
SOVIET PHYSICS JETP VOLUME 29, NUMBER 1 JULY, 1969 

POLARIZATION OF NUCLEI BY DYNAMIC COOLING 

M. A. KOZHUSHNER 

Institute of Chemical Physics, USSR Academy of Sciences 

Zh. Eksp. Tear. Fiz. 56, 246-255 (January, 1969) 

The dynamic cooling technique for enhancing nuclear polarization is investigated theoretically. The 
electron spin system temperature decreases when the EPR is saturated by an alternating field whose 
frequency is shifted relative to the center of the EPR line. The nuclear spin system temperatures 
also decrease strongly in the presence of strong coupling between the electron and nuclear spin sys­
tems; this leads to an increase of the nuclear polarization. Cases of high and low temperature are 
considered. A criterion of the efficiency of the method is obtained (inequality (12)) and an equation 
is derived for the effective spin temperature of the system (Eq. (25)). Since large paramagnetic­
center concentrations are required, the leakage factor is usually small and does not restrict the 
nuclear polarization, whose magnitude may be larger than that theoretically attainable in other DNP 
methods. Another advantage of the method is the high rate of variation of the polarization sign; a 
shortcoming is the necessity of using higher microwave power than in the usual DNP method. 

THE method of dynamic polarization of nuclear spins 
(DNP), proposed in 1958[1 ' 21 , was used many times to 
obtain in practice high polarization of nuclear spins, and 
was analyzed theoreticallyl31 . Inl4-SJ there were ob­
tained rigorous quantum-mechanical equations describ­
ing DNP in the case of a homogeneously broadened EPR 
line, with account taken of the change of the tempera­
ture of the dipole-dipole electron spin reservoir 
(DDS)l71 during the process of obtaining DNP. Buish­
vilil51 investigated DNP in the case of an alternating 
field parallel to a constant external field. Abragam and 
Borghini lsJ took into account the coupling between DDS 
and the nuclear Zeeman system (NZS), which occurs 
only in saturation of forbidden transitions. It was shown 
in l41 , however, that the coupling between the NZS and 
the DDS is realized not only via the alternating field 
that saturates the forbidden transitions, but also di­
rectly, as a result of the presence of the interaction be­
tween the electron and nuclear spins. If the temperature 
of the DDS is lowered for some reason, this can lead to 
a lowering of the NZS temperature, and consequently to 
an increase of the nuclear polarization. DNP following 
a decrease of the DDS temperature in the case of two 
sorts of nuclear spins was observed by Goldman and 
Landesman lBJ. Recently, DNP due to the presence of 
such a direct coupling between the NZS and DDS was 
observed in an electron-nuclear spin systeml91 . 

In the present paper we present a theoretical analysis 
of the method of DNP via cooling the DDS (we call this 
the dynamic cooling (DC) method), and we investigate 
both the case of high temperatures and the case of low 
temperatures (which is of interest in applications). 
Quantitative criteria are obtained for the efficiency of 
the DC method, and these relate the EPR line width to 
the values of the constant and alternating magnetic 
fields. 

Physically, the gist of the DC method is as follows. 
As is well known l71 , when EPR is saturated by an alter­
nating field whose frequency w is shifted relative to the 
Zeeman frequency of the electron we (w- we=~), each 
flipping of the electron spin is accompanied by a change 
of the DDS energy by an amount li~. This means that if 
the projection of the total electron spin of the system 

changes by osz, then the energy of the DDS changes by 
li ~sz. If ~ < 0, then such a decrease of the DDS energy 
leads to a lowering of the DDS temperature. When 
~ > 0, the DDS temperature can become negative and 
small in absolute magnitude (since DDS is a system 
with a limited energy spectrum, the pumping of a suffi­
ciently high energy in it can lead to inversion of the 
level population). But if the NZS is strongly coupled to 
the DDS, then the NZS temperature also decreases, i.e., 
the nuclear polarization increases, and its sign depends 
on the sign of~. In the DC method we are essentially 
using the presence of such a coupling (as will be shown 
below, this can be attained either by increasing the 
electron-spin concentration, or by decreasing the con­
stant magnetic field). The alternating field saturates the 
EPR in such a way as to lower the DDS temperature, and 
with it also the NZS temperature. Therefore the fre­
quency of the alternating field is chosen not such as to 
saturate the forbidden transitions, but such as to de­
crease as much as possible to DDS temperature. 

The Hamiltonian of the investigated spin system is 

.if= liwe S S;' +if" -liwn ~ lk' + 2Htli'Ye S S;x coo wt + 3fa. (1) 
k i 

Here Sf ,x and ~ are the operators of the projections of 
the i-th electron spin and the k-th nuclear spin on the 
axis designated by the superior indices, we = y eHo, 
Wn = YnHo, H0 is the constant magnetic field, directed 
along the z axis, Ye and Yn are the gyromagnetic ratios 
for the electrons and the nuclei, 2H1 is the amplitude of 
the alternating field with frequency w; 

(2) 

is the secular part of the dipole-dipole interaction of the 
electron spins and commutes with :z;i§iz; 

ie,r = S (a;,S;•i,+ + a;n*SA';.-) 
i,k 

is the operator of the dipole-dipole interaction of the 
electron and nuclear spins (we have retained only that 
part of the interaction which couples most strongly the 
electron and nuclear spin systems). Furthermore, we 
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have not written out the spin-lattice interaction, which 
will be taken into account in the equations by introducing 
the corresponding relaxation times. 

