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Photoelectric effects, caused by polarized radiation in media whose optical properties are isotropic, 
are investigated. Under conditions for the observation of photoconductivity, side by side with it a 
photo-emf arises in the direction perpendicular to the constant field. Mechanisms for the origin of a 
transverse photo-emf and the dependence of the photoconductivity on polarization of the radiation in 
many-valley semiconductors or in an isotropic plasma are considered. 

1. PHOTOCONDUCTIVITY TENSOR AND ANISOTROPIC 
PHOTOELECTRIC EFFECTS 

One can regard photoconductivity as a nonlinear elec­
trodynamical effect of the third order. c1 J Actually the 
photocurrent is proportional to the first power of the 
constant (drawing) field and to the second power of the 
amplitude of the variable (microwave or optical) field. 
Therefore, in a homogeneous medium the time-indepen­
dent photocurrent can be represented in the form 

(1) 

Here Ei and Fi are, respectively, the components of the 
constant field in the sample and the amplitudes of the 
variable field of frequency w. One can call the tensor 
afj~l the photoconductivity tensor. From the definition 

(1) it follows that one can regard it as symmetric with 
respect to permutation of the last two indices. 

We shall investigate the photoelectric effects which 
follow from expression (1) for photocurrents in those 
media whose optical properties and static electrical con­
ductivity are isotropic, that is, in isotropic media and 
cubic crystals. In these media the following components 
of the photoconductivity tensor do not vanish: aP.~. = Yu, 

h lh . . 1111 aP ... = y 12, and aL. = y 44 (1""" J). The other components 
11]] 1]1] 

are equal to zero. In addition, in an isotropic medium 
one has 

y-. = (yu- Y12) /2. (2) 

We shall show that under the conditions for observa­
tion of photoconductivity, a transverse field (perpendicu­
lar to the drawing field) appears and consequently a 
transverse photo--emf. For example, let the drawing 
field be directed along the Ox axis (in a cubic crystal we 
choose the direction [100] as the Ox axis), and the elec­
tric vector F of the variable field lies in the xy plane 
and makes an angle cp with the direction of the drawing 
field. According Ito Eq. (1) the photocurrent in the direc­
tion Oy is given by 

jyph= 2-y.,.EF xF y = y.,.EF2 sin 2lp. 

This photocurrent creates a transverse emf 

ft/h= -(y-./a)lyEF2sin21Jl. 

(3) 

(4) 

Here a is the dark electrical conductivity, and ly is the 
thickness of the sample in the Oy direction. 
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It is easy to see that a transverse photo-emf arises 
only when the radiation is polarized. Its absolute value 
is maximal when cp = JT/4 or 3JT/4, and is equal to zero 
when the electric vector of the variable field is either 
parallel or perpendicular to the drawing field. 

The dependence of the photoconductivity, i.e., the 
photocurrent in the direction of the drawing field, on the 
polarization of the radiation is another anisotropic 
photoelectric effect. This effect is discussed in arti­
cles c2 ' 3 J. According to Eq. (1) the photoconductivity is 
given by 

jxph= {(yu + Y12) /2 + ( (yu- Y12) I 2j cos 2rp}EF2• (5) 

In an isotropic medium, as follows from relation (2), 
the formation of a transverse photo-emf is directly re­
lated to dependence of the photoconductivity on the angle 
between the direction of polarization of the radiation and 
the constant field. Below we shall consider specific 
mechanisms for the formation of anisotropic photoelec­
tric effects. 

2. PHOTOELECTRIC EFFECTS IN MANY-VALLEY 
SEMICONDUCTORS 
In many-valley semiconductors upon exposure to 

polarized light which ionizes the impurity atoms, the 
probabilities for electron transitions into the various 
valleys in general turn out to be different. Therefore, 
the populations of the valleys are not identical. Due to 
the anisotropy of the mobility of the current carriers in 
each valley, the electrical conductivity of such a semi­
conductor is anisotropic. Therefore the drawing field 
causes the appearance of a transverse photocurrent (or 
transverse photo-emf), and the photoconductivity de­
pends on the polarization of the radiation. 

Let us consider a hydrogen-like donor atom in a 
many-valley semiconductor. Taking the corrections to 
the effective mass approximation into account, the 
ground state of an electron on a donor is a singlet 
state. [4 ' 5 J In particular, for an As atom in Ge the en­
ergy of excitation from the ground state to the nearest 
level (in Ge this is a triplet state) amounts to 4.2 
x 10-3 eV.[ 5 J For simplicity we shall assume that all 
neutral impurity atoms are found in the ground state. 
Its wave function is a symmetric superposition of wave 
functions pertaining to the different minima of the con­
duction band: . 

