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A kinematic theory of diffraction in nuclear resonant scattering of y quanta by crystals containing 
Mossbauer nuclei in sites with inhomogeneous electric fields is developed. Expressions are obtained 
for the amplitude of the scattering by individual nuclei, for the cross sections of the coherent scatter
ing by the crystal, and for the polarization of the radiation in the Bragg maxima for the case of quad
rupole splitting of the nuclear levels of the Mossbauer nuclei. The conditions under which the obtained 
formulas are applicable to the description of the diffraction by real crystals are discussed. It is shown 
that Mossbauer diffraction may turn out to be an effective method of investigating ferroelectric struc
tures in which the Mossbauer nuclei are in several crystallographic almost-equivalent positions. 

1. INTRODUCTION 

THE first experimental investigations of the diffrac
tion of Mossbauer radiation by crystal structures have 
by now been performed (cf., e.g., fl-3 l ). The theory of 
Mossbauer diffraction is being developed (seef4 l ), and 
the possibilities are discussed of its utilization for 
crystallographic investigation [2' 51 and also for the in
vestigation of magnetic ordering in crystals[6 l. The 
possibility of a diffraction investigation of the magnetic 
structures is connected with the dependence of the 
Mossbauer-scattering amplitude on the magnitude and 
direction of the magnetic field at the scattering nucleus. 
If the scattering nucleus is situated in an inhomogeneous 
electric field, then the amplitude of the Mossbauer 
scattering turns out to depend on the character of the 
inhomogeneity of the field. In this connection, Moss
bauer scattering by structures in which the Mossbauer 
nuclei are in sites with an inhomogeneous electric field 
have definite distinguishing features. Thus, the polari
zation and intensity of the scattered radiation at the 
Bragg maxima contain information concerning the 
gradient of the electric field at the Mossbauer nuclei 
and concerning their orientation relative to the crystal
lographic direction. 

In the present paper we develop a kinematic 
theory of diffraction in resonant scattering of y radia
tion by crystals containing Mossbauer nuclei in posi
tions with different electric field gradients (EFG), 
neglecting the Rayleigh scattering. We discuss the con
ditions of applicability of the obtained formulas. We 
show that the Mossbauer diffraction by ferroelectric 
crystals of a certain type may turn out to be an effec
tive method of investigating their structure. This per
tains to structures in which atoms of the same chemi
cal (Mossbauer) element are in several crystallograph
ically non-equivalent positions, and this non-equiva
lence is "small" (i.e., it can be regarded as the result 
of small displacements of the atoms from the crystal
lographically equivalent positions). As is well known, 
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investigations of such structures by usual methods en
tail considerable difficulties [7 1. 

2. AMPLITUDE OF MOSSBAUER SCATTERING FOR 
THE CASE OF QUADRUPOLE SPLITTING OF 
NUCLEAR LEVELS 

Let us consider the amplitude of the Mossbauer 
scattering by a nuclei situated in an inhomogeneous 
electric field. We assume that the Mossbauer nucleus 
has a nonzero quadrupole moment in the ground and in 
the excited states, and that the inhomogeneity of the 
electric field is not large enough to cause quadrupole 
splitting of the nuclear levels. Let the line width of the 
scattered Mossbauer radiation be smaller than the 
quadrupole splitting of the levels. In this case the 
scattering process proceeds via definite energy sub
levels of the quadrupole splitting of the ground and 
excited states of the nucleus. Therefore the scattering 
amplitude can be represented in the form 

fn•=B ~J:C.=B] ('iJo"'IHI¢•~x){'¢t~xiHI'¢~''>. (1) 

" " 
In formula (1 ), H is the Hamiltonian of the interaction 
with the electromagnetic field, B is a factor which is 
of no importance to us. The explicit dependence of the 
amplitudes on the polarizations and the wave vectors 
of the y quanta will not be written out for the time 
being. In the expression for the amplitude, the wave 
functions of the nucleus in the initial, intermediate, 
and final states are labeled by three indices, inasmuch 
as in the general case the energy levels of the quadru
pole splitting are degenerate. For example, for lji.Y 6 

1 
the index i(O, 1) determines the state of the nucleus 
(ground or excited), y determines the energies of the 
sublevels of the quadrupole splitting of the i-th state, 
and 6 determines the number of the degenerate state 
of the sublevel corresponding to the energy E!'. 

