beryllium (jumps of 
the magnetic moment were observed in a cylinder in a 
longitudinal external field, and a continuous transition 
in a plate in a perpendicular field). One of us!2J calcu
lated the surface-tension energy on the domain interface. 

The domain structures of ferromagnets and of the 
intermediate state of superconductors are well known! 4 l. 

In the simplest case of a ferromagnetic or superconduc
ting plate in a field Ho perpendicular to it the domain 
structure is a system of periodically alternating plane
parallel layers. In ferromagnets, the neighboring layers 
have different magnetization directions, in the intermed
iate state of a superconductor, the normal and super-
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FIG. I 

conducting layers alternate. The phase concentrations 
are determined by the requirement that the magnetic 
flux be conserved, and the domain dimensions can be ob
tained from the condition that the sum of the surface
tension energy on the interphase boundaries and the en
ergy of emergence of the domains to the surface be a 
minimum. The latter energy is connected with the dis
tortion of the domain structure near the surface of the 
plate (at a depth on the order of the domain width). As a 
result, the domain dimensions turn out to be proportional 
to ff (l is the plate thickness). Stratification into do
mains results in an energy gain proportional to the sam
ple volume. 

In our case, under the condition B1 < Ho < B2, a sim
ilar structure, i.e., periodic alternation of layers, 
within which the induction assumes values B1 and B 2., is 
also thermodynamically favored. In the following sec
tions we shall find the boundary conditions on the phase 
interfaces, investigate the properties of the domain 
structure, and obtain an estimate for the layer width 
(see (25)). We shall also show that the interfaces should 
move in the presence of a current flowing perpendicular 
to the layers. 

2. BOUNDARY CONDITIONS ON THE PHASE INTER-
1 FACES 

To find the shape and dimensions of the layers, it is 
necessary to determine the boundary conditions on the 
interfaces, in addition to the ordinary electrodynamic 
conditions that the tangential components of the field H 
and the normal components of the induction B be equal 
at the surface. We note that in the case of ferromagnets, 
the only condition imposed on the field H at the interface 
is the continuity condition. On the boundary between the 
normal and superconducting phases, the magnetic field 
in the normal phase is parallel to the boundary and 
equals the critical value. In the superconducting phase 
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the field vanishes everywhere (we bear in mind the con
ventional method of describing a superconductor), i.e., 
the boundary condition is imposed only on the side of the 
normal phase. 

In our case, the coexistence of phases at H = He (see 
Fig. 1) is also possible[2 J. However, if we stipulate that 
the equality H = He be satisfied everywhere along the 
domain boundary, then such a boundary condition is ex
cessively stringent, and the corresponding magnetostatic 
problem has no solution at all (see the next section). 
The point is that this boundary condition should be satis
fied not in one of the phases, a~;> in superconductors, but 
in both, i.e., actually the number of boundary condition 
would be larger than in superconductors. It is therefore 
natural to assume that the condition H = He on the 
domain boundary is satisfied only asymptotically inside 
the domains, and near the surface the field H on the 
interface differs from He. To prove that this is possi
ble, we should consider the problem of the transition 
layer between the domains. 

In the inhomogeneous case, the magnetic field H(x) is 
a nonlocal functional of the induction B(x): 

H = H{B(x)} = B(x) -4rtM{B(x)}, 
M(x) = -8Qmf bB(x), 

where nm is the thermodynamic potential of the mag
netic material at the specified induction B(x), without 
allowance for the field energy J (B2/87T)dx. The concrete 
form of this functional is given for various particular 
cases in [2 ,sJ • 

The problem of the transition layer is one-dimen
sional, i.e., the component of H tangential to the inter
face, and the normal component of B, do not change in 
the transition layer (this follows from Maxwell's equa
tions curl H = 0, div B = 0). We choose the x axis along 
the tangential component of H and the y axis along the 
normal component of B, and then Hx = const, By= const, 
Hz= 0, and Maxwell's equations are satisfied. Thus, it 
remains to find the condition for the existence of such a 
solution of the equations 

Hx{Bx(Y), By, Bz(Y)} = Hx, 

Hy{Bx(Y), By, B,(y)} = Hy(y), 

H,{Bx(Y), By, B,(y)} = 0, 

which tends to the constant values B(± 00 ) = B± and 
Hy(±oo) = H} as y- ±oo. 

