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A consistent quantum-statistical study is made of the saturation of an inhomogeneously broadened 
EPR line with allowance for spectral diffusion and the dipole-dipole reservoir. It is shown that the 
effect of the dipole-dipole reservoir is negligible in the case of inhomogeneous broadening. 

J. Experiments on stationary saturation of resonance 
can be carried out in two ways. 

Scheme A. A saturating alternating field is applied, 
and its frequency is slowly varied (it is more conven­
ient in the experiment to vary the magnitude of the 
main field); the corresponding signal is then measured 
as a function of the frequency. 

Scheme B. A saturating field of definite frequency 
is applied. A second non-saturating field is also ap­
plied, its frequency is varied, and the corresponding 
signal is measured. 

Let n and H1 denote the frequency and half the 
amplitude of the saturating field, and let w and h1 de­
note the frequency and half-amplitude of the alternating 
field, the corresponding signal of which is measured in 
the experiment. In scheme A we have n = w and H1 
= h1, while in scheme B, n ""'w and H1 >> h1 • Let 
X" ( w, n) denote the imaginary part of the complex 
magnetic susceptibility for scheme B. The power 
absorbed by the sample (from the source of the alter­
nating field w, h1 ) is given by the usual formula 

P(ro, Q) = 2rox"(ro, Q}ht2 • (1) 

It is easy to see that for scheme A we get 

x" (ro) = x" (ro, .ro). (2) 

It is well known [ 11 that there are two types of 
broadening of the magnetic resonance absorption line­
homogeneous and inhomogeneous. The question of the 
saturation of a homogeneously broadened resonance 
line was considered in the papers of Bloembergen, 
Purcell, and Pound[ 2l and Bloch [31 • In these papers, 
however, no account was taken of the significant role 
that the dipole-dipole reservoir (DDR) of the spins can 
play in solids. The saturation of the resonance of a 
homogeneously broadened line with allowance for DDR 
was considered by Redfield[4 l and Provotorov[sJ in the 
cases of strong and intermediate saturation, respec­
tively. 

In view of the complications arising in the investiga­
tion of inhomogeneously broadened resonance lines, a 
simplification is introduced, namely, it is assumed that 
different identical spins are in different local fields. 
Therefore the inhomogeneously broadened line is 
represented as consisting of narrow spin packets, and 
the broadening of each packet is assumed to be homo­
geneous. Individual spin packets in the homogeneously 
broadened line are not independent, generally speaking, 
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as is the case in the so called spectral diffusion rs ' 7 l. 
The calculation of x" ( w) for an inhomogeneously 
broadened line is given in [1 ,a], and the calculation of 
X" ( w, n) in r9 ' 10l. In these calculations, however, the 
DDR and spectral diffusion were not taken into account. 
The value of x " ( w, n) with allowance for the role of 
the DDR was calculated inr10 ' 11 l, but in the latter papers 
each spin packet was ascribed its own DDR (it will be 
shown later that this assumption is not always true), 
and the spectral diffusion was not taken into account. 
The question of the saturation of an inhomogeneously 
broadened line with account of the spectral diffusion 
but without account of the DDR was considered in rsJ. 

The purpose of the present article is to present a 
theoretical analysis of the stationary saturation of an 
inhomogeneously broadened resonance line for a spin 
system with S = '/2 (S is the effective spin) and with 
allowance for the DDR and the spectral diffusion. We 
confine ourselves here to the case of intermediate 
saturation (the amplitudes of the alternating field is 
assumed smaller than the width of the spin packet). 

2. For the static susceptibility Xo of the spin system 
we have 

(3) 

where N is the spin concentration, y is the gyromag­
netic ratio, J3L is the reciprocal lattice temperature 
in energy units (we assume ti = 1 and S = '/2 ). We de­
note by cp ( w - w') and g ( w - w') the normalized form 
functions of the spin packet with frequency w' and of 
the inhomogeneous line with central frequency w0 

= yH (H-constant magnetic field). The widths (in 
frequency units) due to the homogeneous and inhomo­
geneous broadening will be denoted respectively A and 
A*. In the case of an inhomogeneously broadened line, 
A* > A. It is frequently assumed that cp ( x ) has a 
Lorentz form and g( x) a Gaussian form: 

q>(x)= n(x2 +~2)' 
1 { x' } 

g(x) = (2n:~ '')''' exp - 2~ •z . 
(4) 