1 

The summation in (1) is over the energy- degenerate 
intermediate states, and thus the total amplitude of the 
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scattering can be represented in the form of a sum of 
amplitudes fK ,, each of which corresponds to a 
process proc~~ding via a definite intermediate state K. 

In order to obtain a more detailed expression for 
the scattering amplitude, we represent the wave func
tions of the nucleus in the inhomogeneous electric field, 
zf!~ 0 , in the form of an expansion in I j, !J.k)-functions 

w\th specified values of the angular momentum j and 
its projection Ilk on the direction of the largest value 
of the electric field gradient (the z axis) 

"'jvo = L: ci: lin.tjk>. 
k 

In (2), ci: are the expansion coefficients. 

Taking (1) and (2) into account, we obtain for the 
amplitude f77 , the expression 

f..,(k, n; k', n') = B ~ f~· 
X 

" ~ ,a< a<'c•Pxcpx <. I • ·krl· ) = B LJ LJ Cok Coq '' tp Jo, ftok n e-J It, flts 
x kspq 

(2) 

(3) 

In formula (3), k and k' are respectively the wave 
vectors of the initial and scattered y quanta, n is the 
polarization vector of the initial y quanta, the polariza
tion vector n' describes the polarization in which we 
are interested after the scattering, and j is the nuclear 
current. In deriving expression (3) we have used the 
explicit form of the Hamiltonian of the interaction be
tween the nucleus and the electromagnetic field. 

Using the results ofr6 ' 8 l, in which we considered 
resonant scattering of y quanta by nuclei placed in a 
magnetic field, we transform (3) into 

~ •a•c a<'c •PxcPx ( • ) ( I '• ),,-/ I ' fw = B LJ Cok Oq " iP n n,k n Dpq r sk pq ' 

x,kqsp 

(4) 

where lsk( lpk) is intensity of the radiation in the 
transition j1, !J.1s- jo, !J.ok (j1, !J.1- jo, !J.oq) in the 
direction k (k' }, and nsk (n~q) is the polarization 
vector of the y quantum with wave vector k (k'), 
emitted in the transition j1, !J.1s- jo, fl.ok (jl, f1.1p- jo, 
!loq ). In expression (4), the quantities nsk and nixi 
differ in the general case from the corresponding quan
tities ofr8 1 by phase factors. This difference is con
nected with the fact that here in the calculation of the 
polarization vector we use wave functions written in a 
coordinate system whose unit vectors coincide with the 
principal directions of the EFG. In[8 l, the physical 
conditions singled out only the direction of the magnetic 
field (the z axis), and the choice of the direction of the 
other axis was determined only by considerations of 
convenience. We note that the factor B which enters in 
(1), (3), and (4) contains the dependence of the ampli
tude of the Mossbauer scattering on the y-radiation 
energy. The detailed form of this dependence is of no 
importance to us here. We shall therefore assume that 
B differs from zero only when the resonance-scatter
ing conditions are satisfied. 

With the aid of expression (4) we obtain for the 
polarization vector n' of the y quantum scattered in 
the direction k' 

(5) 

where 
" "" ,a•'cPxc•Px ( ') ,,qjt N, = LJ B' Cok Coq ,, iP Dnsk Dpq r· sk pq. 

x, kqsp 

It follows from (5) that the polarization of the 
scattering radiation contains information concerning 
the inhomogeneity of the electromagnetic field at the 
scattering nucleus, the dependence of the polarization 
vector on the EFG enters in (5) via Cik and also via 
the primed and unprimed quantities nsk and Ish· 

3. GENERAL CASE OF DIFFRACTION 

We consider the scattering of Mossbauer radiation 
by a crystal containing Mossbauer nuclei. The scatter
ing of the y quanta occurs both from the nuclei 
(Mossbauer scattering) and from the electrons (Ray
leigh scattering). For reasons discussed later, we 
shall take into account only the nuclear scattering. 

