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An investigation is made of weak turbulence in a plasma with hot ions and cold electrons in which a 
small-scale, high-frequency, electron-acoustic instability is excited. This instability is due to the 
motion of the ions with respect to the electrons in the electric field associated with the circularly 
polarized electromagnetic wave at a frequency of the order of the ion-cyclotron frequency wHi. In a 
time interval 1/wHi, in the reference system that moves with the wave there is established a station
ary electron-acoustic spectrum which exhibits in wave-vector space k a sharp peak that is several 
orders of magnitude larger than the thermal noise. The scattering of ions by electron-acoustic waves 
leads to an Increase in the transverse thermal energy of the ions (transverse with respect to the ex
ternal magnetic field). Expressions are obtained for the spectral intensity of the electron-acoustic 
waves, taking account of the nonlinear interaction between waves and the quasilinear equation for the 
background ion distribution function, which determines the turbulent heating of the ions; the heating 
time is estimated. A number of experiments on plasma heating by ion-cyclotron waves and fast 
magneto-acoustic waves are discussed. These experiments have shown anomalies in the absorption 
of the waves: and it is found that these anomalies can be explained by the excitation of a two-stream 
instability in the electric field of the waves in particular, the electron-acoustic instability. 

1. INTRODUCTION 

IT has been shown earlier[1 J that the motion of plasma 
ions with respect to electrons across an external mag
netic field, caused by the electric field of a low-fre
quency electromagnetic wave (for example the ion
cyclotron wave or the fast magnetoacoustic wave), leads 
to the excitation of high-frequency, small-scale insta
bilities. In a highly nonisothermal plasma with hot ions 
and cold electrons the instability is the so- called elec
tron-acoustic instability. The frequency wk and the 
growth rate Yk for the electron-acoustic instability are 
given by 

(1.1) 

where Ue is the electron velocity caused by the electric 
field of the low-frequency wave: 

(1.2) 

Here, eZi is the ion charge, k 11 = k cos J is the projec
tion of the wave vector kin the direction of the external 
magnetic field Ho, v = v'Ti/me is the electron-acoustic 
velocity, p = v lwHe and u is the relative velocity of the 
ions with respect to the electrons. Equations (1.1) and 
(1.2) apply for waves that propagate almost perpendicu
larly to the magnetic field (J ""' JT/2) and whose wave
length is much smaller than the ion-Larmor radius 
{kvTi/wHi » 1) and much larger than the electron
Larmor radius (kvTelwHe « 1). The growth rate (1.2) 
and the frequency (1.1) are much higher than the ion
cyclotron frequency wHi and the frequency of the low
frequency electromagnetic wave n but much smaller 
than the electron-cyclotron frequency WHe· The phase 
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velocity of the electron-acoustic wave along the mag
netic field wk/kll is much greater than the electron 
thermal velocity VTe so that the electron gas can be re
garded as being cold; the phase velocity wk/k is much 
smaller than the ion-thermal velocity VTi· For these 
waves the ion gas is essentially not effected by the mag
netic field. If we assume as an approximation that 
kp ~ 1, COS J ~ v'me/mi and ku ~ QK We find that 
Wk ~ v'wHeWHi and Yk ~ 0.1 Wk. 

It will be shown in the present work that the develop
ment of the electron-acoustic instability in a plasma 
subject to a circularly polarized low-frequency electro
magnetic wave that propagates along the external mag
netic field leads to rapid turbulent heating of the ion 
component of the plasma. 1> One feature of the case be
ing considered is the fact that the limitation on the am
plitude of the turbulent waves is not due to quasilinear 
effects associated with the formation of a plateau on the 
distribution function for the resonant ions. Rather the 
limiting is due to a nonstationary feature of the situa
tion: Growing waves, which at a given time satisfy the 
condition k · u > nK, will, after a time t..t ~ JTjQ, be
come damped because at this time k · u changes sign so 
that the quantity Yk becomes smaller than zero, in which 
case the magnitude of the turbulent waves must drop to 
the level of the thermal noise. As a result, a stationary 
wave spectrum is established in the reference system 
that rotates with the vector u. 

In the present work we shall find the spectrum for 
the steady-state electron-acoustic waves and the total 
energy of these waves, both neglecting and taking ac-· 
count of the nonlinear interaction between waves. The 

I) this effect has been pointed out by the present authors together 
with Teichmann [2 ) and independently by Arefev, Kovan and Rudakov 
[3]. 
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wave spectrum exhibits a sharp peak in the wave-vector 
space k which is several orders of magnitude greater 
than the level of the thermal noise. The total intensity 
of the waves is a strong function of luI: when u > ucr 
~ vTi the level of the turbulent waves is proportional to 
u2 (relatively weak growth) and when u < Ucr the turbu
lent waves fall off much more rapidly (exponentially) 
with diminishing u. 

The scattering of ions on the turbulent waves leads 
to a rapid randomization of the ion velocity distribution 
function in the plane perpendicular to H0 (the ion veloc
ity distribution along H0 is not changed) and to a subse
quent diffusion in v 1, that is to say, to an increase in 
the transverse thermal energy of the ions. In the pres
ent work we obtain a diffusion equation for the function 
fo(v 1l and we derive an expression for the diffusion co
efficient, which is found to be proportional to the energy 
of the turbulent waves; the ion heating rate is also esti
mated. 