(1) 

It is easy to verify that the equations in (1) are the 
Euler- Lagrange equations for the functional 1 > 

(1a) 

under the conditions Hx = const, By = const, and Hz = 0. 

Therefore a solution having the required asymptotic 
properties only when the integrand assumes identical 
values as y - ± oo, for otherwise the functional can have 
no extremum. Consequently, we have the following equa
tion for the determination of the boundary condition 

!) In (Ia) we have I dx w m {B (X)} ~ Q m ; in the homogeneous case 
B 

w,. c- -··· I'MdB. 
'o 

n- n+ 
_ (' MdB + B- 2 _ Hxux- = (' MdB + B•' _ HxBx'. , 

~ 8rr 4rr ~ 8rt lm (2) 
0 " 

which can be rewritten in the form 
B- B+ 

~ HdB-HxBx-= ~ HdB-HxfJ,.+. (3) 
0 0 

This equation establishes the connection between Hx and 
By· Consequently, the boundary condition has the form 
Hx = Hx(By), i.e., 

(4) 

(we recall that the direction of the tangential component 
of H was chosen to be along the x axis). 

It is curious that the potential n', which should have 
a minimum at the given Hx and By, is the same on both 
sides of the interface. In the case By = 0 phases with 
equal values of the density of the thermodynamic poten
tial of the magnet coexist; this is expressed in the iso
tropic model by the condition that the areas on Fig. 1 be 
equal. Relation (3) denotes a similar equality of areas 
on the Hx(Bx) plot at By = const and Hz = 0, which is 
natural, since By plays the role of a parameter in (1). 

The concrete form of the solution in the transition 
region can be obtained for the isotropic model in the 
case of weak inhomogeneity, previously considered in [2 J • 

In this case the connection between H and B as the sim
ple form 

(5) 

The constant Q was calculated in[2 J for the case By = 0. 
From (5) we can obtain in implicit form the Bx(Y) depen
dence: 

(6) 

The values of Hx, B~, and C are determined from the 
condition y (B~) = ± 00 • This means that the radicand in 
(6) should have multiple roots at Bx = B~, i.e., not only 
the radicand but also its derivative with respect to Bx 
should vanish at these values of Bx· Recognizing that 

1< By 

5 HdB= ~ Ily(O.Bu)dBy 

it is easy to see that these conditions are equivalent to 
(3). 

3. DOMAIN DIMENSIONS 

In this section we consider the domain structure in 
an infinite plane-parallel plate and in an external field 
H0 perpendicular to it. Since the ratio of the period of 
the structure to the plate thickness tends to zero as 
l - oo, we can put l = oo when solving the magnetostatic 
problem. We confine ourselves to the isotropic model 
(H II B) and investigate a planar structure (Hz = 0, Hx 
and Hy independent of z; see Fig. 2). The interfaces 
bend as they emerge to the surface, just as in the case 
of superconductors, but these interfaces, generally 
speaking, are not force line, because the component of 
B normal to the interface may differ from zero. 
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Inside the metal (as x- co) the field H approaches 
He, and the induction B approaches the values B1 and B2, 
with Hand B becoming parallel to the boundaries. The 
connection between B and H can in this case be linear
ized: 

B = {Bt + '-•'(H -He) in reg~on I. 
B, + t.22 (H- He) In regwn II. (7) 

The linearized magnetostatic equations are 

where 

8Hx' 

ay 

and account is taken of the fact that Bx R> B, By 
R> {Bi/Hc)Hy· 

(8) 

(9) 

It is also necessary to linearize the boundary condi
tions, i.e., the function Ht(Bn), which should be deter
mined from (3). It is obvious that in our model this 
function has at small values of Bn the form Ht = He 
+ const · B~, and the dependence on Bn can be neglected 
upon linearization. 

