
SOVIET PHYSICS JETP VOLUME 29, NUMBER 1 JULY, 1969 

CASCADE IONIZATION OF A GAS BY A POWERFUL ULTRASHORT PULSE OF LIGHT 

Yu. V. AFANAS'EV, E. M. BELENOV, and 0. N. KROKHIN 

P. N. Lebedev Physics Institute, USSR Academy of Sciences 

Submitted June 17, 1968 

Zh. Eksp. Teor. Fiz. 56, 256-263 (January, 1969) 

We consider the process of cascade ionization of a gas under the influence of a powerful light flux, 
under conditions corresponding to rapid acquisition of energy by the electrons. We determine the 
electron energy distribution function as a function of the time, and also the time constant of the 
cascade development. It is shown that the concentration of electrons at a fixed instant of time de­
creases with increasing radiation flux, i.e., the time of cascade development increases with in­
creasing field intensity. The results of the paper can be used to interpret experiments on optical 
breakdown of gases by short radiation pulses operating in the mode-locking regime. 

1. Zel'dovich and Ra1zer[1 J developed a theory for the 
optical breakdown, observed by Meyerand and Haught[21 

to occur in gases under the influence of laser radia­
tion. 1> The theory proposed in [11 corresponds to the 
condition of relatively small rate of acquisition of en­
ergy by the electrons in the field of the electromagnetic 
wave; this is realized in experiments with giant laser 
pulses of duration on the order of 10-8 sec. Formally 
this condition is of the form 

1] = EoOtr I lai < 1, (1) 

where Eo= e2E~/2mw2 is the effective oscillation energy 
of an electron with charge e and mass m in the field of 
a wave with amplitude Eo and frequency w; Utr and ai 
are respectively the transport cross section for elastic 
collision between the electron and the atom and the 
cross section for the ionization of atoms with ionization 
potential I. According to[ 11 , the number of electrons in 
the cascade increases exponentially, n = noexp(yot), 
with a growth constant y 0 proportional to the radiation 
flux density q = cE~/81T. When the pulse duration To is 
decreased, the threshold value of q increases in the 
Zel'dovich-Rai'zer theory like 1/T0 , and condition (1) is 
violated for short and powerful pulses. 

In the case when 

1] = EoOtr I lai > 1, (2) 

but the processes of photoionization of the atoms by a 
strong field are still negligible, the picture of the cas­
cade ionization changes radically. The cascade develop­
ment constant y becomes a decreasing function of the 
flux density q, and the concentration of the electrons at 
a fixed value of the time decreases with increasing field 
intensity. This is physically connected with the fact that 
under the condition (2) the electron acquires, as a re­
sult of each elastic collision, an energy Eo> I and falls 
rapidly into the region of energies where the probability 
of ionization and excitation by electron impact decreases 
with increasing energy. The indicated mechanism of 
cascade ionization, as shown by estimates, makes the 
electron concentration in gases at normal pressure, 
within a pulse time 10-12-10-11 sec, smaller by several 

0 A view of papers on optical breakdown of gases is contained in the 
article by Raizer [ 3 ]. 
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orders of magnitude than the concentration of the neu­
tral atoms. As a result, the produced plasma is prac­
tically transparent to the incident radiation. In this case 
the only mechanism of the "laser spark" development 
is the breakdown process [41 • For this reason, the break­
down region should propagate in the direction of the 
laser beam at a velocity equal to the velocity of the 
light pulse, and the length of the spark is determined 
by the divergence of the beam. 

2. In the case under consideration, the number of 
electrons produced per second in 1 cm3 is given by 

dn ~ ~ ~ aa(e,e') , -= ~ F(e,t)N0van(e)de + F(e,t)Nov--, -,-de de, 
dt 0£ 

n 

(3) 

where F(E, t) is the distribution function of the electrons 
interacting with the radiation field, an{ E) is the cross 
section for the excitation of the atom by an electron 
having a velocity v = {2E/m)112 , a{E, E') is the ionization 
cross section of the atom, E' is the energy transferred 
to the atom, and No is the density of the neutral atoms. 
In relation (3), the summation is carried out over the 
state of both the continuous and discrete spectra. The 
latter is connected with the fact that the atom excited 
by the electron impact is ionized practically instantane­
ously by the radiation field, and consequently, each act 
of excitation of the atom is directly connected in this 
case with the production of an electron. For this rea­
son, in a strong field, the effective ionization cross sec­
tion should be taken to be the quantity 

~ 1 aa(e, e') , 
ai(s)=2JOn(e)+J , de. 

