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We investigate resonant fluorescence in fields of sufficient intensity to cause saturation and multi
photon scattering. We calculate the scattering matrix in the resonance approximation with allowance 
for multiphoton processes. It is shown that in multiphoton processes a change occurs in the spectrum 
of the scattered radiation (a "halo" appears around the scattered line). Concrete calculations are 
made for two-photon scattering. 

THE quantum theory of resonant fluorescence was de
veloped by Weisskopf, [IJ who regarded the scattering 
process as absorption followed by re-radiation of one 
photon. Such an analysis is valid if the number of pho
tons colliding with the atom during the time of spon
taneous emission t.t = 1/y (where y is the Einstein 
coefficient) is much smaller than unity: 

11N = anc:-.t ~ 1. (1) 

Here n is the photon flux density and a is the scatter
ing cross section. Expressing the average density of 
the photon flux in terms of the electric field intensity 
E and assuming that the cross section is equal to the 
square of the resonant emission wavelength, it is easy 
to verify that t.N coincides in order of magnitude with 
the parameter ( DE/tiy )2 ( D is the dipole moment of 
the transition), and consequently condition (1) is equiva
lent to the requirement 

(DE I h\') 2 ~ 1. (2) 

For laser light sources, the spectral radiation density 
is so large that this parameter can no longer be re
garded as small, and multiphoton processes begin to 
play a role. This paper is devoted to the analysis of 
two-photon collisions in resonant fluorescence. 

Multiphoton processes come into play at field in
tensities much smaller than the intra-atomic intensi
ties (by a factor y/0, where n is the transition fre
quency), and we can therefore eliminate from the inter
action Hamiltonian V the term quadratic in the field 
and to assume thatf2 l 

V =- _:_pA. (3) 
me 

Since we are considering resonant scattering, we 
can confine ourselves to the two-level model of the 
Hamiltonian and exclude from the Hamiltonian (3), in 
the interaction representation, the nonresonant terms 
that oscillate at double the optical frequency, the con
tribution of which is also of the order of y/n. 

We consider a two-level atom with wavefunctions 
cpo(x) and cp 1(x) of the ground and excited states, re
spectively. The wave function of the atom-field sys
tem is written in the form 

..p(t) = Go(t)rpo(x) +G1 (t)<Pt(x), 

where Go(t) and G1 (t) are the magnetic field state 
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vectors. We use a rationalized system of units and 
assume ti = c = 1. 

The Schrodinger equation for the vectors Go( t) and 
G1 ( t ) is written in the form 

d ( Gi(t)) ·( 0 V-(t)) ( Gi(t) ) 
dt, G0 (t) = 1 V+(t) 0 Go(t) ' (4) 

where 

v- (t)= ~ /;(k)a;(k)ei(k-!l)tdk, V+(t)= ~ /;"(k)a;+(k)ei(H!)tdk; (5) 

1 e 
/;(k) = -------=-(q;i(x) IP;eik•!q;u(x)), 

(2n)'l• mi2k 
(6) 

n is the transition frequency. Summation over re
peated vector indices is implied. The operators af (k ) 
and aj (k) satisfy the following commutation relations: 

( k·k,) 
[ar(k), a;,+(k')] = ow- ~' t'l(k- k'). (7) 

In the dipole approximation, when the radiation 
wavelength is much larger than the atom dimensions, 
we can assume that exp ( ik · x) Rj 1 (for an atom situ
ated at the origin), and (6) takes the form 

/;(k) = iDP, I 4n'li'{k, (8) 

where the dipole-moment vector D of the transition 
can be regarded as real for a two-level atom. 