The feature of the spectrum noted above implies that 
the ion heating is of a threshold nature: the ion tempera
ture increases as long as the ion thermal velocity does 
not become comparable with the relative velocity u; 
when this occurs the ion heating is terminated sharply. 
This conclusion is related to the assumption that the 
electron-acoustic waves grow from thermal noise 
which, in the region being considered (low-frequencies 
w « Wpe and large wavelengths k « Wpi/vTi) are of 
very low intensity. If the electron-acoustic waves are 
maintained by virtue of coupling (for example, due to 
nonlinear effects or plasma inhomogeneities) to other 
plasma wave branches and are maintained at a suffi
ciently high level, then the threshold value u can be re
duced and the heating mechanism being considered here 
becomes operative even when u < VTi· 

2. BASIC EQUATIONS 

We consider a circularly polarized electromagnetic 
wave that propagates along the uniform fixed magnetic 
field Ho: 

E = (E cos (Kz- Qt), E sin (Kz- Qt), 0), 

H=(-Hsin(Kz-Qt), Hcos(Kz-Qt),O), (2.1) 

where K and U are the wave vector and frequency and 
where the peak magnetic field of the wave H = cKE/U. 
When K > 0 and U > 0 the electric vector of the wave 
(2.1) rotates in the ion gyration direction in the field 
Ho. As is known from linear theory, in a dense plasma 
this wave (the Alfven wave or the ion-cyclotron wave) 
can propagate at frequencies below the ion-cyclotron 
frequency. When K> 0 and U < 0 (2.1) represents a 
wave that propagates in the direction opposite to Ho with 
the electric vector rotating opposite to the ion gyration 
direction. This is the magneto-acoustic wave, which can 
propagate at frequencies below the electron-cyclotron 
frequency in a dense plasma. Below, in making esti
mates, in order to be definite we shall assume that the 
frequency n is of order WHi· 

The ion motion with respect to the electrons in the 
wave field (2.1) leads to the electron-acoustic instability. 
The electron-acoustic waves modify the ion distribution 
function and the wave amplitude (2.1). In the present 
section we derive an equation for the ion distribution 
function and also obtain the equation of motion in the 

presence of turbulent electron-acoustic waves. The 
kinetic equation for the ion distribution function F is of 
the form 

iJF iJF Z,e ( 1 \ iJF 
-,jt+va;:-+~ E-Vq;+-;:--[v,Ho+Hl;a;=O, (2.2) 

where q; is the potential associated with the electron
acoustic waves. 

We shall assume, in the usual way for quasilinear 
theory, that F = f + f' where f' is the oscillating portion 
of the distribution function that arises because of the 
electron-acoustic waves. We assume that (q;) = (f') = 0 
so that (F) = f, where the average is taken over the 
ensemble of random phases of the potential or in a time 
of the order of several oscillation periods and over a 
distance much smaller than the wavelength (2.1) A = 1/K 
but much larger than the dimensions of the wave packet 
associated with the electron-acoustic waves 1/ t..k 11 
(t..ku is the width of the wave packet in the direction of 
Ho in wave-vector space). We then find 

iJf iJf Zie ( 1 ' iJf Zie iJ , 
-+v-,-+- E+--[v,II,+HJ)-=- ·-(Vq;f), (2.3) 
iJt iJr m; c iJv m; iJv. 

iJf iJf Z,e ( 1 ) IJf Z,e iJf 
-+v--+- E+-[v,Ho+HJ ---Vrp-
iJt iJr m; c iJv m; iJv 

z,e i) ' < ') 
= mi iJv (Vq;/ - V'f!f ). (2.4) 

We shall consider waves in a low-pressure plasma, in 
which case j3 = 87TnoTi/H~ « 1. Under these conditions, 
we can neglect the effect of the magnetic field of the 
wave on the ions in Eqs. (2.3) and (2.4). Since the fre
quency and growth rate of the electron-acoustic waves 
are much greater than the wave frequency (2.1) and the 
ion cyclotron frequency, in Eq. (2.4) we can neglect 
terms that are proportional toE + (vx H0)/c compared 
with af' ;at + vaf' jar. Furthermore, we can neglect 
small effects associated with the nonlinear wave inter
action in treating f' (as shown in l•J the nonlinear inter
action between electron-acoustic waves is primarily 
associated with electrons and the ion contribution in the 
decay and induced scattering is a factor v'm/me times 
smaller than the electron contribution). Then, substitut
ing q; and f' in the following form in Eq. (2.3): 

rp= ~CfJkexp[i(kr-wkl)], f'= ~/kexp[i(kr-wkt)] (2.5) 
k k 

and neglecting the weak dependence of f on z and t in 
Eq. (2.4), we find 

z,egJk ( fJj) h=----- k-
mi(w- kv) iJv ' 

(2.6) 

where w = wk + iy and y = a ln q;k/at. 
Substituting (2.6) in (2.3) and making use of the 

inequality j3 « 1 so that we can neglect terms uaf/Br 
~ KvTif, we have 

8f z,e ( 1 ) iJf -+- E+-[vHo] -
iJt Tl!i c iJv 

(2.7) 

where Ik = iq;k 12 • This equation determines the behavior 

*[v,H0 +H] =vX(H0 +H). 
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of the ion distribution function in the wave field (2.1) in 
the presence of electron-acoustic waves. 

We now introduce the mean ion velocity ui (z, t) 
= (1/no) ( vfdv, where n0 is the equilibrium ion density 
(we shafl neglect possible small deviations of the density 
from the equilibrium value which can arise because of 
the small nonlinearity in the wave (2.1) and the electron
acoustic waves). Multiplying Eq. (2.7) by v and integrat
ing over velocity space we obtain the equation of motion 

Bu1 Z,e ( 1 \ 1 
- = -- E +- [u;Ho]J + -Fturb. at m, c ' m; 

(2.8) 

where Fturb is the force exerted on the ion gas by vir
tue of the electron-acoustic oscillations: 

(2.9) 

In a high density plasma we have ne = Zini for the elec
tron-acoustic waves so that precisely the same force 
as in (2.9), but with opposite sign, acts on the electrons. 
Thus, the turbulent fluctuations do not change the mean 
value of the total momenta of the electrons and ions per 
unit volume of plasma. Although the force of turbulent 
friction in (2.8) is much smaller than the Lorentz force 
(a factor m/me) even in the case of strong turbulence, 
nonetheless, it can lead (for free waves) to a strong 
modification of the amplitude u0 of the ion velocity ui 
i'::! uo(t) cos (Kz- m + 1/J) in which case the amplitude 
change ou0 will be of order u0(0) in a time interval 
t ~ mi/mewm. 