According to Bloembergen, Purcell, and Pound[ 2 l, 
we have for the probability (per unit time) of spin re­
orientation under the influence of the alternating field 
w, h" 

W(w- w') = 1 /,n(vht)~(ro- ro'). (5) 

We introduce, finally, the symbol s = (yH1 )2 TsLTz, 
where T 2 = 1/A and TsL is the spin-lattice relaxation 
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time. For a homogeneously broadened line, s is the 
saturation parameter at exact resonance. On the other 
hand, for an inhomogeneously broadened line with inde­
pendent packets (i.e., in the absence of spectral diffu­
sion), s is the saturation parameter of that packet 
whose center coincides with the frequency of the alter­
nating field. 

3. This raises the question of the method of de­
scribing the quasiequilibrium state of the system con­
sidered by us (lattice + spin system + alternating ex­
ternal fields). Exchange of Zeeman energy between the 
spins belonging to one spin packet is much more rapid 
than between spins belonging to different packets .. In 
this connection, besides the lattice and the alternating 
field, the Zeeman degrees of freedom of each of the 
packets can be regarded as individual subsystems 
characterized by their own thermodynamic parameters. 

A particular analysis should be made of the secular 
part of the dipole-dipole interaction. We shall assume 
for the time being that the distribution of the spin 
packets is discrete, and use the notation of[12 l. We 
consider two spin packets, n and n 1

• The dipole­
dipole Hamiltonian (secular part) of the individual 
packet is given by 

1"' ~ .1fclx =---;- ..:::J AijSaizSa/ + .Q BijS'J.i+Sr:zj-, a= n, n', 
2 .. .. 

l) 1] 

and the interaction between the packets is described by 
the expression 

where 

:Jfnn' 1 ~A Sz Sz :ffcnrn' = ~ B.,.S+n,Sn-'J·· 
d = Z kJ ij ni n'j, L! . , 

D 0 

:1e~n~ commutes with the Zeeman energy of the packets, 

but does not commute with 3t~. Therefore Je~n gives 

rise to energy exchange between the DDR of the indi­
vidual packets without changing their Zeeman energy. 
The indicated exchange is realized (as is also within 
a single packet) in the first order of perturbation 
theory. Two possibilities can be considered. 

A. The case when the frequency distribution of the 
packets corresponds to the spatial distribution of the 
spin, i.e., closely located spins have close Larmor 
frequencies (as is the case for inhomogeneous broad­
ening due, for example, to the inhomogeneity of the 
constant magnetic field). Then the interaction between 
the spins of the same packet will be stronger than the 
interaction between the spins of different packets. In 
such a case, the DDR of an individual packet should be 
regarded as a separate subsystem, leading to the 
analysis given in(lo,uJ. 

B. In most cases, particularly for the most impor­
tant and interesting case of homogeneous broadening 
due to the hyperfine interaction of the spin of the mag­
netic ion with the spins of the surrounding nuclei0 

I) At first glance it might appear that it is meaningless to introduce 
the concept of the spin packet in this case. Indeed, under ordinary con­
ditions, the time during which the flip-flop reorientation of a pair of 
neighboring nuclei takes place is of the order of I o-2 - I o-4 sec, and it 
might be assumed that within such a time the local field at the electron 
spin will change appreciably. In fact, however, the situation is as follows. 
The local field remains practically unchanged in the case of a flip-flop 

(alkali-halide crystal with F centers, semiconductor 
with donor or acceptor impurity, diluted paramagnetic 
salt), the frequency distribution of the spins does not 
correlate with their spatial distribution. Then the in­
teraction between spins of different packets is of the 
same order as the interaction between spins of one 
packet. The energy exchange between the DDR of dif­
ferent packets occurs at the same rate as exchange of 
energy within one packet, and it is therefore necessary 
to introduce a single DDR for the entire spin system. 
We confine ourselves to this case only. 