The linearized boundary conditions are thus 

(H,;')r = (Hx')n = 0, (10) 

and these conditions are imposed on the "unshifted 
boundaries," i.e., on the lines y = -a1, 0, a2, .... The 
slope of the boundary is determined from the condition 
that the values of Bn be equal on both sides of the boun
dary: 

-Bxr sin e + Byr cos e = -Bxn sin e + B uii cos e. 

At the accuracy indicated, we have 

(11) 

(we recall that B1 and B2 are determined from the condi
tion that the areas on Fig. 1 be equal). 

The linearized equations (8) have a solution that de
creases as x- co and satisfies the boundary conditions 
(10), can be written in the form 

1(il He (iJ ( :n:x ) . :n:y 
H x =' -= Yt exp - -::;;-- sm-, 

Ai Aiai ai 

(12) 

The contribution of the higher harmonics is less than 
the experimental error. 

The coefficients y (i) should be determined by solving 
1 

the magnetostatic problem in all of space. Obviously, 
however, these coefficients are small (of the order of 
(B2 - B1)/Hc), for in the limit as B2 - B1 - 0 there ex
ists only a homogeneous solution. For this reason, the 

deviation of H and B from their asymptotic values should 
be small even near the surface of the plate. 

On the basis of (11) we can estimate the angle of 
inclination of the boundary () near the surface 
(at x ~ Aiai)· In general, this angle is not small, i.e., 
the shift of the boundary is appreciable; this, of course, 
greatly complicates the solution of the magnetostatic 
problem. 

We shall assume below that the connection between 
B and H inside each of the domains is linear (see 
formulas (7)), and put rl = r2 =randal= a2, i.e., 
H0 = (B1 + B2)/2. It will be shown that in this case the 
shift of the interfaces is small (it is proportional to 
{B2- B1)/Hc)· Therefore in the first approximation in 
the parameter (Bo- B1)/Hc it is necessary to solve the 
linearized equations 

8Hx' 8Hu - lJH:/ 8Hy O - '-"--+-= ay-- ox , ax ay 
(13) 

with linearized boundary conditions (10). In addition, as 
will be shown below, in this approximation the solution 
satisfies the additional condition on the interfaces 
(y = -a1, 0, a2, ... ) 

It follows from (11) that in this case 
H1'1I B.-B, 

8=-"-----...;1. 
He He 

(14) 

(15) 

Relations (10) and (14) are equivalent to the boundary 
condition HI= Hti = He, which is more stringent than 
(4). Such a situation obtains only in the first approxima
tion in the parameter (B2 - B1)/Hc and only if the follow
ing conditions are satisfied: the connection bet~een B 
and H inside each of the domains is linear and A 1a1 
= 'K2a2, i.e., Ho = (t2B1 + 'K1B2)/('K1 + 'K2) {the condition 
r 1 = r2 is not fundamental, but we shall nevertheless as
sume that it is satisfied, so as to simplify the problem). 

We seek a solution inside the metal in a form satis
fying the boundary conditions (1) and (14): 

1(i) He~ [ 
Hx = -= LJ Yn exp 

'-n=<> 

(2n+1)nx J . (2n+1):n:y 
..._ s1n , 
l.a a 

(iJ ~ [ (2n+1):n:x] (2n+1)ny 
Hy =-He LJYn exp - _ cos • 

l.a a 
(16) 

n=<> 

The even harmonics appear only in the next higher ap
proximation in the parameter {B2- B1)/Hc when non
linearity is taken into account. 

The solution for the field in vacuum, satisfying the 
condition of continuity of the tangential component at 
x = 0, is given by 

(e) ~ [ (2n+1)nlx J . (2n+1):n:y 
Hx = Ho- He .4JYn exp sm , 

a a 
n=O 

(e) ~ [ (2n+1)nx] (2n+1)11Y 
H, = -1/eL..J 'Vnexp --a-- cos a , 

n=<> 

H0 = 1/2(B1 +B2). (17) 
From (7) we obtain in the linear approximation 

B~i> = B(y) + 'i,•H~<i>, (18) 

where B(y) is either B1 or B2;_ 
The Fourier expansion of B(y) is 
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: ~ 11, --:_1}}_ ~ __ 1-sin (2n+1)ny. 
n n~o 2n + 1 a (19) 

Equating the Fourier coefficients in the expansions 
,,f n(i) and H(e) at x = 0, we get 

X X 
2(Bz- B!) 