ae 
n 

It is physically clear that the secondary electrons that 
appear as a result of the excitation of the atom by elec­
tron impact with subsequent photoionization have an 
initial energy much smaller than Eo, for in this case 
nw << Eo. The processes of direct ionization of the 
atom by electron impact also lead to the appearance of 
relatively slow electrons. This is connected with the 
fact that the ionization cross section of the atom a(E, ot:') 
has a maximum at a produced-electron energy of the 
order of the atomic energy[51 • Thus, the overwhelming 
majority of the produced electrons have an initial en­
ergy that is small compared with E0 • This circumstance 
allows us to represent the electron energy distribution 
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function F{E, t) at the instant of timet in the form 
I 

F(e,t)= ~ f(e,t--r)<p(t)d-t, (4) 

where cp(7)dT is the number of electrons produced after 
a time d 7 at the instant of time 7, f ( E, t) is the distribu­
tion function, at the time t, for the electron produced at 
the time t = 0. On the basis of the foregoing, we put 
f{E, 0) = o{E). The function f{E, t) satisfies the kinetic 
equation 

(5) 

where (of/at)q, (of/ot)e, and (of/Bth are respectively the 
contributions of the radiation field, and of the elastic and 
inelastic collisions of the electron to the change of 
f{E, t). The electron-electron and electron-ion collisions 
can obviously be neglected. Then Eq. (5) can be repre­
sented in the form 

at I at= L(e)f, (6) 

where L{E) is a linear operator. 
We shall now show that Eq. (6), together with the 

integral relation (4), can be reduced to a simpler equa­
tion for the function F{E, t). Indeed, we shall seek the 
function F{E, t) in the form F{E, t) = F 1(E)F2 (t), which is 
possible (see below) if yt > 1. With the aid of the rela­
tion 

d doo oo 
_":.=-- \F(e,t)de=No\F(e,t)a;(e)vde (7) 
dt dt J . 

0 0 

we then obtain 

1 dF 00 -ioo 

p--;_ a:=NoOF.(e)de) ~Fi(e)a,(e)vde=v=const. (8) 
0 0 

From (8) it follows that 

F2(t) = noe'1, (9) 

where no is the density of the bare electrons (under the 
00 

condition j F1{E)d1: = 1). Consequently, according to {4), 
0 

we get 
t 

n0F1(e)evt = ~ rp(-r)f(e, t --r)dT. (10) 

For the function cp(7) we get as a result of (9) 

(11) 

Substituting (11) in (10) and setting the upper limit equal 
to infinity, which obviously can be done if yt » 1, we 
get 

00 

Ft (e)= y ~ e-vt f ( e, t) dt. (12) 
0 

Multiplying (6) by ~~-yt and integrating with respect to t 
from zero to infinity, we obtain for the function F 1(oo) 

(i:,(.s)- y)F.(e) = -vf(e, 0). (13) 

We recall that 

f(e,O) = li(e). (14) 

The cascade development constant y can be obtained by 
solving Eq. (13) with the aid of relation (8). 

3. In the classical limit nw/E << 1, the right side of 

(6), which is connected with the diffusion of the electrons 
in energy space upon interaction with the radiation field 
only, is of the form [1J : 

( ~!) = -~~[D(~t] +L[n(e) 81--], (15) 
ot q 2 oe e i!e ih 

where D( E) = SN0 (n w )2a( E) is the diffusion coefficient in 
energy space, Sis the quantum flux, and a(E) is the 
coefficient of (2) absorption of light by electrons in 
scattering by neutral atoms, calculated per electron 
and per atom. When nw/E « 1 we have a(E) 
= (2/3)awE/nw[1J, where aw = 47Te2Utzv/mcw 2 is the 
classical effective absorption coefficient in a weakly 
ionized gas. The term connected with the inelastic los­
ses is given by 

( of) =No~ du,(e,e') [f(e+e')v(e+e')dai(e+e':e') -j(e)v(E)]. 
at i du,(e, e) 

(16) 
Inasmuch, as already noted, in the case of fast electrons 
the principal role is played by collisions with energy 
transfer E' << E, the integrand can be expanded in 
powers of E' /E. Neglecting terms of second order of 
smallness2 > in E' /E and recognizing that dai(E, E') 
~ E-1[5 J, we obtain 

(_ilL) = _ _l:__z;(e)No x(e)[/(e)-2e-oLJ, (17) 
\ Ot • i 2 E ile 

where K(E) is the effective deceleration[5 J. 