In view of the statements made above, we introduce 
for the description of the quasiequilibrium state of our 
system the reciprocal temperatures (in energy units) 
of the lattice ( f3 L ), of the Zeeman degrees of freedom 
of the spin packet with central frequency w, 
({3(n, W 1

), and of the DDR (f3d(n )) (the alternating 
field is regarded as a subsystem with f3h = 0 fl 31 ). 

The stationary equations for f3 ( n' w I) and f3 d ( n) 
can be obtained from (8) of[12l, neglecting in the latter 
the nuclear terms. In the case of diffusion relaxation 
and continuous distribution of the spin packets, we ob­
tain 

~(Q, ;;L- ~L + 2W(Q- o>') [ p (Q, w1}+ Q : 1w
1 ~d(Q) 1 

- ~ I g(w"- w0) Wa(w"- W1 )[w"~(Q, w") 
wl J 
- w 1~(Q, w1 )+(w 1 - w")~d(Q))dw" = 0, (5a) 

MQ)- ~L +-2-.) (Q- w1 )g(w1 - wo) W(Q- W1 )[W1~(Q,w1 ) 
TdL Wd2 

+(Q- w1) ~d(Q))dw1 + -1-) w1g(w1 - wo){~;(Q)- P (Q, W1))dw' 
(l)d2 

X ) (w 1 - w")g(w"- w0} Wcr(W1 - w")dw" = 0, (5b) 

where T dL = ( w d I~ 2 ) Ts L is the DDR relaxation time, 

Wd2 = (Sp 3t'd2) I sp( ~ S;n' r 
"' plays the role of the square of the average quantum 

energy in the DDR (n-number of packets, i-number 
of lattice sites), the integrals over the frequencies are 
taken from - oo to + oo, Wcr ( W 1 

- w ") = W cr'Pcr(w 1
- w") 

is the cross relaxation probability (expressions for 
Wcr and 'Pcr(x) are given in[12 l ). 

4. In the high-temperature approximation we have 
for the excess of the number of spins in the lower 
state W 1 of the packet 

(6) 

Further, 1r dn(Q,w1
) 1 d 1 ( 7 ) 

P(w,Q)=-z-Jw dt h, "I• 

where d/dt ( ) lh denotes the change due to the alter-
! 

nating field w, h1 • Taking the DDR into account, we 
obtain [sJ 

transition of the pair of nuclei located sufficiently far from the electron 
spin. Nor does the local field (more accurately, its component in the 
external fields, which is yellow when it plays any role) change in a flip­
flop transition of a pair of nuclei located in the same coordination sphere 
around the electron spin. The local field changes appreciably in the flip­
flop transition of a pair of nuclei close to the electron spin, but at dif­
ferent distances from it, but such transitions are difficult (the nuclei 
have displaced Larmor frequencies). 
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d~(~;ro') lh, =-2W(ro-ro') [~(Q,ro')+ ro:,ro' ~d(Q)J .(8) 

Using (1), (3), and (6}-(8} we obtain 

x"(ro, Q)= ; ~: ~ ro'g(ro'- roo)qJ(ro'- ro) [ ~(Q,ro') 

m-ro' J +--ro,-pd(Q) dro'. 

If the DDR is disregarded, it is necessary to put I'd 
= 0 in (9 ). In the absence of saturation, recognizing 
that for an inhomogeneously broadened line g(x) 
varies much more slowly than cp (x ), we can readily 
obtain 2> 

(9) 

xo"(ro, Q) =xo"(ro) = 1/21tl(oroog({J)-roo). (10) 

5. We first consider the simplest case: the packets 
are independent and the DDR is disregarded. The 
corresponding value of x"(w, 0) will be denoted by 
X;o(w, 0). It is easy to obtainr1oJ (we assume that 
t::..* » t::..) 

Xoo"(ro, Q) = xo"(ro)F(ro- Q, s), (11) 

where 

F(x,s)= ~ qJ(x+y)dy • 
1 + nsT2- 1q;(y) 

(12} 

for a Lorentzian form of cp(x) we have 

F(x, s) = ~· + 62 (4 + s- s/l'~) + s•lJI~ 
64 +1?(4+2s)+s• • (13) 

6 = T2lxl = lxl/~. 
Using the fundamental properties of the function 

F(x, s ), given in[1°l, we find that when s >> 1 the 
function x;o( w) decreases greatly compared with its 
unsaturated value x~( w) in an interval of I w - n I of 
the order of ..fS/T 2 • Outside this interval, X;o( w, 0) is 
approximately equal to its unsaturated value (10 ). We 
thus obtain for the width of the hole burnt out upon 
saturation of the inhomogeneously broadened line3 > 

(14) 

It is easy to see that the width and the depth of the hole 
increase with increasing s. It is clear that in order for 
the foregoing results to be valid it is necessary to 
satisfy the condition 'X « t::.. *. 