The first term on the right side of (1) is the operator 
of the Zeeman energy of the electrons and determines 
the electron Zeeman energy system (EZS), the second 
is the DDS energy operator, and the third the NZS en­
ergy operator. As shown in [4- 7J , different temperatures 
are established in each of these three energy reservoirs 
in a time on the order of the correlation time in the 
electron and nuclear spin systems. These temperatures 
change slowly (within a time on the order of the relaxa­
tion time), owing to the presence of interactions that 
couple these energy systems. Therefore the density 
matrix can be represented in the form 

{ liwe- if.. liw,.-} 
p=const·exp --S•--+-1' , 

kT, kT,. kT,. 
(3) 

where Ts, Tss• and Tn are respectively the EZS, DDS, 
and NZS temperatures. For the reciprocal tempera­
tures ({3 = 1/kT) we obtain the following equation[ 4J (in 
the case when :liwe/kTo « 1): 

(4a) 

a~., d ··We ( d ) 1 ( 1 ) -at =-(y.Hi) 2 ng(Ll)--. lis+~ .. - -- ~ .. --kT 
Wo We 'tss o 

{4b) 

fl~" ( We d - W n ) 
-- = -(y.Hi) 2 :rtg'(w,we, w,.) ~ .. + ~.--+---fl,, 
~"Jt Wn Wn 

( 
We d + Wn ) 

-(y.Hi) 2 :ng"(w,we, wn) ~ .. -~~.-----~., 
Wn Wn 

Here a = w- Wei To is the equilibrium lattice tempera­
ture; 

g(Ll)= 1/.Sp {S+(.:l)S-}/ Sp {(S•) 2} 

are functions of the EPR line shape; 

(5) 

gi(oo,.)= N,Sp {S;'(w,.)S;•}/Sp {(S') 2}; (6) 

g'(w, we, wn) and g"(w, we, wn) are line-shape functions 
for the two types ofAforbidden transitions (w ~ we + wn 
and w ~ we - wn); S(w) is the Fourier component of the 
operator 

S(t)==exp( ~ ie .. t)sexp(- ~ it .. t); 
f - ' 

wo2 =nzSp {3t',,2}/Sp {(8') 2} (7) 

is the characteristic precession frequency of the elec­
tron spin in the local fields produced by other electron 
spins, Ns and NI are the numbers of electron and nuclear 
spins in the sample; Ts and Tss are the spin-lattice 
relaxation times for the EZS and DDS, respectively, Tn 
is the time of the nuclear spin-lattice relaxation due to 
the coupling of the NZS with the lattice. 

Let us examine the physical meaning of the different 
terms in (4). The first two terms in the right sides of 
(4a) and (4b) represent the influence of the allowed 
transitions and the spin-lattice relaxation on the EZS 
and DDS[ 7J. We usually did not take into account the 
very weak influence of the forbidden transitions on the 

state of the electron spin system. The third terms in 
(4b) and (4c) describe the coupling between the NZS and 
DDS. This coupling is determined principally by the 
value of g1(wn)-the Fourier component of the correla­
tion function NsTr{Sf(t)§f}/Tr{(~z)2 }. The quantity 
g1(wn) determines the intensity of absorption or emis­
sion of quanta of energy nwn by the dipole-dipole sys­
tem with the aid of .i&s l· The widths of the functions 
g1(w) and g(w), determined, for example, from the sec­
ond moment, are interrelated (see (17) below). We can 
therefore say that the efficiency of this coupling depends 
on the EPR line width and on the value of H0 • The first 
two terms in (4c) represent the coupling between the 
EZS, NZS, and DDS, which is established as a result of 
the excitation of the forbidden transitions. We shall 
henceforth consider only the saturation of the allowed 
transitions in EPR by the alternating field, and the as­
sociated changes of f3s, f3ss, and /3n. Since the frequen­
cies of the forbidden and allowed transitions are shifted 
relative to each other by approximately wn, which is 
larger than the EPR line width, we shall disregard the 
forbidden transition. 