1 "' (<>) 'l'o(r) =---=~<Do (r)'iJk (r), 
l'v "' a 

(6) 
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where 1/Jk is the electron Bloch function, corresponding 
0' 

to the ath minimum of the conduction band with quasi-
wave vector ka, q,(a) is the solution of the effective 
mass equation for the ath minimum, v is the number of 
equivalent minima. Under the action of photons whose 
energies exceed the ionization energy of an impurity, 
the electrons undergo transitions to states of the con­
tinuum which are described by Coulomb functions, q,(a). 

p 
The cross section s(w) for photoionization of an im­

purity center is put together out of the partial cross 
sections s(a)(w) corresponding to the transition of an 
electron to the a-th valley: 

s(w) = ~ ~s<">(ro). (7) 

" " 
It is easy to show that 

s<a>(ro) = ~ (F;/F)s}~> (ro) (F;/F), (8) 
i, J 

where 

x is the coordinate operator, Eo and Ep denote, respec­
tively, the energies of the initial and final states, K is 
the dielectric constant. One can diagonalize the Hermit-

ian tensors~~). In n-Ge and n-Si the equal-energy sur-
1] 

faces near the minima are ellipsoids of revolution. 
From the symmetry of the problem it follows that s~~) 
has a diagonal form in the system of principal axes lJ 
for the ellipsoid of the a- th valley. We denote the com­
ponents of s~~) in the principal-axes system by s 11 and 

1] 
sl. 

Let us calculate the number of electrons in each 
valley for the case of steady-state illumination. In the 
first place it is necessary to take account of the inter­
valley transitions which tend to equalize the number of 
electrons in the valleys. Let us represent the rate of 
change of the electron concentration na in the a-th 
valley due to such transitions in the form 

~ (n~- na) /n iv, (10) 
p 

where Tiv is a relaxation time for intervalley transi­
tions. In addition, the electrons are captured by ionized 
donors at a rate na/T, where Tis the lifetime of the 
current carriers. Under steady-state conditions 

(s"Nd01)/v+ L (np-na)/v"tiv -n .. /-r=O, (11) 
p 

where I is the current density of photons, Nd is the con­
centration of neutral donors. From Eqs. (11) it follows 
that 

n ( Tiv )-'( Tiv s(a)) na=- 1+~ 1+-~, 
V T T S 

(12) 

where 

The mobility of the electrons in each valley is des­
cribed by a tensor whose components in the principal-

axes system of the corresponding ellipsoid we denote by 
J.lll and J.ll· From Eq. (12) it follows that the electrical 
conductivity tensor for an illuminated semiconductor is 
given by 

C1ij = enft { {Jij + ( 1 + ____!__ r' ( -1- ~ ft\~) s(a) - {Jij ]} • (13) 
'tM.U: 'VJ!S a 

Here J.1. is the average mobility of the electrons: 

ft = (2!1_!_ + ftu) I 3. 

From (8) and (13) it follows that the photoconductivity 
tensor is given by 

ph ' { cr;;kz = ewrsNd0(cx "/8nliro) b;;llkl + (1 + -r/-r iv )-1 · 

1 [ "" (a) (a) ]} · -;~ LJ ftii skz - b;;llkl . 

" 
(14) 

In n-Ge the photoconductivity tensor in a system of 
cubic axes has the form 

where 

!1ft !is 
y.-= y(1 +-r/-riv )-1--, 

ft s 

(15) 

(15a) 

11ft = (ftll - ft_[_) I 3; !is = (sl! - S_1_) I 3. (16) 

In n-Si in a system of cubic axes we obtain 

{ ( T )-1 !1ft !is } Yu = Y 1 + 2 1 + -.- ---- , 
-r,, ft s 

{ ( T )-1 t1 ft !1s } 
Y12 = y 1 - 1 + -.- ---- , 

't lV J..t s 

YM = 0. (17) 

From (15) it follows that in n-Ge when the drawing 
field is directed along the [100] axis, the photoconduc­
tivity does not depend on the polarization of the radia­
tion. However, the transverse photo- emf, determined by 
y 44, does not vanish. On the other hand, in n-Si the 
transverse photo-emf associated with the same direc­
tion of the field is not present, but the photoconductivity 
depends on the polarization of the light. Of course, if 
the field is not directed along the [ 100] axis, then in 
general both effects are different from zero. 