6. We shall again neglect the role of the DDR, but 
take the spectral diffusion into account. Equations (10) 
then reduce to 

fl(Q,{J)')- ~L + 2W(Q- ro')~(Q,{J)')-~ I g(ro"- roo) 
TsL ro' J 

X W,r(w"- ro')[ro"~(Q,ro")- ro'p (Q, ro')]dro" = 0. (15) 

We introduce 

D(ro) = 1/2Wcr~r2g(ro- roo), k = (DTbL)-'t.. (16) 

D is the coefficient of spectral diffusion, 1/k is the 
frequency interval to which the spin excitation is ex­
tended as the result of the spectral diffusion within a 
time TsL. t::..~r = JX2CfJcr(x)dx is the cross-relaxation 
second moment. In the case kt::.. > 1, the spectral dif-

2>we recall that for a homogeneously broadened line in the absence 
of saturation we havex~(w) = ~11')(0w0.,o(w- w0 ). 

3> Replacement of s by s + I in (14) corrects the result at small values 
of s. 

fusion is insignificant and the results of Sec. 5 are 
valid. The most interesting case is 

!;.~1/k~t;.·. 

In other words, the spectral diffusion extends over 
many spin packets (their number is of the order of 
1/kt::.. ), but does not extend over the entire inhomo­
geneously broadened line. 

(17) 

Equation (15) with the conditions (17) satisfied was 
solved by us in[12l. We have 

~(Q, ro) s' 1---e-kloo-!!1 
~L s' + 1 ' 

(18) 

where s' = (lj2)1T (kt::..)s « s. Thus, the packets lo­
cated in an interval of I w - n I of the order of 1/k are 
saturated to approximately the same degree, while the 
packets outside this interval are practically not satu­
rated. The role of the saturation parameter (for the 
saturated packets) is played by the quantity s'; it is of 
the order of s divided by the number of saturable 
packets. 

We denote the quantity x " ( w, 0) for the case under 
consideration by X do( w, 0). According to (9) we have 

l(do"(ro,Q)=~xoroo~ g(ro'-roo)qJ(ro'-m)jl(&l,ro') dro'. (19} 
2 PL 

the function /3(0, w') changes appreciably over an 
interval of the order of 1/k, cp ( w' - w) changes ap­
preciably over an interval of the order of t::.., and 
g( w' - wo) over an interval of the order of t::..*. Taking 
(17) and (18) into account, we obtain 

l(do"(ro, Q)= Xo"(ro) [ 1- s': 1 e-kloo-DIJ. (20) 

Thus, in an interval I w - n I of the order of 1/k, 
the function X II ( w' n) decreases approximately by a 
factor s' + 1, and outside this interval it is approxi­
mately equal to its unsaturated value. The width of the 
hole is of the order of 1/k. Unlike the case kt::.. > 1, 
the width of the hole does not change with increasing 
H1, and only its depth increases. 

The calculation for the case kt::..* ~ 1 is difficult. 
On the other hand, if kt::..* < 1, i.e., the spectral diffu­
sion extends over the entire inhomogeneous broadened 
line, the result is simplef14l, namely, upon saturation 
the inhomogeneously broadened line behaves approxi­
mately like a homogeneously broadened line (with width 
t::..* ). 