In what follows it will be convenient to convert to a 
coordinate system in which the mean directed ion veloc
ity vanishes. Making the substitutions 

a a aui a 
V--+Ui +v', ---+-- _,_ 8k- kv--+Qx- ku- kv' 

at fJt fJt fJv' ' 

we now write Eq. (2.7) in the form 

!!!_ ~(-F Z;e[v'H]\!!_ __ a_D _!!__ 
at + turb + • !a , - fJ , '"~a , , mi c v Va VJ3 

(2.10) 

where 
(2.11) 

If we neglect the nonlinear wave interactions, the 
equation for the intensity of the electron-acoustic waves 
becomes 

aik I at= 2ylk + I'J, 
where y is the linear growth rate:['l 

y=, nZ;Qx'_) dv' (k fJj,){)(Qx-ku-kv'), 
2ku2 (mdme) fJv 

'I] is the radiance, which is given byc51 

(2.12) 

(2.13) 

and Wpe is the electron plasma frequency. 
The motion of the electrons, which are assumed to 

be cold, is described by the equations 

fJvc , e (' 1 ) fJn 
at+(veV)v,=- me E-V<p+-;:-[veHo] . Dt+divnv.=O, 

(2.14) 
Now, writing Ve = Ue + v~ and n = ne + n~ where ue 
= (ve) and ne = (n) we have 

fJne + (Ue V)Ue + ( (v/V)v/) =- _!__( E + _!:_[ueHo] ), (2.15) 
at me c 

fJv' e( 1 ) -· +(u.V)ve' +(ve'V)ve'- (l(ve'V)ve') = -- -V<p+-[ve'Ho] , 
~ ~ c 

Bne' . , , , , ( , ') -·+ dlv(neVe + ne lle +neVe - nc Ve ) = 0, 
fJt 

an. + div(neUe + (n/ve'))= 0. 
at 

(2.16) 

(2.17) 

(2.18) 

In Eq. (2.15) the term ((veV)Vef takes account of the 
modification of the mean velocity caused by the electron
acoustic waves. In Eq. (2.15) we can neglect the small 
terms loue/otl ~ nue and l(uev)uel ~ Ku~ as compared 
with the right side of (2.15) since n « WHe· We then 
find that Ue = Ue0 + oue where Ueo = c(E x Ho)/H~ is the 
electron drift velocity in the crossed fields E, H0 and 

line = (erne I eHo2 )[ ( (ve'V) ve'), H0] 

is the change in the electron drift velocity caused by the 
electron-acoustic waves. It will be shown below, that 
lv~ I ~ wk/k ~ vn so that OUe/Ueo ~ v'me/mi and in 
practice it can be assumed that the electron-acoustic 
waves have essentially no effect on the mean electron 
velocity. 

Equations (2.17) and (2.17) describe the nonlinear 
interaction between electron-acoustic waves (cf. Sec. 5). 

The system of equations (2.7) and (2.13) together with 
the Maxwell equations have the energy integral 

1 1 
n0T; + T n0m;u;2 + Sn (E2 + J12) + W = const, (2.19) 

where noTi is the ion thermal energy and W is the en
ergy associated with the electron-acoustic waves: 

1 (" Z;n0e2 

n0T;=-m;J v'2jdv', W=-T-, -~ /k(Z;+k2p2). (2.20) 
2 • k 

3. INTENSITY OF THE ELECTRON-ACOUSTIC WAVES 

We shall first find the spectral intensity of the elec
tron-acoustic wave without taking account of nonlinear 
wave interactions. We shall show that in a timet, of 
order several times 1/WHi. in the reference system 
that rotates with the vector u there is established a 
stationary distribution Ik which depends on k 1 , cp and k 11 , 
where cp is the azimuthal angle in wave-vector space 
computed from the vector u = ui- Ue- In Eq. (2.12) the 
time dependence appears in the form (/! + nt, that is to 
say Yk = y(kl, cp + m, k11)- In this case the mean value 
of yk is negative: 

1 2n 

y =- ~ Y('P+ Qt)dq; < 0. 
2n 0 

(3.1) 

Integrating Eq. (2.12) we find 

2 "' 
I (<p, t) =I (q:>, O)exp[- ~ y(q;+ <p')d<p' l 

Q a " 

00 "'' 

+ _'}_ (' drf' exp [~) y(q:> + Qt- q;")dq:>"] 
Q .) ~l 

" 0 - ~ r dq:>' exp r ~ L('P + Qt- q;")dq>'l (3.2) 
rlt 0 

Since IY jn I » 1 then even when nt ~ 1 the first term 
in Eq. (3.2), which depends only on the initial perturba-
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thm I(~,-'. 0). and the third term become exponentially 
small so that I( 'P, t) assumes the form 

00 "' 

r (k :. 4'. k1_) = s~ ~ dl\JeXP [ ~ ~ v (q/- l\J')dl\J']. (3.3) 
0 0 

where cp' = cp + nt. In the reference system that rotates 
with the vector u, Eq. (2.12) assumes the form 

(3.4) 

where Yk(cp') is independent of time. It is evident that 
Eq. (3.3) is a solution of Eq. (3.4) with ark/at = 0. The 
relation in (3.3) can also be regarded as the stationary 
solution, periodic in cp', of Eq. (3.4): 

ol~r.=2 y(q:') I+~ 
acp' s~ Jr. g , 

which is of the form 

where 
2 ~ 

y(cp)=-g ~ y(cp')drp'. 
0 

The linear growth rate can be written in the form 

y(cp') = y0 {cos cp'- cos q>o), 

where 

(3.5) 

(3.7) 

