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The stationary state of a gas heated by cosmic rays and cooled by radiation is considered. For a given 
density of the cosmic rays the temperature is a function of the gas density. It is known that the pres­
sure is not a monotonic function of the density, therefore the gas decomposes into two phases having 
different temperatures and densities for the same pressure, the latter being the parameter of the 
problem. In the present paper it is shown that taking into account heat conduction in the boundary layer 
allows one to find such a value of the parameter for which the equilibrium is stable. For other pres­
sures the boundary of separation of the two phases moves relatively to the gas. The velocity of this 
motion has been computed. The theory is applied to the interstellar gas. The conditions applying to a 
stable state are computed. For deviations from this state, the velocity of boundary motion turns out to 
be small. 

IN a paper of one of the authors[11 the interstellar gas 
was considered subject to heating by cosmic rays and 
radiative cooling. In its general form the problem may 
be formulated in such a manner that in a spatially homo-
geneous region it is governed by the equation 

dT 
cv dt c= qf(p, T)- q; (p, T) == F(q, p, T), 

where q is proportional to the cosmic ray flux, f charac­
terizes the dependence of the ionization losses on the 
density p and temperature T, and the function cp des­
cribes the radiative losses. For given q and p there ex­
ists a solution of the stationarity equation F = 0, of the 
form T = Ts(q, p). Correspondingly one can find the 
stationary pressure Ps(q, p) = RTsPIJ.l.s, where J.l.s is the 
molecular weight taking into account the composition 
and the degree of :ionization. Here T s is a decreasing 
function of p and therefore it becomes possible that Ps 
is a nonmonotone function of p for a given field of cos­
mic rays, characterized by the parameter q. The shape 
of the curve Ps(P, q = const) for the conditions of inter­
stellar space[1J is illustrated in Fig. 1 and reminds one 
of a van der Waals isotherm (the horizontal axis is in 
logarithmic scale, k is the Boltzmann constant). 

The region BFC, where Bp/Bp < 0 is unstable. The 
concept of ''thermal instability'' for a strong dependence 
of the heat losses on the density was long ago formulated 
and investigated in detail by Field[21 • For a given aver­
age gas density the whole region occupied by the gas 
splits up into dense cool clouds (the points on the por­
tion AB) and hot gas (the stretch CD). An obvious con­
dition is the equality of the pressures in the cloud and 
in the hot gas. However this condition is not sufficient. 
It is obvious that any pair of points situated on the same 
horizontal line, e.g. AC, EG, or BD satisfy the condi­
tions that the pressures in the two phases are equal, 
and also the stationarity condition (thermal balance) as 
well as stability of each phase separately. Thus, the 
question arises as to which pair of points corresponds 
to a genuine stationary state, and which processes occur 
when an arbitrary pair of points is selected. 
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FIG. I. The dependence of 
the stationary pressure on the 
density. The region BC is unstable. 
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For the van der Waals equation the answer is given 
by thermodynamics: the stationarity condition con­
sists in equality of the areas spanned by the portions 
EBF and FCG of the phase equilibrium curve in the co­
ordinates p, V = p-1• If a different pair of points is 
selected, there occurs a condensation or evaporation, 
i.e., a phase transition at the interface. In our case the 
system has an external energy source and therefore 
thermodynamic arguments are not applicable. However 
the considerations regarding the phase transformation 
at the interface may be carried over to the case under 
consideration. 

We consider the boundary between two phases and 
take into account the fact that owing to thermal conduc­
tivity this boundary is smeared out. For simplicity, in 
order to clarify the principle of the problem, we shall 
not take into account diffusion, radiative heat transfer 
and the finite velocity of establishing the ionization 
equilibrium. In the transition layer between the two 
homogeneous phases corresponding to two points, e.g., 
E and G, all intermediate values of the density (the seg­
ment EG) and the corresponding intermediate tempera­
tures are realized. The pressure is constant in the 
intermediate layer. The states in the intermediate layer 
do not satisfy the conditions of thermal balance whieh 
hold for a homogeneous phase. The difference between 
heating and cooling is compensated by heat conduction. 
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In a layer at rest with respect to the gas the following 
equation holds: 

d ( dT \ 
-- 'A-)=pF(p,T,q)=fll(p,T,q), 

dx dx 

where the transition to the variables was carried out be­
cause in the limits of the layer under consideration p 
and q are constant parameters. The thermal conduc­
tivity,\ can also be expressed as a function of p and T. 
For given p and q is is necessary to find a solution 
which gives the temperature distribution T(x) in the 
transition layer. This solution has a form which is 
schematically illustrated in Fig. 2. The curve T(x) 
asymptotically approaches TE for x --oo, and approa­
ches TG for x- +00 • The equilibrium curve in Fig. 1 
corresponds to the condition of thermal balance, conse­
quently at each point of that curve, including the points 
E and G, the following equality holds 

-'A dT !:_ dT _![_~_!__dy2 =-fll 
y - dx ' d:x 'A dx - 'A dT - 2/.. dT ' 

It is easy to see that <I> > 0 above the curve ABCD and 
<I>< 0 underneath this curve. 