We assume that the Mossbauer nuclei are in crystal 
sites with different values of the EFG, and that the 
scattering crystal is sufficiently thin, so that extinction 
can be neglected. Using the expression for the scatter
ing amplitude (4), we can represent the coherent
scattering cross section in the form 

dacoh (k, n; k', n') 

= AC"rj21 ]!:,\ (k,n; k',n')ei(k-k')r, 12
] c5(k- k'- 2nb)dQk'· 

~~ b ~) 

Here A is a factor whose detailed form [91 is of no 
interest to us here, b is the reciprocal lattice vector, 
r is a vector determining the position of the Moss
bauer spectrum in the unit cell of the crystal, C is the 
concentration of the Mossbauer isotope, and 
11 = 1/( 2j 0 + 1) is a factor connected with the spin in
coherence. The remaining symbols are the same as in 
the preceding section. The index l designates quanti
ties pertaining to the sites with the l- th value of the 
EFG. 

U the EFG at the Mossbauer nuclei are such that 
different quadrupole splittings of the nuclear levels 
take place, then the amplitudes fV} for scattering by 
nuclei for which the condition of resonant scattering is 
not satisfied vanish in expression (6 ). In analogy with 
(5) we obtain for the radiation polarization vector at 
the Bragg maximum, from expressions (4) and (6), 

n'=N2/IN2I. 

(7) 

Just as in (6 ), the summation over l in (7) is carried 
out over sites l for which the resonance- scattering 
condition is satisfied. The expressions for the cross 
section (6) and for the radiation polarization (7) were 
derived by us under the assumption that the initial beam 
of y quanta is completely polarized. 

We shall need subsequently quantities obtained from 
(6) by averaging over the initial and summing ov;r t}te 
final polarizations. We shall denote by da (k; k , n ) 
the result of averaging (6) over the initial polarizations, 
by da (k n- k' ) the result of summing (6) over the 

' ' I f final polarizations, and by da (k; k ) the result o 
averaging over the initial and summing over the final 
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polarization. For an unpolarized initial radiation, the 
scattered radiation will in the general case be partly 
polarized. In this case, the polarization density matrix 
Punp of the scattered radiation can be represented in 
the form 

Punp= ~ da(k,ni; k')p(noi) /( ~ da(k,ni;k') ), {8) 
i=i,2 i=f,2 

where ni ( i = 1, 2) are two orthgonal unit vectors of 
the initial polarization (for example the vectors of 
right-hand and left-hand circular polarizations), 
n~i is the polarization vector of the scattered radiation 
when the initial-polarization vector is nb and p(n) is 
the polarization density matrix corresponding to the 
polarization vector n [1oJ 

If the initial beam is partly polarized, then we ob
tain for the scattering cross section dap and for the 
polarization density matrix pp 

dap(k; k', n') = (1-l')da(k; k', n')+l'rlcr(k, np; k', n'), (9) 

( 1 - P) Punpda (k; k') + Pp (no') da (k, np; k') 
pp=-- {1-P)da(k;k')+Pda(k,np;k'\ ·~, (10) 

where P is the degree of polarization of the initial y 
quanta, the vector np describes the polarization that 
is partially represented in the initial beam, and n~ is 
the polarization vector of the scattered radiation for 
the initial polarization, described by the vector np. 

From the general formulas (4), {6) and (7) we see 
that the dependence of the amplitude of the Mossbauer 
scattering on the EFG turns out to be appreciable for 
the intensity and polarization of the radiation at the 
Bragg maxima. More detailed discussions of these de
pendences will be presented using a concrete example. 