Since ly I » 1 the integration over cp in Eq. (3.6) can 
be carried out by the method of the steepest descent. 
The function I( cp') has a sharp maximum near the value 
'P = ipo: 

[ 1 ]-~ l(cp') = ~ -ly"(2.n- rp0) I exp[y(q:')+ y(2n)- y(2n- 'fo)], 
Q 2n (3.8) 

in particular, when cp f>; ipo 

[ 1 ]-~ 
l(q:')=-.:'!_ -ly"(2n- <po) I 

Q 2n 

X exp[y(cpo) + y(2n) -- y(2n- q:o)] exp [-+ IY" (<po) I (q'-rpo) 2] · 

(3.9) 

Far from the angle cp0 the intensity I(cp') is much smaller 
than in (3.8), being of the order of the thermal noise: 
I( cp') ~ 17 jn. Thus, in the problem at hand the limitation 
on the growth Ik(t) and the establishment of a stationary 
spectrum are due to the fact that the problem is not 
stationary: the growing waves become damped waves 
because of the rotation of the vector u (the damping is 
more rapid than the growth); on the other hand, the 
damped waves become growing waves, so that the spec
trum Ik follows (with some deviation with respect to the 
angle cp') the vector u (the intensity Ik reaches a peak 
when cp' = cp0 where the growth rate vanishes, rather 
than cp' = 0, where the growth rate is a maximum). The 
stationary level (3.6) is maintained by thermal fluctua
tions. 

In concluding this section we find the total intensity 
of the electron-acoustic waves W. The expression for W 
given by Eq. (2.20) is a summation (integral) of the form 

00 co 2:n: 

U=~l\J"h=-1-, ~ kl_dkl_~dk11 ~dq:t,p,.J"' (3.10) 
k (Zn) o -oo o 

where Ik has a sharp peak at k = ko while IJ!k is a 
smoothly varying function of k. The integral in (3.10) 
can be computed by the method of steepest descent. In 
the integration over cp' we need only consider the region 
cp' ~ ipo(kll, k 1l in which Ik can be written in (3.10) in the 
form given by (3.9) while the quantity IJ!k is taken out 
from under the integral over cp' at the point cp' = cp0 • 

The subsequent integration with respect to k 11 is also 
carried out by the method of steepest descent near the 
saddle point k 11 = k 11 m = k1 (u/v)v'Zi +k2p 2 cos 'Pm at 

which ipo = 'Pm f>; 66°, where 2cpm =tan 'Pm· The re
maining integration over k 1 is also carried out by the 
method of steepest descent near the point k 1 = -!Zi/p. 
As a result we have 

U = ( 32 )'I• T;p2z-;-"''clgq>m, (JE1_)'1• (!"."~)' 
n (2n) 3 row Wpe 

( WHi ) 3 ( ffl; )'I• l\Jk N X-·- -=e, 
VT; me fN 

(3.11) 

where IJ!k is taken at the point k1 = -!Zifp, cp = 'Pm, and 
kll = mi(u/vp) cos C,Om 

WHi ( U \ 2 ( ffl; \'I• 
N = O,Z2 TQT VT) Z;me / . 

Then, taking lj!k = Zinoe2 (Zi + k2p2)/Ti we find that W is 
given by 

(3.12) 

where 

w = (2.)'1• ctgq:m (~)'I'( WHi )3( m;')'l• z:;'t• . 
n 8n4 WHi VT; me no "YN (3 .13) 

Since the level of thermal noise is extremely small 
in the region being considered, the quantity w is also 
very small. For example, with Z = 1, In I f>; w Hi> no 
"' 1013 cm-3 , Ho ~ 10 4 g, v'T'i ~ 107 em/sec and mi/me 
= 4 x 103 we have w ~ 10-n. Hence the level of turbulent 
waves W will be appreciable if N is large, since N » 1 
and N ~ u2 /vh the quantity W is very sensitive to the 
magnitude of u/vTi (in the present example W becomes 
comparable with noTi when u = 1.5 vTi and even when 
u = vTi we have W/noTi ~ 10- 10). Hence, effects associa
ted with electron-acoustic turbulence are found to be 
important only when u :;::: vTi although the electron
acoustic instability can develop when u « VTi. 

4. QUASILINEAR RELAXATION AND TURBULENT ION 
HEATING 

We now consider the change in the background ion 
distribution function f(v 1 , <1>, v 11 , t) under the effect of 
the waves (3.11). In this case it will be convenient to 
convert to a rotating coordinate system (<I>' = <I> + nt) in 
which the spectrum is essentially stationary (in the case 
of the free waves the spectrum (3.12) changes slowly 
since the energy of the turbulent waves goes into ion 
heating). In this reference system Eq. (2.10) assumes 
the form 
of of o of 1 o ' of of) 
m+(Q-wHi) o<D7 =8u;D'"'ova' + Vj_2 a<D' Aa<ii'-Bovl_ 

1 a 1 ( at at ) 1 at 
+--- D--B-- +-Fturb-, (4.1) 

v.LiJv_l_u.L iJv1_ iJ<D' m; iJv' 
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where 

( Z·e )' D=n\---'-: ~ Jk(q:')(~~x-ku) 2 t'\(Qx-ku-kv').(4.2) 
m, k 

Since Dza is proportional to k 11 ~ k 1 (me/m/12, on the 
right side of Eq. (4.1) we can neglect the first term, 
which takes account of ion diffusion (due to the waves) 
in velocity space in the direction of the magnetic fields; 
for the same reason we can neglect the term k 11 vi1 com
pared with k 1 · vj_ under the sign of the /.i -function in 
(4.2). Under these conditions the ion distribution with 
respect to v 11 remains constant in time. 