The time-evolution operatorf4 l 

u(t) = ( uu(t) 
Uoi(t) 

satisfies the equation (see (4)) 

d ( uu(t) 
dt Uoi(t) 

Uio(t) ) ·( 0 
uoo(t) = 1 V+(t) 

Ufo(t) ) 

Uoo(t) 

V-(t) )( uu(t) 
0 Uoi(t) 

uw(t) ) . 
uoo(t) 

This matrix equation breaks up into two independent 
systems of equations. It suffices to consider one of 
them: 

d . 
-Uio(t)= zV-(t)uoo(t), 
dt 

with initial conditions 

d dt uoo(t) = iV+(t) uiO(t), 

Uoo(-oo) = 1, Uio(-oo) = 0, 

(9) 

(10) 

inasmuch as in the scattering of the wave packet before 
and after the scattering process the atom is in the 
ground state ( G1 (- oo) = 0 ). The scattering matrix here 
isS =u00 (+oo), 



CHANGE OF RADIATION FREQUENCY IN RESONANCE FLUORESCENCE 201 

We seek a solution in the form 

Uoo(t)= 1 + ~ ~ Cn(kt,; .. , kn; l<t, ... , l<n)exp{i ± (kA-l<A)t} 
n=i "-=1 

n n 

X II/;" (k.)a;+ (kv)dkv II/; (x~)ar (x~)dx~, 
'Y 'V ll JA. 

ov-:=:1 J.L=i 

n=i 

n-1 

xexp{i [ ~ (kA-?<A)+ Q -,.;n] t} 
bot ,._, 

X n /;" (kv)a;,+(kv)dkv IT tj (x.)a;- (x.)dx., 
v v 11. JA. 

\'=1 V-=1 

(11) 

where the coefficients cn(kl, •.. ,kn; K1, ... , Kn) and 
bn(kl, ..• ,kn-1; K1, ... , K n) are to be determined 
(this form of the solution is suggested by perturbation 
theory). For a unique determination of cn and bn they 
must b<> regarded as symmetrical functions of the sets 
of variables kv and KI-f.. 

Substituting (11) in (9) and using the commutation 
relation (7), we obtain an equation for the coefficients 

[ ~ (kv-xv)] Cn(kt, ... ,kn; l<t, ... ,?<n) 

"""'' 

n-t 

[ ~ (kv -x.J+ Q -?<n J bn(kt, ... ,kn-t; XI, •.• ,Xn) 

'V=1 

r y(kn) 
= n \ --cn(kt, ... ,kn; X:t, ••• ,'Xn)dkn 

"' 2n 

1~ +- Cn-1 (kt, ... , kn-t; l<t, ... , ?<~-!, X~+l> ... , l<n). (12) 
n _, 

Here 

y (k) = (2n~: m• ~ 2~ (<p, (x) I p;ei><x I 'Po (x)> (<po (x) I p;e-ixx I ll't (x)) 

x (6w- ,.;~~;· )6 (k-l<) dx. (13) 

It is easy to verify that in the dipole approximation and 
for frequencies away from resonance by an amount of 
the order of its width, we have 

y(k) = y 

accurate to y/0, where y is the Einstein coefficient of 
the 1 - 0 transition (in the ordinary nonrationalized 
units y = 4Dj 0 3/3lic3 ). 

The solution of the system (12) and the determina
tion of the scattering matrix are given in the Appendix. 
We shall henceforth consider two-photon scattering, so 
that it suffices to retain in the scattering-matrix series 
the terms that describe the simultaneous scattering of 
not more than two photons. After a simple transforma
tion (see the Appendix), the scattering matrix takes in 
the approximation needed by us the form 

S= 1+2ni ~ /;'(k)/;(·x~ a1+(k)a;-(x)6(k-?<)dkdx 
Q-k-ty 2 

~ dk1 dk2dx1 dx• [ + 2ni "5' nill(k,- Xt) 
..::..J (Q- k,- iy/2) (Q-k•-iy/2) 

P(k,.), P(xp.) 

-;::, --1---:--12 J /;,' (k,)/;,'(k•)/;,(xt)/;,(x•) 
.. -x1 -ty 

(14) 

where the symbol P(kv) denotes that the summation is 
carried out over all the permutations of kv. 

The energy scattered in a solid-angle element in the 
direction of the wave vector k is given by the expres
sionrsJ 

W(k) = (GJS+k3a,+(k)ar(k)SjG), (15) 

where G is the vector of the initial state of the elec
tromagnetic field. It is easy to verify that the first two 
terms in (14) describe the usual resonant fluorescence. 
The cross section of the resonant fluorescence is 

D•Q• sin2 ljl cos2 e 
cr(k,-¢ 0)= 16n•[(Q-k)•+y2/4]' 

or, in the usual nonrationalized units, 
D•Q• sin•ljl cos2 e 

cr(w,lj:,O)= {(Q-w) 2 +v'i4]1i2c4 ' 

where () is the angle between the vector D and the 
polarization vector of the incident radiation, lJ! is the 
angle between D and the direction of observation of the 
scattered light, and w is the radiation frequency. 