The kinetic equation (13) with the terms represented 
in the form (15) and (17) cannot be solved in general 
form. In a real case, however, when atr ~ E-2 and K(E) 
~ E- 1[5 J, it is possible to obtain an approximate analytic 
solution of the equation under consideration. Expres­
sions (15) and (17) can in this case be written in the 
form 

( of) a - =B-c'i•J 
at i oe , 

(18) 

where C and B are logarithmic functions of E, which we 
shall assume constant. Thus, Eq. (13) takes the form 3 > 

d2ciJ (E) d(Jl - (19) ·--·-+a-- b)'ecD(e) = -bo(e), 
de2 de 

where 

cD(e)= e-'hF(e), 

b=~= 'l y 
eo 2 y eff e'heo 

3 Nox(e) 1 
a=------~ eonst 

2 E<Ytr(e) eu · ' 

const, y eff = N0u1r (e) v ~ c'i•. (20) 

Let us consider first a case corresponding to a rela­
tively small role of the inelastic energy losses, corre­
sponding to large radiation fluxes, i.e., we put a ~ 0. 
Then the solution of (19) is given by 

cD(e) = ~ k-'1•sin ~:rt r(~}'/•K,1,(2ke'!.), (21) 

where k = (2/5)b112 and K 11 is the Macdonald function. 
The cascade development constant y can then be calcu­
lated with the aid of the distribution function (21) in ac­
cordance with formula (8), and is connected with the 

2)The diffusion term in (17) contains the small parameter €' 2 /€€o 
relative to the analogous term in (15). 

3lThe elastic losses can obviously be neglected. 
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maximum value of the ionization am( Em) with the en­
ergy Eo of the electron oscillations in the field, by the 
relation 

00 

y=No ~ e'f,<D(c)a;(e)vde 
0 

[ r( 4/,)r(2/,) ( 2 )'" , ]''• , 
= No - ' Umbol~em eo-/4 

r('/,) m . 
(22) 

It follows from (22), that y decreases with increasing 
radiation flux density q, like q- 114• 

When account is taken of the inelastic energy loss, 
Eq. (19) can be integrated approximately. By using the 
substitution .P(t::) = lJI(t::)exp(-at::/2), we reduce Eq. (19) 
at E > 0 to the form 

d''ljl( -1) --+ -bye--a2 '¢=0. 
dc2 4 

(23) 

Replacement of (19) by the homogeneous equation (23) 
is equivalent to introducing an additional condition for 
the normalization of the distribution function: 

00 

~y;<Dde=1. 
0 

An investigation of (23) is best carried out by regarding 
it as a Schrodinger equation for the wave function 1JI: 

ft2 
2 - '¢" +(E- 0)'¢ = 0, 

,m 

7i = 2 I a, m = 'l2, E =o:= -1, a= n2b'/'B. (24) 

At small Ewe have lJI(E) = Aexp{- E/fi}. At large E, we 
can find 1JI by using the quasi classical approximation [4 J 

where 

p = [2m(E- a) J''' = i(1 + 4a-2b'/e)'''· 

Consequently 

(25) 

A { a r ( 4 - \'1' I ljJ = ----- .c_--- cxp -- .l 1 +- b fB / de f. (26) 
( 1 + 4a-2b y") •;, 2 0 a2 

It is easy to see that in the limit as E - 0 the function 
(26) coincides with the solution of (24) at small values 
of E. For this reason, the function (26) can be regarded 
as a satisfactory approximation for the solution of Eq. 
(24) in the entire range of variation of E. 

Thus, we obtain ultimately for the electron energy 
distribution function 

A{e- { a ['r ( 4 -)''' ]} F,(e)=---=--exp -- J 1+-b'/e de+e .(27) 
(a2+4bye)''• 2 0 a2 

The parameters of the electron cascade can be calcula­
ted by direct integration using the obtained distribution 
function (27), but the explicit expressions turn out to be 
rather cumbersome. However, the calculations can be 
simplified, since the factor (1 + 4a-2bv'E)112 depends little 
on E, and consequently the distribution function (27) is 
close to Maxwellian. Replacing in the expression 
(1 + 4a-2bv'E) 112 the energy by its mean value ~3T/2, we 
can represent (27) in the form 

2 -
F,(e)= -=e-e!Tye, (28) 

inT 

where the electron temperature T is determined from 
the equation 

(29) 

At large radiation fluxes q, when 4a-2bV':f >> 1, we have 

(30) 

(31) 

We note that the quantities y, calculated with the aid 
of the distribution functions (21) and (28), differ only in 
the numerical factor of the order of unity. In the oppo­
site case of small q (4a-2bT112 « 1), the expressions 
for y and T are 

T = 1 I a~ q. 

(32) 

(33) 

Thus, y is a decreasing function of the flux, and the 
growth of the field intensity hinders the cascade develop­
ment. 