In Eq. (4.2) the quantity Ik(q/) has a sharp peak in the 
region cp' ~ Cfo With Width /~k/k/ ~ 1/ffl; thus, flK R; ku 
and for values lv'/ R; vn in Eq. (4.2), under the sign of 
the /.i-function we can neglect nK- k · u as compared 
with k1vj_. The presence of the quantity i.i(k1v1) in Eq. 
(4.2) means that the ion scattering on electron-acoustic 
waves is essentially elastic. This leads to a rapid ran
domization of the distribution function over the angle2 J 

~~. Formally this means that in Eq. (4.1) the diffusion 
coefficient with respect to ~', the quantity A, is much 
larger than the diffusion coefficients Band D [in Eq. 
(4.2) the quantities Band D contain the small factors 
(flK- k · u) and (rlK - k · u) 2 ]. Calculating the coefficients 
in (4.2) we have 

A= Ao 2; exp(IY~n), 
n=t,z 

B=Aou 2; (cosljln-cosan)exp(N~n), 
n=1,2 

D=Aou2 ~ (cosljln-cosan)2exp(N~n), (4.3) 
11=1,2 

where 
Ao ~ ___!_ 1/ /Q/ ( m; )''• wm• 

30 V CilHi me nov_!_ 

~n = cos Un (sin 1Jln +sin an) /sin 2cpm, 

sin 1Jln + sin Un ~~ 2 ( 1Jln + Un) COS Un, 1Jl1, 2 = ll>' ± n/2. 

It is then evident that the diffusion coefficients ex
hibit sharp maxima in the regions I if! 1,2 - 'Pm I = ~ ~~ 
:s; 1/vN in which case the following approximate rela
tions hold: 

D ~ Bu/JIN ~ Au2 / N ~ WH;(W /noT;) (m;/ me)'l•(v;5 /u), 

Thus, in fact the diffusion with respect to ~' occurs v'N 
times faster than the diffusion in v 1 . If the distribution 
function f' is not isotropic with respect to the angle ~' 
at the initial time, then in the course of a time interval 
T cp ~ (1/wHi)(me/mi)(noT/W) the diffusion terms and 
the term (n- Wffi)8f/8~' cause the function f to become 
isotropic over the entire region of variation of ~' so 
that in the subsequent relaxation stages we can assume 

f = fo(v_~_, t) + f,(v_~_, !ll', t), (4.4) 

2l A similar situation occurs in turbulent heating of a plasma with 
hot electrons and cold ions in a strong electric field in which the scat
tering of ions on ion-acoustic waves is essentially elastic and leads to a 
randomization of the electron distribution function [6 ]. 

where /f1/ « fo. Then, from Eq. (4.1) we have 

8/o. 1 8 1 ((D) 8fo _ <B !!!__> \ + _!__(F 8fo) 
Tt = v _1_ 8v _1_ v _1_ •I!t 8v _1_ 8!ll' ,J m; turb 8v' "''' 

(4.5) 

where ( ... )~t denotes an average over~' and over the 
time interval ~t = 211//rl- wHil· 

If the following inequality is satisfied: 

I 8/! I I 1 8 A 8f, I 
(Q- wm) 8!ll' ~ ;:;! a!ll' 8!ll1 I ' 

(4.7) 

this being equivalent to the condition ~t « 2rr;~, then 
the solution of Eq. (4.6) can be written in the form 
f1W, t) = f~(~') + f~(~' - [n- wHi]t) where n is an arbi
trary periodic function of the variable ~' (and conse
quently the variable t) while f~ is determined from 

8/1" 1 8/o 8B 
(Q- CilH) -=--·-·--

' 8!ll' v _1_ 2 8v _1_ 8!ll' 

1 8 1 [ 8fo J 1 8/o +--- (D-(D),,)- +-FTyp6 ---;. 
v_~_ 8v_~_ v_~_ 8v_~_ m; 8v 

(4.8) 

Assuming that (B(~')a ;a~' f~(~' - [n- wHi]t))~t = 0, 
from Eq. (4.8) we have 

< B_8f_t > = _!__8 _ _!_ [((DB),,_ (B),, (D),,) _8~~-1- J 
8!ll' "'' v_~_ 8v_~_ v_~_ 8v_~_ (Q- wm) 

< 1 8fo 1 > + B-Fturb , · m, 8v (Q- wm) .,, (4.9) 

Using the expression that has been obtained (4.9) we see 
that if (4.7) is satisfied, then in Eq. (4.5) we can neglect 
terms like (B8f1/a~')~t compared with (D)~t Bfo/Bv 1 . It 
is also evident that the last term in Eq. (4.5) vanishes, 
that is to say, the frictional force Fturb. does not tend 
to increase the temperature in the distribution function, 
but only retards the ions. Finally, we find that the iso
tropic part of the distribution function is described by 
a diffusion equation [2 J 

8fo Do 8 1 8fo 

Tt = v_~_ 8v_~_ v_~_z 8v_~_' 
(4.10) 

where 

(Z·e)' 1 Do= -'- · 2;-h(q/)(Qx-ku) 2• 
mi,. k k 

(4.11) 

The integration in Eq. (4.1) can be carried out assuming 
that ~k(cp') has a maximum at nK = k·u. In this case 

(4.12) 

It follows from Eq. (4.10) that the distribution function 
fo(v 1 ) becomes smeared out as t increases, correspond
ing to ion heating. The characteristic heating time is of 
order 

Vri5 1 noTi 
-r~-~--. 