'\'n=- Hc(1+1:)(2n+1);. (20) 

When~«:: 1 (i.e., (BH/BBh,z » 1), the change of the 
induction B within each of the domains is of the order 
of r(B2 - B1), i.e., the linear extrapolation used by us 
in the linearization of the problem is convenient for the 
calculation of the energy of emergence of the domains 
to the surface. 

In the opposite limiting case (BH/BB}!,2 «:: 1 the 
change of the induction is of the order of B2 - B1, i.e., 
the nonlinearity is of the order of unity. In this case 
linear extrapolation allows us to estimate the magnitude 
of the effects connected with the emergence of the do
mains to the surface. The inclination of the interface is 
determined by the relation 

d (i) _!J_ = Hy (x, y = ±na) 

dx He 

Integrating, we get 

() +( 1)n 2(B2 -B,)'i.a 's" I h d y x = + na - ~ _ n ct z z. 
- n'(1 +!.) nxf2Aa 

(21) 

The Fourier series for H(i) diverges logarithmically 
y 

at the points x = 0 and y = ± na, because the expansion in 
terms of the small parameter is not valid near the 
points at which the interfaces emerge to the surface. 
However, the linear dimensions o of the corresponding 
regions are exponentially small (in spite of the fact that 
the shift of the interface is of first order of smallness): 

ln(iill/ b) ~ HR(1 + ij I (Bz- B1), 

thus justifying our approximation. 
The thermodynamic potential of the magnet is 

H(x) 

- :n ~d3x ~ Bdii. 

" Introducing B' = B - Ho and discarding the quantity 

-~ \ d3xHo(H-Ho), 
4n · 

which reduces to a surface integral (see[ 4J, Sec. 31) 2 >, 
we represent the density of the thermodynamic potential 
in the form 

_ i Ho i H(x) ' 

Q(H)c --,- (' BdH--,- \ Bdii. 
!fJ't ,) L1Jt j 

0 Ho 

The density of the energy of emergence of the domains 
to the surface is (He II Ho) 

l H(x) l-4 ~ B'dii for x>O 
b~(H)~ n 6K • 

- in (H (x)- H 0 ) 2 for x < 0 (22) 

2)This surface integral, generally speaking, vanishes only when H0 

vanishes at infinity. This is the only case with physical meaning. 

Inside the metal we must put By ~ Hy; Bx is determined 
by relations (18) and (19). Therefore the energy of 
emergence of the domains to the surface, per unit area 
of the plate, can be represented in the form 

1 a ' = 1 
tii=-- \ayl laxfLE(y)Hx'+-~'Hx'2 

4:rra ~ t J 2 
~a o 

1 1 ° 
+2Hy" ]+---z Joodx[(Hx-llo)'+Hy'] }. (23) 

Performing the integration, we get 

- (B2 -B!) 2 a ~ 1 
b Q = -'-"-----''-'--- LJ 

2n4 (1 + /,) n~o (2n + 1) 3 

(24) 

The thermodynamic-equilibrium domain width a is 
determined from the condition that the sum ofi + t:.l/a 
be a minimum, where t:. is the surface tension, which is 
calculated in[2 J and in the Appendix: 

for ( fJH) ~ 1 
fJB 1,2 

0 <a~ 2/s for ( fJH) ~1 
fJB 1,2 

(ro is the electron cyclotron radius). We finally get 

(rol) 'h for ( fJH\ 
-·) ~1 
fJB I, 2 

a~ 

( fJH)"'12 (rol)'f, for (fJll\)· ~1 (25) 
fJB '·' fJB '·' 

This estimate of the domain width is valid if the con
centration of each phase is small compared with unity, 
in spite of the fact that the displacement of the interfaces 
may be relatively large in the general case (on the order 
of unity). This can be verified on the basis of the asymp
totic formulas (12), taking into account the fact that 
y~i) ~~(B2 - Bl)/(1 + ~), and that all the terms in (23) 
for on do not exceed in order of magnitude the resultant 
value of off given in (24). The latter is quite important, 
since these terms have opposite signs. When 'K << 1 the 
interface shift is small, of the order of :\a, for in ac
cordance with (11) and (12) the angle is 8 ~ exp(-7Tx/'Ka). 