A stationary solution is obtained by means of the ele­
mentary transformation: 

The integral condition determines the selection of the 
pair E, G of points corresponding to dynamic equili­
brium, i.e., selects such a value of the pressure p, that 
under the given conditions of heating and given param­
eter q guarantees a stationary equilibrium of the two 
phases. The condition (1) replaces (Maxwell's) area rule 
of the thermodynamic theory of a nonideal gas. It is 
obvious that the solution lies somewhere between the 
extreme lines AC and BD, that the integral vanishes 
owing to compensation of the contributions of the por­
tions EF and FG, along which the sign of <I> is different. 

What happens in the case of "incorrect" selection of 
the pressure, when the integral does not vanish? Obvi­
ously, one phase will transform into the other with a 
definite rate, corresponding to a flow of mass m, in 
g/cm2 sec. In a coordinate system tied to the separation 
surface the temperature distribution does not depend on 
time, but at each point there is flow of matter (to the 
left, Fig. 2) at a rate lui = mjp. The heat equation has 
the form 

~!!'__!:_/.. dT=fll. 
pdx dxdx 

(2) 

The parameters p and q are given, <I>,.\, and cp depend 
on T, and <I> vanishes at the endpoints of the region of 
integration, as well as at some interior point. The equa­
tion has a solution of the form represented in Fig. 2; 
T - const for x -- oo and x - +oo for a single value of 
the parameter m, value which has to be determined. The 
problem is posed in a manner similar to the problem of 
flame propagation[3 ' 4J. The difference consists in the 
fact that <I> may be both positive or negative, and thus 
also the sign of m is not given a priori (i.e., whether the 
colder phase turns into the hotter one or vice versa). At 
the middle of the interval under investigation there is a 
value of p for which m = 0. The exact solution of the 
problem requires a numerical integration of the equa­
tion, or, more precisely, of that first- order equation for 

FIG. 2. Schematic temper- ~~cr1------"""-ature variation at the boundary , ~ 
between the two phases. "-----

y(T) which is obtained from (2). The integration has to 
be done by trial and error, selecting a value of m for 
which the boundary conditions are satisfied. According 
to[ 4 J one can then check the uniqueness of the solution. 

Following the ideas of[3J one can propose a semi­
empirical method, yielding a result close to reality over 
the whole range of p. We start from the integral rela­
tion 

T, +oo 

m ~ cpdT= m[H(T2 )-,H(T1)]= ~ Qldx, 

where T 1 = T(x = -oo), T 2 = T(x = + 00 ), H(T) is the en­
thalpy of the gas, H = j cpdT. It would seem that the 
improper integral is hardly suitable for numerical esti­
mates. It can, however, be converted into a ''good'' 
integral with respect to dT, if one derives from the 
equation m = 0 an approximate relation between T and x. 
Thus a first step of an iterative procedure is proposed: 
given mo = 0, find m1 from the integral relationship. 
Unfortunately the next step of iteration cannot be done 
in an elementary way. It is practical to introduce the 
variable z: 

T 

z = ~ 'AQJ dT, dz = J.ID dT = Qly dx. 

T 
Form= 0, y = (2 J .\<l>dT) 112 = (2z) 112 , so that 

r r flly dx r dz -­
J Qldx= J --= J -=·="f2z 

y y2z 

Since in the general case <I> changes sign in the middle 
of the region, one must integrate separately over each 
of the subregions. The boundary is T3 at the point F, and 
we denote the temperatures at the points E and G by T1 
and T 2 , respectively (T1 > T3 > Tz). In each subregion 
we take the integral from the infinitely remote (in x) 
point, i.e., 

T1 1f2 

y = - ( 2 ~ 'AID dT) , 
T 

T 'I 

Y= -( -2 ~ J.<PdT)' 
T, 

corresponding to the first and second zones. Finally, 
we obtain: 

m = {- ( 2 T~ 1.1 <D I dT )"' + ( 2 ~~ J,Ql dT )'"} / [H(T,)- H(To)], (3) 
T2 To 

where we have selected as positive that sign of m which 
corresponds to the transformation of the cold phase into 
the hot one. It is easy to see that m = 0 is an exact re­
sult, since for this it is required that the integrals over 
the two subregions be equal. 

We verify the degree of approximation on a model. 
We choose 

T = ae-<t-a)x (x < 0), T = 1- (1- a)e-ax (x > 0), 

which satisfies the requirements of continuity of T and 
dT/dx everywhere, including x = 0, and the boundary 
conditions T = 0, x = - 00 , T = 1, x = + 00 • We choose mo 
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arbitrary in the equation 

dT iPT 
mo dx" + dx• = 11>. 