Do CilHi W 
( 4.13) 

If the inverse inequality to (4.7) is satisfied 

I 81! I I 1 8 8/, I 
(Q- CilHi) 8$' ~ V _1_ 2 8!Jl'A 8$' ' (4.14) 
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it is not difficult to find the steady-state solution f1(<1>') 
from Eq. ( 4. 6); this solution satisfies the equation 

of, B ofo v .L'(Q- wHi) 

aiD"= A OV.L + A ft. (4.15) 

The second term on the right side of Eq. (4.15) is 
smaller than the first by a factor A/vTiA<I>'In- wml· 
Substituting the solution of Eq. (4.15) in Eq. (4.5) we 
find that for the case in (4.14) the isotropic part of the 
distribution function satisfies the equation 

~b_=__i__~~f(n-B') iJ_fo_+v.L'(wHi-Q)<!!_t,) ] . 
at v.L ilv.L VJJ.. A a>t av.L A a>t 

(4.16) 

Substitution of the diffusion coefficients A, Band Din 
the form given in (4.3) means that (D- B2/A)<I>t = 0. 
Consequently in the case given by (4.14) the change in 
the function fo(v 1, t) (ion heating) occurs at a rate at 
least A/v~nA<I>'IQ- wHil times slower than in the case 
in (4.7). Thus, in plasma heating by the ion-cyclotron 
wave when Q - w the heating rate is reduced for a fixed 
value of u. 

We note that in deriving Eqs. (4.10) and (4.16) we 
have only made use of the fact that there is a sharp 
peak in the functions Ik(<P') so that these relations hold 
not only for the spectrum in (3.8), but for the spectral 
density that is obtained taking account of nonlinear wave 
interactions. 

We emphasize that since W is extremely small when 
u < vn the heating process is essentially terminated 
when the ion thermal velocity reaches some critical 
value (vn)max ~ u. 

We note that since f(v, t) ~ f0(v 1 , t), the growth rate 
in (2.13) is formally of the same form as in the case of 
a Maxwellian distribution, Eq. (3.7), where now 

(4.17) 

5. NONLINEAR WAVE INTERACTIONS 

Above, in determining Ik(<P') we have not taken ac
count of nonlinear wave interactions. This effect can be 
estimated in order-of-magnitude terms by making a 
comparison, in the electron equations of motion, be
tween the linear term (UV )v' and the nonlinear term 
(v'v )v'. These terms are of the same order of magni
tude when v' ~ u. In this case the energy of the elec
tron-acoustic waves (per unit volume) is 

(5.1) 

and the oscillations of the electron gas become highly 
nonlinear (strong turbulence). 

In order to obtain a more accurate estimate of the 
nonlinear interaction of electron-acoustic waves be
tween themselves and of the wave intensity in the weak 
turbulence region (W < nomeu2 ) we must start from Eq. 
(2.12) where y is the growth rate computed with the 
nonlinear interaction taken into account. The nonlinear 
dispersion equation for lie, to accuracy of order I::C, is 
of the form 

1 ~ ""'Vx,wVx-w,x ""' 
£xlx = ~2 + ,1..ol Vx,x' I ZJ,•lx-w + LJ + fx,Jx + LJ Ux,wfx,Jx, 

(Ex ) x' x' 8 x-x' x.' 
(5.2) 

where K = (k, w), EK is the longitudinal dielectric con
stant multiplied by k2 , E~ = EK for w = wk + iO. The ex-

plicit expressions for the matrix elements vK K' and 
uK K' are given in[ 41 • ' 

'In the zeroth approximation, neglecting the right side 
of Eq. (5.2) we find that IK = Iko(w- wk)· Since the 
spectral density Ik(<P') has a sharp peak at k = km the 
decay terms in Eq. (5.2) can be neglected since it is 
impossible to satisfy simultaneously the conditions 
k 11 = km, k11- ki1 = k 11 m and ki1 = ±km. The matrix ele
ments vK,K' and vK- K' ,K that appear in the second term 
contain a factor of the form 

where t.K_ K' = 1 when lk 11 - kj11 >> K and t.K- K' = 0 
when lk 11 - ki11 :S K; QK = k 11 v/v'Zi + k2p 2 + iy. Since 
lk 11 - ki11 ~ k 11 /v'N in accordance with Eq. (3.8), then 
(5.3) is small because ilK- K' vanishes if k11//N :S K. In 
this case the contribution comes from ki1 ~ -k 11 but then 
(5.3) is proportional to the small parameter 
(ki/rlK' - k 11 /nK) 2 and the second term in Eq. (5.2) can 
be neglected compared with the first. The condition 
kii/v'N :S K limits our analysis to the case in which3 > 

Equation (5.2) now assumes the form 

ek- 2}uk,k'h·=0, 
k'>O 

Taking the imaginary part in Eq. (5.5) we have 

Y = Yk (q/) [1 + p2 sin2(q/- 'I'm)]-', 

where yk(<P') is the linear growth rate and 

(5.4) 

(5. 5) 

(5.6) 

:n; ( e )' W k.L2 ( ku + kum 2ku kum ) 
p2 (k11 k.L)=- - +-+- · ' 2 me Wpe2 k,,(Rx+Rxm) Rx+Rxm Rx ~2xm 

(5.7) 
Here, k 11 m, <Pm and k1m are the values of k 11 , cp', and k1 

for which the intensity Ik(<P') is a maximum and QK 

= Re QK. 

As before, the stationary intensity as determined 
from Eq. (3.5) [in which y (cp') is determined from Eq. 
(5.6)] is of the form in (3.6) where now, however, y(cp') 
is given by 

( , 2yo {cos 'I'm P [sin ( q{- '!lm) + sin <rml 
y qJ ) = -- ---~ arctg 2 . • , 

jQj P 1-p SlU<jlmSlU(<p-cp,) 

sin <fm [1 + (p/Vi + p2)cos(<p'- 'fm)][1- (p;i1 ~p2)cos '!lml + In---· ·~--- --"-'-'-::=:C:=--...:.,_:._ 
2p'f1 + p2 [1- (pfi1 + p2 ) COS ( q;'- <fm) ][1 + (p/i1 + p2) COS cpm] 

_ COS<jlo arctg ..!'i_i p2 [tgjp'-<rm)~}. (5.8) 
'f1 + p2 1-(1 + p2)tgq;mlg(q' -cpm) 