7. For a better understanding of the picture of the 
saturation of the inhomogeneously broadened line with 
account taken of the DDR, we recall first the results 
pertaining to the case of a homogeneously broadened 
line. According tof5 • 15l we have 

"ho( n [ ,ro-mo ]1 X mro,Q)=-2 xorooqJ(ro-roo) llz(Q)+--I!d{Q) -, (21) 
roo ~L 

where l'z(O) is the reciprocal Zeeman temperature. 
The physical meaning of the expression w 0 /3z 
+ ( w - wo )I'd lies in the fact that when a quantum of 
alternating field w is absorbed, an energy w0 is ab­
sorbed by the Zeeman system, and an energy w - w0 

is absorbed by the DDR. In the case of weak saturation, 
inasmuch as I'd~ l'z ~ I'L, the quantity (w- w0 )j3ctfw0 

can be neglected, and the DDR does not play any role. 
On the other hand, in the case of noticeable saturation, 
owing to the small heat capacity of the DDR (this is 
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connected with the fact that Wd << w0 ), I t3d I increases 
strongly, and this term can no longer be neglected. In 
the case when s » 1 and I w0 - 0 I is not too small, 
we get 

~d(Q) roo(roo-Q) ~.(Q) = (roo-Q) 2 (22 ) 
~= arod2+(roo-Q) 2 ' PL arod2+(roo-Q) 2 ' 