If in n-Ge the static field is directed along [100], then 
the ratio of the transverse photo-emf E to the change oV 
in the voltage on the current contacts of the sample, 
i.e., to the usual photoconductivity, is given by 

Y« lv ( T )-' !1ft !is lv f8/6V= -~-sin2q>=- 1+~ ~--sin2q>. (18) 
" 1 lx 't iv J.1 S lx 

In n-Ge at liquid helium temperatures, the rate of 
intervalley transitions is determined by impurity scat­
tering:rsJ The time Tiv associated with the emission or 
absorption of phonons is very large. According torsJ 

3lmv-1 = A(T) (Nd+ + Na-) + B(T)Nd"· (19) 

Here Njj and N3_ denote the concentrations of ionized 
donors and acceptors, which are equal at low tempera­
tures. Expression (19) differs from that given inrsJ by 
taking into consideration the scattering of electrons by 
compensated acceptor impurities. We have assumed 
that the probability of an intervalley transition associa­
ted with scattering by an ionized acceptor is the same 
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as for scattering by an ionized donor. The factor 3/4 is 
related to the different definitions of Tiv used in[SJ and 
in formula (10). 

The lifetime of the electrons is given by 
T = [a (T)NdJ\ where a (T) is the capture• coefficient. 
Therefore 

·uv /T = (3a /4)[2A (T) - B(T) + B (T) (Nd0 + Na+) / Nd+ ]-1• (20) 

In n-Ge at 4.2°K, a ~ 2 x 10-6 cm3 sec-1 • [?J In Ge 
doped with As at 20° K (no data exist for lower tempera­
tures) A= 2 x 10-5 cm3/sec, and B = 0.7 x 
x 10-5 cm3/sec. [sJ 

One would expect that because of the large value of 
the ratio ml/mt in n-Ge, the ratios ~IJ.IIJ. and ~s/s 
should be of the order of unity. With the aid of (18), 
(20), and the estimates given above for a, A, and B we 
find that the value of the transverse photo-emf in n-Ge 
at liquid helium temperatures amounts to approximately 
1/10 to 1/100 of the ordinary photo-response (of ov). 

Anisotropic photoelectric effects also appear in 
many-valley semiconductors in connection with self­
absorption. 

3. TRANSVERSE PHOTO-EMF IN AN JSOTROPIC 
PLASMA 

We shall determine the value of y 44 for an isotropic 
plasma semiconductor (and also for a weakly-ionized, 
gaseous plasma) having a fixed concentration of elec­
trons. In this case the ordinary photoconductivity is 
associated with "heating" of the electrons by radiation. 
In order to calculate the photoconductivity tensor for a 
plasma, it is necessary to determine the electron dis­
tribution function to third order in the field, E + F cos wt. 
The function n(t, p) satisfies the kinetic equation 

an(t, p) an(t, p) ---+ e(E + F cos rot)--- S{n(t, p)} = 0, (21) 
at ap 

where p denotes the electron momentum, S{n} is the 
collision integral (see, for example, [&J ). We shall con­
fine our attention to the case when the inelasticity of the 
electron scattering by phonons (or by molecules in a 
gas) is small. Solving the kinetic equation (21) by the 
method of successive approximations, we find that in the 
first approximation with respect to the field the distri­
bution function is given by 

Here Tl is the relaxation time for the distribution-func­
tion spherical harmonic n lm (E), Vp is the electron veloc­
ity, n <O> is the equilibrium distribution function. 

From the equation for the second-order approxima­
tion to the distribution function, 

an(2) an<•> 
---S {n(2l} = -e(E+Fcos(J)t)-- (23) 

at ap 

it follows that n 12> contains harmonics with l = 0 and 
l = 2. The zero harmonic describes the "heating" of an 
electron gas by radiation, the second harmonic des­
cribes a "quadrupole" deformation of the distribution 
function. The equations for n~21 and n~~ follow from Eq. 
(23): 

<2l N d <2> ano __ 1_~{~(.r!!!'_+n~2>)} 
at N(e) de 't'o(e) de 

4 e2 f f{ dn<0l } 
=--EFcoswtN-d N(e)E't't_d_ , 

3 m (e) e e 
(24) 