3 l If the inequality in (5 .4) is not satisfied use can be made of the 
estimate in (5.1 ). 
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The quantity (5.8) [and consequently Ik(q/)] has a peak at 
q/ = CfJo· Taking account of this feature we can carry out 
the integration in integrals of the form in (3 .10) as in 
the case in which there is no nonlinear wave interac
tions. Omitting the rather lengthy intermediate calcula
tions we present the final system of equations for the 
determination of W(u), k1m, k 11 m and f/Jm= 

W = 4nom;u2pn.2 cos2 rpm(me / m;), 

W = wnonlin N~~nlin·exp 1Vnonlin' 

(5.9) 

(5.10) 

(!)Hi v m; ( U )' k.LmP (5 11) 
N nonlin = 1,25 -1 Q I - -_ COS <pmZ (Pm2 ) Z- + k 2 2 • 

m,e Vyl ""t _!m p 

Wnonw;-' 10-s cos3 <Pm (kJ_mP) 4 (Z; + k'p~) -'h ( _ll__)'( m; )'"(-WHi\/
3T;, 

'I'm Vri me UTi (5.12) 
Z( ')== 1 (cosrp- cosrpm)drp (5.13) 

Pm J 1 + p,2 sin2 (rp- rpm)' 
-'+',. 

2cos rpm ___ 3 oZ (Pm') 
Z(Pm2)= ~arctg()'1 + Pm2tg<pm)+-Pm2 ----,(5.14) 

)'1 + Pm2 2 opm2 

where 

1-4x 
k.1. 2p2 =Z---

m 1 1-3x' 

(5.15) 

(5.16) 

oZ(pm2 ) [ 4cosq;m -- l-1 
X == - Pm2 --- arctg ('y'1 + Pm2tg rpm) J > 0. 

opm2 i1+Pm2 (5.17) 

The behavior of WCh nomeu2), which is described by 
Eqs. (5.9)-(5.17), is shown schematically as a function 
of u in the figure. In the region u < ucr ~ vn (in which 
p~ << 1) we can neglect the nonlinear wave interactions 
and Eq. (5.10) coincides with Eq. (3.12) (Nnonlin- N, 
Wnonlin/N~onlin- noTiw). In this region W falls off ex
ponentially with u. In the region u > Ucr' as u increases 
the quantity kJ.mP• as is evident from Eq. (5.16), ap
proaches zero (x --1/4). The reduction in k1mP leads 
to a slow growth of Nnonlin (and consequently W) so that 
when u > ucr (formally when u >> vTi) we have 4> 

(5.18) 

where 
x ·== lim (8Pm2cos2 rpm) ~ 1 --7- 5, 

k.L~;oo~ _lg_l Vm'( VT;)' 
WHi m.i U 

Z; In~ 
Z(Pm2)COS<jlm Wno~lin 

(5.19) 

while the quantities p~ and f/Jm are essentially indepen
dent of u and are determined from the equations 

oZ (Pm2) cos rpm ---
Pm2 =• -= arctg (-y'1 + Pm2 tg rpm), 

opm2 y1 + Pm2 
(5.20) 

3 oZ (Pm2) 2cos 'I'm ---
Z(Pm')---;----2-Pm'= , 2 arctg()'1+,Pm2 tg<pm). (5.21) 

2 opm l'1+Pm 

We note that at very large values of u/vn it is possi
ble for a hydrodynamic instability to appear; for this 
instability Yk ~ wk ~ v'wHeWHi. r7 J The development of 

4 >Equations (5. 18) -- (5.21) may not apply if the matrix elements 
in the higher order terms of order IKn (n;;. 3) in Eq. (5.2) that have 
been neglected do not contain small factors such as (5 .3). In this case 
Eq. (5.18) gives an estimate of n which is of the same order as (5.1). 

/} 

this instability is bounded by the nonlinear wave inter
action and as a result these waves exhibit a broad spec
trum. The interaction of these waves with the electron
acoustic waves, which are responsible for ion heating, 
can lead to a strong expansion of the spectrum of elec
tron-acoustic waves so that at large values of u/vn 
Eqs. (5.9)-(5.21) no longer apply. However, as the 
plasma heating continues VTi approaches u, in which 
case the hydrodynamic instability is no longer impor
tant. In this stage the formulas in the present section 
apply. With further heating the quantity u/vn is dimin
ished so much that we are considering a region in which 
the level of the noise is exponentially small compared 
with (5.18) although it is still significantly larger than 
the thermal noise level. In this stage the heating rate 
falls off sharply. 

Using Eq. (5.18) and Eqs. (4.10)-(4.12) we can obtain 
the estimate 

oT; ~ ~T- ~ ~XwHim,u2 • 
at ,;, ' 2 

From this equation we find that 
1 me 

T; ~ -2 m;uZ-x-wHit, 
m, 

(5.22) 

(5.23) 

and the thermal velocity vn reaches a value of order u 
in a time 

1 m; 
t~---

WHi xme 

starting from the initiation of heating. 

(5.24) 

In concluding this section we present an estimate of 
the applicability of Eq. (4.10) for the description of ion 
heating in the nonlinear regime (5.18). Using the charac
teristic plasma parameters no~ 1013 cm-3 , H0 ~ 104 g, 
mi/me = 4 x 103 and VTi ~ 107 em/sec we make use of 
Eqs. (5.9)-(5.21); the quantity A/vTi~<P'In- wHil, 
which determines the applicability of (4.7) or (4.14), is 
found to be of order 

(5.25) 

where u ~ 0.1-0.5. 
It follows from Eq. (5.25) that turbulent heating of the 

ions in the plasma is weak for propagation, in the 
plasma, of an ion-cyclotron wave of low amplitude (so 
that u ~ vn) with frequency very close to WHi' 
(In- wHil « 0.1wHi but In- wHil » Kvn)· Heating is 
realized effectively [cf. Eqs. (4.10) and (5.23)], on the 
other hand, for propagation of a fast magneto-acoustic 
wave with frequency In I ~ wHi or for an ion-cyclotron 
wave at a frequency that is not very close to wHi' with 
the same luI ~ vn. 
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6. DISCUSSION OF RESULTS 