4. DIFFRACTION FOR THE CASE OF TWO VALUES 
OF AN AXIALLY SYMMETRICAL EFG 

Let us analyze the obtained general expressions 
using a concrete example. Let l = 2, j 0 = 1/ 2 , and L 
=% in the preceding formulas, and let the EFG be 
axially symmetrical. We also assume that the Moss
bauer transition is a dipole transition. Under the fore
going assumptions, there is no quadrupole splitting of 
the ground state. The excited level is split into two 
sublevels. All the energy levels are doubly degenerate. 
Let the EFG differ only in the orientation of the axes. 
This means that for both EFG the energy splittings of 
the levels are the same, and therefore the resonance
scattering conditions are satisfied simultaneously. 

Under the foregoing assumptions, the wave functions 
of the excited state of the nucleus (2 ), corresponding to 
the energies El12 and E~12, are given by 

and the wave functions of the ground state with energy 
E6/ 2 by 

'i'o =- ±-11,±\1 11 1 ) 
2 ' 2 . (12) 

Let the resonant scattering proceed via the transition 
E612 - El12• Then the expression for the amplitude (1) 
takes the form 

h.%= B'('/., 1/ziHI 3/z, 3/z)(3/z, 3f.IHI'/z, 1/z). (13) 

In expression (13) there is no sum over the intermedi
ate states, since the transition %- - % is forbidden 
by the selection rules for dipole radiation. Just as in [8 J, 

the expression for the amplitude (13) can be reduced 
to the form 

• I 
h. v, = B'(n*n•,, v,) (n'nf;,, v.)'/h,,v,l•;, •;,, (14) 

where 
[k [kh]] . [kh] . 

n•,,, 'h =I k II [khJI cos a+' llkhJI sm a, 
1 

tga=--, 
cose 

(15*) 

where h is the unit vector in the z direction, and e is 
the angle between k and h, 

b1., •;, = a(1 + cos2 8). (16) 

Here a is a factor that depends on the characteristics 
of the nuclear transition (see, for example, [8 J ). The 
primed quantities in (14) are obtained from (15) and 
(16) by replacing k with k'. The expression for 
L,;2,-1/2 is obtained from (14) by replacing ns;2,1/2 and 
n~; 2,1; 2 with their complex conjugates. 

We have considered the amplitudes of processes that 
do not change the state of the scattering nucleus, for 
only such processes contribute to the coherent scatter
ing. 

For formula (6) we obtain for the coherent scatter
ing cross section 

dacoh(k, n; k' n') = A'l (!·~~\ + !~'.),, -%) 

+ ei6(!f.\ + j~~.-·;,) 1• ~ ll..(k- k'- 2nb)dQk.-, (17) 
b 

where 6 = (k- k') Cr2- r1 ). 
For the polarization vector in the Bragg maximum 

we get from (5) 

N3 = ~ [(nn•;;, v,)nif, . • 1, + (n~•,,, -•r,)n._•1,, -v,] ei6, '/l'(k)l''(k'), 

where ~~•.• 

ll, = 0, ll2 = (k'- k) (r2 - r1). (18) 

We have considered above the case for which the 
EFG at the Mossbauer nuclei differed only in the 
orientation of the symmetry axes, and therefore the 
quadrupole splitting and the conditions of the resonant 
(Mossbauer) scattering for both EFG were the same. 
We now proceed to the case when the differences into 
EFG lead to different quadrupole splittings and to dif
ferent resonance-scattering conditions. Now in expres
sion (14) the amplitudes f(ll and f< 2l cannot be simul
taneously different from zero. For the i-th resonant 
energy, expression (14) takes the form 

dcrcoh(k,n; k', n') = A'lf~~v, + f~.-11l 2 ~ l>(k- k'- 2n:b)dQl<'• {19) 
b 

where i = 1 and 2, and for the radiation polarization 
vector in the Bragg maximum we obtain 

n' = N,/IN,I, 

(20) 

From (17) we obtain for the scattering cross section 
of the polarized beam, summed over the final polariza-