Here N(E) denotes the density of states. Only terms 
which at the end of the calculation give a contribution to 
the time-independent part of n<3 > are left in the right­
hand side of Eq. (25). In order to determine the photo­
current we only need the constant component of n<3 > 

having the symmetry of the spherical harmonic function 
with l = 1: 

(Sl { an<2l } ntm ='t't ---e(E+Fcos{J)t) . 
ap l=l 

(26) 

The equation for n~2 > can be integrated only for w To 
<< 1 or WTo >> 1. For WTo << 1 one finds 

(2) 2c2n(O) { l~ r . ) 
no =-----_;~-(I<~+ Fr.nSt>lf)2 \ drro(P)n(•)-- \de /(r)ro(•)rt(P) 1-, i{m72 · • 

where 
0 0 (27) 

1 ~ 
/(e)=- S deN(e)n<0>(e). 

n • 
For WTo » 1 that part of n~21 (w) which oscillates in 

phase with the field F(t) (it gives a contribution to y 44) 

amounts to a quantity of the order of n~21 (0)/w 2 T~. 
It is easy to integrate Eq. (25) for arbitrary w. 

Substituting the result of the integration into Eq. (26), 
and then substituting the resulting expression into the 
formula for the current density, we find 

V••(<•l) = v!~ (<•l) + vf-1 {fil ), (28) 

where y !~1 (w) and y ~!>(w) correspond to the functions 
n~21 and n~~: 

(0) 4e~ d3p d { [.. s· ]} \'u = -- ~ --3 £'t't -d n<•> S de/(e)'t'o't't- de't'o't't , W't'o~ 1, 
9m2J'2 • (2n) e 0 0 

<2>_ 2e~ r ~ 8 { ( !!_ dk!_ !__ dN) M _!_N}, 
..... - 3m2 J (2n)3 't't 5 de + ao de e + + (j 

( dn<•>/de ) 
M = r2d/dr -r1----. , 

1 + ,,,2r,2 

d { dn<0> } N = Ro't'2 (1 +iw't'z)-•-1- --'1'1 [1 +(1 + ifil't't)-1] • 
ce de 

(29) 

One can call the contribution to y 44 coming from ~21 , 
i.e., y !~1 , the "heating" contribution. It is related to 
the fact that the energy distribution function n~21 oscil­
lates at the frequency of the radiation and has an ampli­
tude proportional to (E · F). This part of y 44(w) starts 
to fall off with frequency at w ~ T(/. 

A calculation similar to the one carried out above 
shows that for WT1 « 1 

Vtz(m)- y~~~(O) ~ l'!ITnn/T, 

where 1J. = eTJm denotes the mobility of the current 
carriers. 
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The contribution to y 44 coming from niJ, i.e., y ~!>, 
which is related to a deformation of the momentum dis­
tribution function, can be referred to as the "deforma­
tion" contribution. For WTt « 1 we have y !!> 
- eJ.l.TtO"/T, that is, this quantity is smaller than y~~>(o) 
by the factor n/ To. Therefore at low frequencies 
(w To « 1) the value of y 44 is determined by the "heat­
ing" contribution, but for w > (ToTtr112 the deformation 
part is dominant. The frequency dependence of y 44(w) in 
an isotropic plasma is schematically shown in the ac­
companying Figure. 

Frequency dependence of 'Y44 for 
an isotropic electron gas (schematical). 

II 

Thus, in the low frequency region (w ;S T~1) the effects 
determined by the components of the photoconductivity 
tensor (the transverse photo-emf, the dependence of the 
photoconductivity on polarization) are not small; they 
are of the same order as the ordinary "heating" r,hoto­
conductivity. At higher frequencies ( T(/ « w < T~ ) the 
anisotropic photoelectric effects are smaller than the 
ordinary photoconductivity by the factor Tt/To· 

The electron gas in n- InSb is an example of an iso­
tropic plasma. At liquid helium temperatures To - 5 
x 10-7 sec and T1 - 5 x 10-13 sec. Therefore over the 
entire uhf band w To >> 1, and anisotropic photoelectric 

effects are negligible (-10-6 times the plasma photo­
conductivity). At liquid nitrogen temperatures optical 
phonons play an appreciable role in scattering the mo­
mentum of the electrons in n-InSb. Due to the large 
inelasticity of the scattering by optical phonons, one 
would expect the times for the scattering of energy and 
momentum to be of the same order (-10-11 sec). There­
fore, up to frequencies -1011 Hz the anisotropic photo­
electric effects should be of the same order as the 
ordinary plasma photoconductivity of n-InSb. 
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