4. MOTION OF DOMAIN STRUCTURE IN AN ELEC
TRIC FIELD 

We now consider the flow of current through the sam
ple in a direction perpendicular to the interfaces (j = jy; 
see Fig. 2). In each of the domains there exists a Hall 
field parallel to the interfaces 

the bending of Lhe interfaces is insignificant here. Since 
E~1 > ;e Er>, a static domain structure is impossible, and 
the interfaces must move3 >. The rate of motion V = Vy 
can be determined by equating the tangential components 
of the electric field in a coordinate system moving to
gether with the boundaries. Using the formula for the 
transformation of the field E* 

3lThe motion of the structure in superconductors is well known [6 ). 

A similar phenomenon should take place also in ferromagnets. 

*[BY] =B XV. 
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E=E'+~[B,VJ (B'::::;B) 
c 

we obtain 

If the number of electrons in the metal is not equal to 
the number of holes, then R1 = Rz = 1/nlelc, where n is 
the difference between the number of electrons and 
holes, and e is the electron charge. In this case 

V= -jlniei. 

It is easy to verify that in the laboratory frame 
Maxwell's equation 

1 
rotE= --oB/ot 

c 

is satisfied on the interface. 

(26) 

APPENDIX 

SURFACE TENSION ON THE DOMAIN INTERFACE IN 
THE CASE WHEN (dH/dB}1,2 » 1 

The surface tension ~ on the domain interface is 
determined by the relation 

'f' { B 2 (Y) HcB(y) } 
~= J dy ffim{B(y)} +-------const , 

-= Sn 4n 
(A.1) 

where the constant is chosen such as to make the 
integrand vanish when y- ± oo. The functional wm{B(y)} 
is of the form 

ffim{B(y)} = ffim(KB(y)), 

where (see[z,sJ; the isotropic model is assumed) 
= 

KB(y)= ~ dy' K(y- y')B(y'), 

r 2 v y2 K(y)= -- 1--
1 nro 

0 
ro2 

for 

for 

IYI < ro 

IYI> ro 

(A.2) 

(A.3) 

and wm(B) is the thermodynamic potential in the homo
geneous case: 

B 

ffim(B)=- ~ MdB. 
0 

We assume for simplicity that in the homogeneous 
case 

M(B)= ~sinu, 
4n 
a 

( B.+B2 \ 
n=k B--2--)=k(B-Hc), 

ffim (B)= -cos ku, 
4rrk 

k""~ (f ( 8H) 1) 
B, ·- B1 , or oB 1,2 ~ • (A.4) 

This assumption does not affect in any manner the 
subsequent results. 

Going over to the dimensionless variable ~ = y/r 0 

and putting 

ak = X ""' (oH I oB) 1,2 ~ 1, (A.5) 

we get 

ro r ( ~ u' (~) Uo2 } 
~= 4rrk' J d~lX[cosKu(~)-cosUo]+-2--2 . (A.6) 

-= 
Here 

_ r 2.rr-1)'1- £2 for 
K(£)= 0 for 

1~1> 1 
1~1< 1" (A.7) 

The function u( ~) satisfies the equation 

u(s) = xk sin Ku(~) 

and the boundary conditions 

(A.8) 

u(±oo) = ±uo, uo =X sin uo, Uo""' n(1- 1 I x). (A.9) 

It will be shown below that if u(± oo) = ± 1T the func
tional 

= 
! 1 = ~ d~(1 +cos Ku(£)) (A.10) 

has a minimum equal to zero, although it does not have 
a minimizing function. In this connection, it turns out 
that the surface tension ~ increases with increasing x 
more slowly than the first power of x. Thus, the esti
mate of the surface tension for the case (oH/oBh,z » 1, 
indicated in[2 J, is too high. 