*[kh] =k Xh 
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tion, 

dcr coh(k; k') = A' {2 + cos2 e1 cos2 e{ + cos2 e2 cos2 e2' 
+ 2 cos ll [cos q> cos q>' (cos e, cos e. cos e.' cos e.' + 1) 

+cos q>, cos <p{(cos e. cos e.'+ cos e, cos e{)]}. ~ ll(k- k'- 2:rtb)dQJr.., 
b 

(21) 

where () 1 and () 2 are the angles between k and h1 and 
between k and h2 , respectively, and q; and q; 1 are re
spectively the angles between the vector k x h1 and 
the vectors k x h2 and k x [k x h2 ] ( ()' and q;' differ 
from () and q; in that k is replaced with k' in the 
corresponding expressions). 

For the case when the conditions for resonant scat
tering are satisfied only for one value of the EFG, we 
obtain from {19) 

dcrcoh(k; k')= A'(1 + cos29;cos26{) ~ ll(k-k'- 2:rtb)d!J~r.•. (22) 
II 

We have considered resonant scattering in the 
transition E~12 - E~12• Scattering in the transition 
E~12 - E~12 can be considered in similar fashion. 

The formulas (17) and {19) for the cross section 
contain the Bragg maxima whose positions coincide with 
the positions of the maxima in x-ray scattering (at the 
same x-ray energy). However, the relative intensities 
in the Bragg maxima differ for Mossbauer spectrum 
from the corresponding values for x-ray scattering. 
This is a consequence of two factors. First, the angu
lar dependence of the Mossbauer amplitude of the scat
tering differs from the angular dependence of the x-ray 
amplitude. Second, the amplitude of the Mossbauer 
scattering by an individual nucleus depends on the EFG 
at this nucleus (i.e., on the position of the nucleus in 
the crystal cell). On the other hand, the amplitude of 
the x-ray scattering does not depend on the position of 
the atom in the cell. For example, in the previously 
analyzed case of different quadrupole splittings at a 
fixed energy of the primary y quanta, the only nonvan
ishing scattering amplitudes are from those nuclei, for 
which the resonance condition is satisfied. Whereas the 
first factor leads, in general, to a small difference be
tween the relative intensities, the second factor may 
lead to a qualitative difference in the character of the 
Mossbauer diffraction from the character of the x-ray 
diffraction, for example to an appearance in the Moss
bauer scattering of Bragg maxima that are strictly 
forbidden for the Rayleigh scattering, or to an appreci
able difference between the relative intensities in 
either case. We shall illustrate the latter statement by 
means of an example. 

5. DIFFRACTION BY FERROELECTRIC STRUCTURES 

Let us consider the Mossbauer diffraction by a com
plex ferroelectric structure, in which the Mossbauer 
atoms are in crystallographically non-equivalent posi
tions, but this non-equivalence is "small," and let us 
compare it with the diffraction of x-rays by the same 
structure. As is well known, for such a structure, it is 
difficult to establish the existence of non-equivalent 
positions of atoms of the same chemical element by the 
usual methodsr71 • For such structures, the Bragg dif
fraction maxima in the scattering can be subdivided into 
two types: a) maxima that exist for a structure obtained 

from the considered structure by neglecting the afore
mentioned small non-equivalence of the atom positions 
(structure maxima); b) maxima connected with the 
presence of non-equivalent positions of the same chem
ical element in the unit cell of the crystal and vanish
ing in the absence of this non-equivalence (superstruc
ture maxima). 

As is well known, in the scattering of x-rays and 
neutrons, the ratio of the intensity of the superstruc
ture maximum to the intensity of the structure maxi
mum is small and is of the order of ( oa/a)2, where 
oa are the atomic displacements causing the non
equivalence, and a is the period of the lattice. 