4. It is of interest to consider an approximate model 
of the cascade-ionization theory developed above, in 
which it is possible to avoid of integration of (13). We 
replace the distribution function f( E, t) by a function 
describing the trajectory of the "average" electron, 

' 
f(e, t) = const 6 ( t- ~ __ _i!e_- -\, 

a(e)- ~(e) u(B)-I:I(e) I (34) 
() 

where 
a(e) = eo'Yeff, ~(e)= Nox(e)v. 

Formula (34) is a consequence of the expression for the 
average rate at which the electron acquires energy: 

de= I eL(e)f(e,t)de= foYeff (e)- ~(e). (35) 
dt .l 

Substituting (34) in (12), we obtain 

F!(~) = const exp { _ 'Y ~ de } . (36) 
a( e)- ~(e) 0 a(e)- ~(e) 

We can then use for the determination of y the equation 

Nov 2 f exp {- y ~ de 1 _c>1e_l~~ = 1, 
m 0 0 a(e)- p(e) f a(e)- p(e) (37) 

which is equivalent to Eq. (8). 
If we assume in the presently considered model the 

same relations for the cross sections as in Sec. 3, then 
a (E) ~ q(E312 and {3( E) ~ (-112 • Then we can neglect the 
contribution of {3(E) in the calculation of the inte~ral (37) 
at large values of q. As a result we get y ~ q- 1 4• At 
small fluxes, the main contribution to the integral (37) 
is made by the integration region E ~ E*, where a(t::*) 
- {3(E*) = 0. In this case the integral under the exponen­
tial sign depends logarithmically on E*- E and y ~ q- 1 / 2 • 

Thus, the results coincide qualitatively with the more 
rigorous results of Sec. 3. 

By way of one more example, we present in explicit 
form the expressions for the electron concentration 

~· 

n (I)-= ~ F (e, t)de, 
0 

for the average electron energy 
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~=-1-I eF(e,t)de 
n (t) 0 

and for the coefficient of absorption K(t) of the laser 
emission, calculated with the aid of the distribution (36) 
in the case when y eff = const and a i (E) ~ E-1, and 
neglecting the inelastic losses 

n = n0evt, ;(t) = _('_, K (t) = _('_ n0eYI. (38) 
v q 

The cascade development constant y is then given by 

2n "2 2 2 
v=-Ho£mcrm• 

am 
(39) 

In the indicated case, the time of cascade development 
1/y is proportional to the flux density, the electron con­
centration at a fixed value of the time decreases with 
increasing q, and the average energy is independent of 
the time and increases in proportion to q2 • 

5. As was noted above, the limit of applicability of 
the developed theory, on the high flux-density side, is 
determined by the photoionization effect. We note first 
that condition (2) can be rewritten in the following form, 
by introducing the parameter y 0 = wvl2mi/eE 0 , which de­
termines the processes of photoionization in a strong 
field lsJ : 

1]=_!_~ > 1. 
v"" <Ji 

(40) 

The limiting flux density corresponds to the minimum 
possible values of y 0 , at which photoionization still does 
not occur. The quantity y ~in depends on the ratio 
I/11 w, and decreases with increase of the latter. Since 
the photoionization in a strong field has a threshold 
character, y ~in can be determined from the condition 
W(Y~in' I/nw)To R:o 1, where W(y 0 , I/nw) is the atom 
photoionization probabilitylsJ. As shown by numerical 
estimates, when I/nw > 10 and Y~in < 1, this corre­
sponds to ionization via the tunnel effect. The condition 
(2) is then satisfied in a relatively wide range of flux 
densities. When I/nw < 10 and y~in > 1 (corresponding 
physically to multiphoton ionization), the region of ap­
plicability of the considered breakdown mechanism be­
comes narrower. 

In particular, for atoms with an ionization potential 
I = 20 ev and for a neodymium-laser pulse duration 
5 x 10- 12 sec, the range of current densities in which the 
ionization picture considered here is realized turns out 
to be (a i/atrl x 1014 < q < 1015 W /cm2 • It must be 

emphasized that the region of applicability of the break­
down mechanism considered here is greatly broadened 
for lower-frequency radiation, in the infrared range of 
the spectrum, since wo ~ w-2 • 

In conclusion we note that the expression given here 
for the cascade development constant y depends very 
strongly on the cross sections of the elastic and inelas­
tic collisions. For this reason, it is meaningful to per­
form in each concrete case numerical calculations 
corresponding to definite experimental conditions, on 
the basis of an exact integration of (8). Similar remarks 
should be made also with respect to the determination 
of the region of applicability of the ionization mechanism 
considered here, since at the present time there is still 
no sufficiently accurate verification of the theoretical 
results [7J . 

The authors are deeply grateful to N. G. Basov for 
discussion of the work and to 0. B. Firsov for valuable 
critical remarks. 
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