The general behavior of a plasma in the field of a 
low-frequency electromagnetic wave with Q- wH· can 
be described as follows when the electron-acoustlc 
instability develops. Assume that we switch on an elec
tromagnetic field of large amplitude so that u is several 
tim:s larger than the initial mean thermal velocity of 
the wns. Under these conditions the electron-acoustic 
wave :Vill be excited and_ in the course of a time 1/wHi 
a stationary spectrum will be established with a noise 
level given by (5.18). This then leads to randomization 
of th~ ion velocit! distribution function in the plane per
pendicular to Ho m the reference system in which the 
mean ion velocity is zero (if the initial distribution is 
not isotropic). There then follows a slower ion heating 
process given by the diffusion equation (4.10) which oc
curs in the time given by (4.13) and (5.24). As a result 
the transverse thermal velocity of the ions increases to 
a value of order u; subsequently, since VTi reaches a 
value such that u < ucr ~ vTi• the noise level falls off 
sharply and the ion heating process is essentially term
inated. 

We note that the interpretation regarding the thres
hold nature of heating is related to the fact that the 
electron-acoustic waves start from thermal noise which 
in_ the region of low frequencies and large (compared ' 
with the Debye radius) wavelengths, is very low in inten
sity. If the electron-acoustic waves are driven, for ex
ample, by a nonlinear interaction of the electron
aco_usti_c waves with some other wave branch, being 
mamtamed at a rather high level, then the ion heating 
mechanism being considered will also operate when 
u < ucr < VTi so that the ion heating occurs even when 
u < vTi. This question will require special investiga
tion. 

In the case at hand, the electron-acoustic instability 
has essentially no effect on the ion velocity distribution 
along the magnetic field. The anisotropy in the ion dis
trib_uti~n that arises in heating (T 1 > T 11 ) can lead to the 
excitatiOn of various instabilities associated with the 
anisotropy. [81 The feedback effect of these oscillations 
on the ions can lead to a conversion of transverse ion 
energy into longitudinal energy. 

In a number of experiments[9- 141 on plasma heating 
by the ion-cyclotron waves or magnetoacoustic waves of 
large amplitude there have been observed strong wave 
absorption and rapid plasma heating. These results can
not be explained on the basis of the linear theory of 
cyclotron and Cerenkov absorption nor by collisions. It 
is our opinion that these effects are due to the develop
ment of a two-stream instability in the plasma in the 
electric field associated with the electromagnetic 
wave. [11 

In . t [9] expenmen s on plasma heating at a density 
no ~ 1013 cm-3 by the ion-cyclotron wave the ion tem
perature increased in a time of order T ~ 5-10 J-I.Sec to 
values Ti = 1-2 keV, after which the temperature re
mained unchanged although the rf power applied to the 
plasma was absorbed in magnetic beaches (the applied 
energy was lost from the plasma by charge exchange). 
The electrons were found to remain cold (Te ~ 20 eV). 
The heating process can be explained by the electron
acoustic instability. Supporting evidence for this as-

sumption is the linear dependence of T· on the square of 
the voltage applied to the excitation coi\ that is to say 

2 • ' ' on u . The fmal value of the thermal velocity for the 
hydrogen ions vTi ~ 3 x 107 em/sec was close to the 
directed velocity of the ions u in the ion-cyclotron wave 
u ~ eE/mi (wHi- Q) ~ 2 x 107 em/sec (E ~ 150 V /em, 
Q ~ 6 x 107 sec-t, lwHi- Q 1/U ~ 0.15 and the heating 
time [as estimated from (4.13) and (5.24)] T ~ (30/K) 
J-I.Sec ~ 6 J-I.Sec coincides with the experimentally ob
served values for K ~ 5. 

In experiments[u' 121 on ion-cyclotron resonance car
ried out in a cold plasma (Ti ~ Te ~ 0.2 eV) with a den
sity no ~ 5 X 10 12 cm-3 using an electromagnetic wave of 
low amplitude E ~ 1 V /em for some critical value of the 
current in the excitation coil j = jcr there is observed a 
sharp break in the effective width of the resonance ab
sorption curve y eff; when j > jcr there is essentially 
no change in y eff· The value of the current j = jcr 
corresponds to the value u being exactly equal to the 
thermal velocity of the ions. Under these conditions a 
two-stream instability should ariseY1 

In experiments [131 on plasma heating with hot elec
trons and cold ions (Te ~ 1 keV, initial ion temperature 
Ti ~ 102 eV) using the ion-cyclotron wave, the curve 
showing the dependence of the absorption for the ion
cyclotron wave on the amplitude of the magnetic field 
of the ion-cyclotron wave exhibits a break when H = H 
~ 300 g. In this case Ho ~ 2 x 103 g, Q = 1.4 x 107 sec_q~ 
(wHi- il)/il ~ 0.2, E ~ 70 V /em and the directed veloc
ity u ~ 2 x 107 em/sec while the ion-acoustic velocity 
Vs = .JTe/mi ~ 2 x 107 em/sec. Under these conditions 
the ion-acoustic instability should develop. [11 

Thus, the experiments[ 9 ' 11- 131 show explicitly the 
features of wave absorption under conditions for which 
a two-stream instability should arise, this instability 
being due to the low-frequency wave. However, direct 
verification of an instability (measurements of the noise 
spectra, frequency and growth rate etc.) are not availa
ble at the present time. Such experiments would be ex
tremely important in connection with the question of 
plasma heating to high temperatures. 

In conclusion the authors wish to thank A. I. Akhiezer, 
V. P. Silin and J. Teichmann for discussion of the work 
and for valuable comments. 
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