where a = Ts ~/T RL· It is usually assumed that 
a = 2 or a = 3 5 ' 15 • It is known that awd_ ~ A 2 • Assum­
ing that I Wo - 0 I ~ A, we obtain 

~~~omi/~L ~ roo/1\~1. (23) 

According to (22), t3d(0) is negative when 0 » w0 • 

This is connected with the fact that in this case the 
DDR absorbs the quanta 0 - w 0 ; therefore the DDR 
becomes strongly heated and goes over into the region 
of negative temperatures. 

Formula (21 ), with (22) taken into account, can be 
reduced to the form 

, rl (ro-Q)(roo-Q) 
X hom(ro,Q)=-xoroocp(ro-roo) -----. (24) 

2 arod2 +(roo- Q) 2 

Thus, x" is negative, i.e., the maser effect takes place 
if w > 0 > w0 or w < 0 < Wo. 

We note that if a » 1 an increase of the effective 
resonance width takes place upon saturation, and the 
picture becomes similar to that obtained in accordance 
with Bloembergen, Purcell, and Pound[ 2 J. Since, how­
ever, a is of the order of unity, the absorption line 
will actually become narrower upon saturation. 

We proceed to consider the saturation of an in­
homogeneously broadened line with allowance for the 
DDR, but in the absence of spectral diffusion. Equa­
tions (5) take the form 

~(Q,;')- ~L +2W(Q- ro')[ p(Q, ro')+ Q -,ro' ~d(Q) ]= 0, 
SL ro (25a) 

~d(Q)- ~L ..L~-s (Q -ro')g(ro'- roo)W(ro'- Q)[ro'~(Q, ro') 
TdL rod2 

+ (Q- ro') ~d(Q)]dro' = 0. (25b) 

The solution of the system (25) is 

~(Q,ro')=[~L+ ro':,Q ;: cp(Q-ro')~d(Q) ][1+ ;: cp(Q-ro') r, 
(26) 

~d(Q) aro::.2 + Q<I>,(Q- roo, s) 
~= aro;2+<1>2(Q-roo,s) ' 

(27) 

where 
<I>.(x,s)= ns S y"q;(y)lf(x+y) dy. (28) 

T2 1 + nsTz-1<p(y) 

In order for (27) to be valid it is necessary to satisfy 
the condition 

rooi<I>I(Q- roo, s) I ><l>z(Q- roo, s). (29) 

Recognizing that A* » A, we can perform an approxi­
mate calculation of .P 1 and .P 2 (we assume a Lorentz 
form for q1 ( y); in. the calculation of .P 2 it is assumed, 
in addition, that g(y) has a Gaussian form). We ob­
tain 

8 -<I>2(x,s)= --1\2, 
s+1 

S - ( X ) <l>1 (x,s)= ---n'~i\Zg(x)'¥1 -_-s+ 1 \ y21\*, ' 
(30) 

where 

W(z)= S eY'dy. (31) 

Taking (30) into account, Eq. (29) takes the form 

I Q - roo I >I! *2/ roo. 

Since aw 2 ~ A2, we find that when s >> 1 it is possi­
ble to neg1ect awd both in the numerator and in the 
denominator of (27 ). This yields 

~d(Q) = roo<l>,(Q-roo,s) =-n'i•roog(Q-wo)'¥(__;_). 
PL <l>z(Q-roo,s) l'21\' (32) 

Thus 

I ~d(Q) I ~ {roo~!!'~ 1 
~L roo!\/[\ •z ~ 1 

for jQ- roo!~ Li' 

for I Q - roo I ~ K 
(33) 

Comparison of (33) with (23) shows that in the case 
of an inhomogeneously broadened line I t3d(0) I is much 
smaller than in the case of homogeneous broadening. 
This result is connected with the fact that there is one 
common DDR, and therefore its specific heat is suffi­
ciently large (roughly speaking, this is equivalent to 
replacing awd in (22) by (A*/A)awd, and then when 
I 0- Wo I~ A* we obtain I t3d (0) I /t3L ~ wo/A* in ac­
cordance with (33)). 

We denote the quantity x " ( w, 0 ) in the absence of 
spectral diffusion, but with DDR taken into account, by 
X~d(w,O). When 0 = w we readily obtain with the aid 
of (32) 

XOd11 (ro) =?Coo" (ro) [ 1- ~g(ro- ro0) wz( y;i\. ) J. (34) 

The second term in the square brackets is always 
small compared with unity, and therefore x "d( w) 

II ( ) 0 
~ Xoo W · 

We can also calculate x "d( w, 0) with the condition 
~ 0 I w - 0 I > A satisfied. We obtain 

XOd"(ro,Q)=xoo"(ro,Q){1- ~d(Q) ro-Q(1-F-'(w-Q,s)J1r. 
~L 'roo 

(35) 
A simple estimate shows4 J that the second term in the 
curly brackets of (35) is always much smaller than 
unity. It can thus be regarded as established that 

?Coi'(ro,Q) ~ Xoo"(ro, Q) (36) 

for any relation between w and 0. 
Thus, the role of the DDR in the saturation of an 

inhomogeneous line is negligible in the case of inde­
pendent packets. Physically this result can be under­
stood as follows. Since the width X of the saturated 
packet subtends many Zeeman frequencies, the energy 
acquired or given up by the DDR is determined com­
pletely by the asymmetry of the distribution of the 
Zeeman frequencies relative to the frequency of the 
saturating field. This asymmetry is characterized by 
the parameter 

I dg(ro- roo) I ;i ~ lro--:- roo!:\ ~ -~ 
dro [\'2 /\' 

and leads to the appearance of an additional small 
factor 'X/A* in the second term of (21), as the result 
of which the DDR ceases to play an appreciable role. 

9. Let us consider, finally, the question of the 
saturation of the inhomogeneously broadened line with 

4lJn the estimate of the order of magnitude it is possible to use for­
mula (35) also in the case when /w- 0/ -a-. 
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allowance of the DDR in the case when the spectral 
diffusion is appreciable, i.e., k~ < 1. It is easy to see 
that when the conditions (17) are satisfied the role of 
the width of the hole is played not by ~ but by 1/k, and 
asymmetry parameter is of the order of 1/k~* << 1. 
Consequently, the DDR will not play any role, and the 
results obtained in Sec. 7 will remain in force. As to 
the quantity f:3d, on the basis of formula (22) and of the 
remark following Eq. (33) concerning the specific heat 
of the DDR, it is easy to obtain the following qualitative 
estimate: 

J!c!_~ kroo 
~L (kfl) 2kfl• + 1 • <37) 

On the other hand, if the condition k~ * < 1 is satis­
fied, then the asymmetry parameter will be of the 
order of unity and f:3ct/f:3L ~ wo/~*, i.e., we can expect 
the situation to be analogous to that obtaining in the 
saturation of a homogeneous line with a width equal to 
~*. 

10. It follows from all the foregoing that in the case 
of inhomogeneous broadening it is difficult to observe 
the DDR temperature change with the aid of saturation 
of the EPR absorption line. On the other hand, if Wd 
~ WI (WI is the NMR frequency), then the nuclei relax 
to the electronic DDR, and by virtue of (37) nuclear 
polarization is possible in the case of EPR saturation. 
This polarization greatly influences the value of the 
NMR, making it possible to observe the change of the 
DDR temperature in the inhomogeneous case. 
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