The last term in (i.4) is responsible for the two
photon scattering, and the first term in the square 
bracket describes, as can be readily verified, the 
scattering without a change of frequency, while the 
second leads to a change of the spectral composition of 
the scattered radiation (owing to the redistribution of 
the energy between the two scattered photons). It fol
lows from (15) that the scattered energy is expressed 
in terms of the Fourier components of the correlation 
functions of the field[5J, The general expression for 
W(k) is quite complicated, and we present the result 
for a monochromatic fully-coherent[ sJ light field, which 
apparently describes sufficiently well the laser radia
tion. In this case, the energy scattered without a change 
of the frequency is 

, [ (ED) 2 1 J ( ) 
W(w,8,1J;)=cr(w,O,ljl) 1- li• (Q-cu)"+v•/4 I, 16 

where I is the energy flux of the incident radiation and 
E is the amplitude of the electric field intensity of the 
light wave. The second term in the square brackets 
describes the saturation effect[ 6 J. 

In addition, there is scattered radiation with a con
tinuous spectrum the intensity of which is given by the 
expression 

d , '· • (ED)' , ( ) 
-dw' W (w,w, O,ljl)= cr(w,O ¢) 2112 [(Q-w)•+v•!4{F(w,w ), 17 

where 
y (Q-w) 2 +y2/4 

F ( w, w') = - o-:-=----o:-::-c----':c:-:-:--:-c-:':------':-~ 
n [(Q- w')2 + y2/4]{(Q + w'- 2w) 2 + 'Y'/4] 

determines the form of the contour of the scattered 
radiation, and 

~ F(w, w')dw' = 1. 

Here w, as before, is the frequency of the incident 
radiation and w' is the frequency of the scattered 
radiation. At exact resonance w = 0 the spectrum of 
the scattered radiation has the same form as the 
square of the dispersion contour. It follows from (16) 
and (17) that the saturation parameter, determined 
from the total scattered energy, is equal to 
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1 (DE)2 [ y2 J-1 
2~ (Q-w)2+4 . 

In the case of scattering in a gas, it is necessary to 
take into account the motion of the atoms. For an atom 
moving with velocity v, the formula for the spectrum 
of the scattered radiation is obtained from (17) by re
placing wand w' respectively by w - k · v and 
w' - k' · v. The obtained expression must be averaged 
over the Maxwellian velocity distribution 

("y;;:v)-3 exp {-(v) 2/v2}, v= f2kT/M. 

We present the result of averaging only for forward 
scattering, for under ordinary conditions the Doppler 
line width greatly exceeds the radiative line width, and 
at large scattering angles the Doppler effect masks the 
described broadening. Assuming that y « kv, we ob
tain 

dW" 3 y { (Q-w) 2 } Q•D•sin2 ¢cos2 8 

du/ = inkoveXJ - (k0v)2 fz2c•[(w'-w)2+y2] 

(ED) 2 1 
X2h2 [(w'- w) 2 +'f/4] IV-, 

where ko = 0/c. 
We did not take into account here the collisions, and 

therefore our results are valid so long as the collision 
line width is smaller than the radiative line width. Al
lowance for collisions calls for an additional analysis, 
and we hope to deal with this question in another paper. 
In conclusion, the authors thankS. G. Rautian for a dis
cussion of the work and for valuable remarks. 

APPENDIX 

To solve Eqs. (12) it is necessary to establish the 
role for circuiting around the poles that arise when 
both halves of the equations are divided by 

n n-1 

~ (k>.- 'X>.) and 2; (k>.- 'X>.)+ Q- 'Xn. 