The absence of a function minimizing the functional 
11 means that the solution u( ~) has no limit as x - oo. 
At finite values of x, Eq. (A.8) does, of course, have a 
solution minimizing the functional (A.6). 

The fact that the functional l1 cannot be equal to zero 
is obvious, since the right-hand side of the equation 

00 

~ K(s-s')u(s')ds'= rrsign£', 

is, first, discontinuous, and second, not orthogonal to 
the solutions of the homogeneous equations exp(itj ~), 
where tj ~re the roots of the Fourier transform of the 
function K( ~ ) : 

(A.ll) 

However, this functional can be made arbitrarily 
small, if u( 0 is defined as follows: 

1 cr -r(t)g(t) ""' A 

u(~) =- J ---eitodt = K-t,;g(t;) 
2rr -oo K (t) ' 

(A.12) 

where g(t) is the Fourier transform of the continuous 
function g( 0, which vanishes at ~ = 0, and approaches 
± rr asymptotically when 1 » I~ I » t; the function T(t) 
vanishes when t = tj, and is close to unity outside nar
row intervals near t = tj (of width vj)· With such a choice 
of u( ~), the functional 11 turns out to be small to the ex
tent that E and ~'j are small. The second term in (A.6) 

1 "" 
/ 2 =- S (u2 (S)-uo2 )d£ 

2 -00 

then turns out to be large compared with unity. 

(A.13) 

The parameters E and "i will next be determined by 
a variational method. We put for concreteness (this does 
not affect the conclusion) 

ns 2uo e 
g(£)= Uoth";?;, g(t)=Ushet ' 

<(tJ= Il(1+~\J (t-t;J' . 
· t·2 (t-t·) 2 +v·2 

j J J J 
(A.14) 

The function Ku( ~) differs significantly from u 0 sign~ 
when I~ I S E, making a contribution of the order E to 11. 
In addition, when I~ I » E this quantity contains small 
but slowly attenuating terms of order "i ltj l-1exp{- "j I~ I} 
x sin( ltj I~). These terms make a contribution of order 

~ v/tj to 11. Thus, 
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The functional 12 is best calculated in the Fourier 
representation: 

1 00 4 2 

1•=- r (1u(t)l 2 -~)dt. 
4n _?"" t2 

The contribution from the regions remote from the 
points t = tj are of the order of 

co 2 1 
r _e -t3dt ~ -. 
J sh2 et e2 
1 

The contribution from the vicinities of these points is 
of the order of 

We thus obtain 

rh+Iz ~ x(e+ ~ v;)+~+ ~ -82-lt;l 3~-
; t;' e2 ; sh• et; v; 

Varying "j at fixed E, we obtain 

v; ~ :x;-'"--8-lt;l'"· 
sh elt;l 

Substituting this result in (A.15) we get 

:x;I, + [z ~ :x;e + :x;'l•f e'l• + 1/ e2• 

(A.15) 

This e~ression reaches a maximum (of order x213) at 
E ~ x-1 \thus confirming the estimate given in Sec. 3 of 
this paper. 

The quantities "j are of order x-112 at small values of 
j; with increasing number they increase, reaching at 

j ~ 1/ E values on the order of unity, and then decreasing 
exponentially. When I~ I « E, the function u(O deter
mined by formulas (A.12) and (A.14) increases like 
~ / e512 • It then decreases to a value of the order of unity 
when 1 » I~ I » E. The approach to the asymptotic 
values ± uo is slow, owing to the presence in u( ~) of 
terms proportional to 

- 8-1 -1 1t;l'1•exp {-v;ISI} sin(lt;ls). 
she t; 

This character of the function u( ~) contradicts the 
exact equation (A.8); this is not connected with the con
crete choice of the functions g(~) and T(t). This shows 
that actually the structure of the solution is more com
plicated. Apparently, however, the relation ~ ~ x 213 

obtained by us by a variational method is correct. 
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