In the case of diffraction of Mossbauer radiation, 
the situation may change radically. Namely, the in
tensity of the superstructure maxima may not contain 
the small quantities ( oa/a)2 relative to the intensity of 
the structure maxima. This pertains to structures in 
which the element located at the non-equivalent posi
tions is a Mossbauer element, and the discussed non
equivalence leads to the existence of different values 
of the EFG at the nuclei of the Mossbauer isotopes. 
Examples of such structures may be certain ferroelec
trics in which the ferroelectric phase transition is 
connected with a change in the number of atoms per 
unit cell. 

The physical cause of the noted difference in the 
character of the diffraction in Mossbauer scattering 
from the diffraction occurring in the scattering of 
x-rays and neutrons lies in the dependence of the 
amplitude of the Mossbauer scattering on the EFG at 
the scattering nucleus. Indeed, whereas for neutrons 
and x-rays the discussed displacements do not change 
the atomic scattering amplitudes, and therefore the 
intensity of the superstructure maxima are determined 
only by small displacements of the atoms, in the case 
of Mossbauer scattering the same displacements, by 
virtue of the dependence of the nuclear scattering am
plitude on the EFG, lead to changes of the amplitudes 
of the Mossbauer scattering. Therefore in the latter 
case the intensity of the superstructure maxima is de
termined not so much by the small displacement as by 
the difference in the amplitudes of the Mossbauer scat
tering spectrum by nuclei situated in crystallograph
ically non-equivalent positions. Since the differences 
of the amplitudes in the general case are of the same 
order as the amplitudes themselves, the intensity of 
the superstructure maxima turns out to be of the order 
of the intensity of the structure. 

For two non-equivalent crystallographic positions 
of the Mossbauer isotope, the scattering cross section 
is described by the formulas of Sec. 4. In expression 
(17) for the scattering cross section we have eio ~ 1 
in the structure maxima, and eio ~ - 1 in the super
structure maxima. Therefore the ratio of the intensity 
of the scattered radiation in the superstructure maxi
mum to the same quantity for the nearest structure 
maximum is approximately equal to 

I (!.7,~ •1, + tl!..~ •. - •1,)- (flJ!. •t, + t<2> -'I,. -'I•) 12 

I (flf}. 'I• + t'::.).. _.,,) + <flJ!. 'I, + l~) .. _.,,) 12 • (2 3) 

In this formula we have neglected the difference be
tween the Bragg angles for the structure and super
structure maxima. For unequal quadrupole splittings, 
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one of the amplitudes in (17) vanishes and the ratio (23) 
is equal to unity. If the quadrupole splittings are equal, 
this ratio is also of the order of unity. 

For x-ray diffraction, the intensity ratio, neglecting 
the difference between cos 1i and ± 1, is determined by 
a formula analogous to (23), and is equal to zero since 
the corresponding difference of the x-ray scattering 
amplitude vanishes. Allowance for the deviation of 
cos 1i from ± 1 yields the estimate presented above for 
the ratio ( Oa/a )2. 

6. CONCLUSION 

In the foregoing analysis we have neglected the Ray
leigh scattering. In many cases the Rayleigh scattering 
and its interference with the nuclear scattering exert 
an appreciable influence on the y-quantum diffrac
tionr3•41. In certain cases, however, the Rayleigh scat
tering can be neglected. Neglect of the Rayleigh scat
tering is always justified for pure Mossbauer struc
tures and, as demonstrated above, may be justified for 
superstructure maxima in the case of certain ferro
electric structures. In addition, diffraction conditions 
can be realized, in which the amplitude of the Rayleigh 
scattering vanishes (for exampler21 ), and it is there
fore sufficient to take into account only the nuclear 
scattering. 

We did not discuss the angular dimensions of the 
diffraction maxima and the temperature dependence of 
the intensity of the diffraction maxima. Just as in r a], 
we obtain for the width of the maxima the estimate 
8 ~ 'A/l, where 'A is the wavelength of the y quantum 
and l is the extinction length. The temperature depend-

ence of the intensity of the diffraction maxima under 
the assumptions made in this paper is determined by 
the temperature dependence of the Lamb-Mossbauer 
factor, the square of which is proportional to the factor 
A in (6). 
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