We shall show later that the initial conditions (10) cor
respond to the following circuiting rule: 

n 

[ ~ (kv- 'Xv)- is] Cn(kl, ... , kn; X!, ... , Xn) (A.1) 
v~l 

n-1 
[ 2; (kv-x.)+ Q -xn- is] bn(k,, ... ,kn-l;x~, ... ,Xn) 

'V=i 

1 n 

+- ~Cn-1 (k1, ... , kn-1; X1, ... , X~-t, X..-r1, ... , Xn). (A.2) 
n 

IJ.=i 

We express Cn in terms of bn from (A.1) and substi
tute into the integral term of (A.2): 

r y(kn) 
n J--cn(kh··· ,kn;Xt, ... ,Xn)dkn 

0 2Jt 

n-i 

>< 2; bn (k1, ... , kv-1, kv+l, ... , kn; Xt, ... , Xn). (A.3) 
'\1=1 

Using the relation 

~ <p(x) dx= inq:(O)+ C'l'(x) dx, 
x-ze J x 

where the integral on the right hand side is taken in 
the sense of the principal value, we obtain 

Here !1 is the change of the line frequency owing to the 
interaction of the atom with the radiation field (as 
usual [7 l, y and A are assumed independent of the fre
quency). We do not take into account the frequency 
shift 11, assuming that it is already included in n. We 
shall show subsequently that the second integral in the 
right side of (A.3) vanishes, so that (A.2) takes the 
form 

n-i 

[ (k>.-X>.)+Q-xn-i ~ ]bn(kl,···•kn-l;xl, ... ,xn) 
"="I 

1 n 

=- 2; Cn-1 (k1, ... , k,._,; X1, ... , X~-t, X"+'' ... , Xn). (A.4) 
n IJ.=i 

Equations (A.1) and (A.4) form a recurrent system of 
algebraic equations, the solution of which is 

(A.5) 

We can now prove that the second integral in the 
right side of (A.3) vanishes. We note first that 
cn(kl, ... ,kn; Kl, ..• ,Kn) and bn(kl, ... ,kn-1; 
K1 ... , Kn ), in accord with (A.5), decrease rapidly with 
increasing differences I Kv - OJ and I KiJ. - 0 I, and 
therefore we can assume in this integral the dipole ap
proximation for y( k), with accuracy of order y /0, and 
to extend the integral to the entire real axis. After 
doing so, we immediately can verify, on the basis of the 
residue theorem, that the integral vanishes, since it 
contains a rational-fraction function all of whose poles 
in k lie in the upper half-plane, and which decreases 
sufffl:iently rapidly at infinity to ensure the vanishing 
of the integral over an infinitely remote semicircle. 
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We now return to the operator u( t ). With the aid of 
the equalityraJ 

~----{2nill(x) for 
x- iO o for 

t-->-+oo, 
t-->--00 

we verify, first, that Uoo(- oo) = 1, i.e., the obtained 
solution satisfies the initial condition, and second, we 
find the scattering matrix 

n n-t m rn-1 

xll [~ (k;.-x;.) J IT {[ ~ (kv-xv)- ieT'[ ~ (k~-xu) 
bt m=f V=i ~1 

It is easy to verify that u01 ( - oo ) = 0. 
Let us consider the coefficient in the second-order 

term (n = 2) in (A.6) 

~ ~ ll(k1~+~k~z-~%~•--~%~2~)----------~ 
4 P(k,)P(x") (kt- %t-ie) (Q- %t- iy/2) (Q + k,- %t- %2- iy/2) · 

Using the equation 

(A.7) 

this coefficient can be readily transformed into 
1 ll(kt+kz-Xt-xz) 

T ~ (k1 -x1 -ie)(Q-x,-iy/2)(Q-kz-iy/2) · 
P(kv)P(x~) 

Further, from the identity 

1 1 
k1-x1 - ie Q-x1 - iy/2 

-:::----;--1----:--;::: I I 1 ) 
Q-k1 -iy/2 k1 -x1 -ie Q-x,-iy/2 

(which holds true in the limit as € - 0) we obtain, 
again using (A.7), that this coefficient can be repre
sented in the form 

_1__ ~ 1 
4 P(k,)P(x") Q- k1- iy/2 Q- %t- iy/2 

x[inll(k,-x,)- 1 . I ]ll(k,+kz-x,-xz). 
Q-x1 -!y 2 
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