The exact solution q, corresponding to the chosen T(x} 
and m is 

<D(T) = [mo(1- a) + (1- a) 2]T, 

ll>(T) = -[-moa + a2) (1- T), 

O<T<a, 

a< T < 1, 

and for this q, we determine an approximate value of m1 
according to the proposed formula 

m, = {[mo(1- a)+ (1- a) 2]a2}''•- {[-moa + a2) (1- a) 2}'". 

For mo = 0, m1 = 0. For a ~ 0.5 and mo << 1 we find 

1 mo 1 mo mo 
m1 = (1-a)·T 1 _a +(1-a)a·-z~=-z· 

The maximal limits of variation of m0 , compatible with 
q, > 0 in the first region and q, < 0 in the second are: 

-(1-a) <mo<a. 

At the ends of the region it is easy to see that m1 = m0 • 

Thus it is likely that the proposed approximate formula 
does not give errors larger than two times and yields 
the condition m = 0 exactly. 

We now apply the relations obtained here to the inter­
stellar gas heated by cosmic rays. The quantity q, can 
be written for a weakly ionized gas in the form 

where the ionization is determined by the condition 

Ne2 1,38 _q_ _ ,1, 
Na= 35·1,6·10-1• a'(T)- bq T . 

Here q are the ionization losses of the cosmic rays per 
neutral hydrogen atom per second, NHNeL(T) is the rate 
of radiative cooling per cm3, a' (T) = 2.55 x 10-11 r- 112 is 
the recombination coefficient for hydrogen at a level 
higher than the first. Replacing Ne and NH in terms of 
the pressure we finally bring the expression of q, to the 
form 

ll>(p, T) = E_i!_!_[ 1 + 13T't•( kb !!__)''•- 35 T-'1. (!!_.E._)'" L(T)]. 
35 kT q p 13 k q 

The thermal conductivity is determined by the neutral 
atoms. Substituting into (1) q, and A ~ 0.7 x 103 T112 we 
calculate the function in the integrand for different 
values of the parameter p/q. In Fig. 3 the curves are 
illustrated for p/q equal to 7 x 1011 , 11 x 1011 and 
14 x 1011• The mean value satisfies the condition of 
stationarity. The limiting temperatures for the two 
media are then equal to 90 and 12000°. From the condi­
tion q, = 0 for T = 12000° we find for the hot phase the 
relations NH = 6.5 x 1023q, Ne = 2.7 x 1023q, i.e. NH 
= 2.4 Ne. The electron concentration is not very small 
compared to the concentration of atoms, so that the re­
sult given above has the character of an estimate, with 
a relatively small error. The average value of Ne may 
be estimated from the magnitude of the Faraday rotation 
for polarized radio emission, and NH can be estimated 
from the radio emission in the line of 21 em wavelength. 
In correspondence with these data we adopt the pair of 

FIG. 3. The curves representing qXci>/p as a function ofT for various 
values of the parameter p/q: I - 7 X 10 11,2- II X 10 11,3- 14 X 10 11 

cgs esu. 

values NH ~ 0.05 em-S, Ne ~ 0.02 cm-3, then q ~ 8 
x 10-26 erg/sec. If the ionization is produced by low 
energy cosmic rays, 10-7 particles per cm3 are neces­
sary; if the ionization is produced by relativistic elec­
trons, the number must be several times larger. The 
average proton energy must be smaller than 10 MeV, 
and that of the electrons smaller than 3-5 MeV, in order 
that the total pressure of these particles be smaller 
than the magnetic pressure in the interstellar gas. This 
condition is necessary for stability of the gas in a mag­
netic field. 

In order to estimate the thickness of the transition 
layer we use the condition (1). The quantity y is maxi­
mal at the point T 3 and equals 

This yields a thickness of the transition layer of ~x 
~ 2A (T3}T3/y(T3) ~ 5 X 1013 em. 

The average density of interstellar gas changes with 
time. Through this gas spiral arms move in the form 
of wavesrsJ. When the gas gets into the sleeve, it be­
comes compressed. Between the sleeves the gas will in 
general be in the rarefied phase r1J . The compression 
should reach the point B, after which clouds are formed. 
When the process of compression of the sleeve stops, 
the clouds evaporate gradually, and the conditions ap­
proach stable ones. The velocity of motion of the boun­
dary between the two phases computed according to Eq. 
(3) is maximal for maximal deviation from equilibrium 
and decreases asymptotically as the stable state is ap­
proached. If the deviation corresponds to the curve p/q 
= 14 x 1011 , the mass flow is m = 4 x 10-22 g/cm2 ·sec. 
This corresponds to a velocity of the front relative to 
the cloud of u ~ 40 em/sec (for p ~ 10-23 g/cm3). Over 
106 years the front will move 1015 em, i.e. over a small 
portion of the cloud. Therefore one may consider that 
the state which is realized is determined more by the 
initial conditions, than by the stationarity conditions. 
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