Let us study the stationary case, i.e., equate to zero 
the right sides of (4). We then get from {4c) 

a 1 1 
lin= 1 +a ~ .. + 1 +a kT0 ' {8) 

where 
1 1 

a=:rt--~ia;Ai 2 gi(wn)'tn. {9) 
N1 1i2 ;.h 

The quantity Tfi1 in (4c) and (9) is the rate of the nuclear 
spin-lattice relaxation due to all other mechanisms ex­
cept the coupling between NZS and DDS (third term in 
(4c)). At large concentrations of the paramagnetic cen­
ters, the main contribution to Tfi1 is made by the mech­
anism of relaxation of nuclear spins with paramagnetic 
centers {by nuclei we mean here throughout protons, 
In = 1/2, and therefore we disregard quadrupole relaxa­
tion) [3 J: 

1 1 . 1 1 
't,.-1 = -- L; ia;AI 2----. (10) 

N I fl2 -i,k Wn2 'ts 

It is seen from (8) that in order to obtain large /3n, 
i.e., f3n ~ f3ss• it is necessary to satisfy the condition 

a>1. (11) 

Substituting (10) in (9), we get in lieu of (11) 

(12) 

If condition (12) is satisfied, then in the case of strong 
EPR saturation, when the saturation parameter is 

s = (y.H1)2:ng(Ll)'t, > 1, 

we get from (4) (see[sJ) 

(13) 

~ .. =- ( I ) ;: ,1.2 + f 2 kiT ' (14) 
'ts 'tss Wo tiln 0 

where f is the leakage factor 

f= NI 2!.._ 
N, 'tn · 

(15) 

It should be recalled that the time T n• which must be 
substituted in (15), is larger than the true nuclear spin­
lattice relaxation time T~, which is determined not only 
by the spin-lattice relaxation via the electron spins (10), 
but also by the coupling between the NZS and DDS. If 
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T ~ is measured under conditions when the electron spin 
system is in equilibrium and a » 1, then 

't'n':::::;: 't'n I a. (16) 

Thus, the leakage factor f, determined by formula (15), 
differs from the usually determined leakage factor, 
which contains T ~ in lieu of T n [3 J . 

In order to determine the conditions under which (12) 
is satisfied, we calculate the second moment of g1(w): 

M{ = ~ ro 2g1 (ro)dro. 

In the case of an isotropic electronic g-factor (as is 
usually the case in paramagnetic organic radicals) 

(17) 

where M 2 = J w2g(w)dw is the second moment of the 
EPR line-shape function. If we assume that g(w) is a 
Gaussian function, then the half-width at half-height is 
0 ~ ...fiJf;, and (12) goes over into 

-y'2n I 1 (12a) 
a~-r,--ron2 exp(-9ron2 4112)>. 

II 

In a field H0 = 104 Oe, at Ts ~ 10-1 sec (typical time for 
organic free radicals at helium temperatures), we find 
that (12a) is satisfied when 0 ;::: wn/3, or expressing 0 
in Oersteds, we get 0 > 5-6 Oe. Naturally, the estimate 
of the EPR line width, and consequently of the para­
magnetic-center concentration necessary to obtain an 
appreciable polarization depends on the behavior of 
g1(w) at large w, however, one can hardly expect an ap­
preciable deviation from the estimate just presented for 
0. The maximum value of /3n, according to (14), is ob­
tained when /6./ = .J Td T ssWo, and turns out to be 

We 1 
(~n)max= . sign6. (18) 

2-y'-r./r., roo kTo 

(We assume that f << 1). Calculating wo with the aid of 
(7), we get[6 J wo = ./M2/3. In the case H0 = 104 Oe con­
sidered by us, assuming Ts/Tss = 2, we get (!3n)max 
~ 1000(kTor\ i.e., the nuclear polarization in the DC 
method can be larger than in the ordinary DNP method. 

We now proceed to consider the case of greatest 
practical interest, that of low temperatures, tiwe/kT0 

?. 1. At low temperatures, and consequently at appreci­
able polarization of the electron spins, we can no longer 
regard the EZS and the DDS as statistically independent 
systems. In order for two energy systems to be regar­
ded as statistically independent, it is necessary to 
satisfy the following conditions: a) the set of eigenstates 
of the Hamiltonians defining each system must not 
change when the populations of these states change in 
the other system; b) the populations of the states in each 
system can be specified independently (i.e., the tempera­
tures in each system are independent). 

The DDS energy depends on different spin configura­
tions, i.e., on the mutual orientations of the electron 
spins. Let the electron polarization Ps have a fully 
defined value, i.e., Ts is specified, then the set of the 
microstates-configurations whose populations deter­
mine the macrostate of the independent DDS- is limited 
by the requirement that each microstate corresponds to 
this polarization. The statistical weight of the configura­
tions corresponding to large Ps (close to unity) is much 
smaller than the statistical weight of the configurations, 

responding to Ps ~ 0. Therefore, in the high tempera­
ture case (tiwe/kT0 << 1), when Psis close to zero, the 
permissible configurations-s~ates-include a large 
fraction of the eigen~tates of ::Jtss• as a result of which 
we can assume that .'"ltss defines the DDS well. We can 
change arbitrarily the population of the majority of the 
states of .icss without changing Ps in practice (if the 
latter is small) or, conversely, we can change the polar­
ization without hardly changing either the set of states 
iess or their populations. This means that we can 
specify two statistically independent systems, E ZS and 
DDS[wJ. 

The situation changes radically in the low-tempera­
ture case (tiwe/kT0 ?_ 1). Now Psis close to unity, and 

the set of admissible states of .ftss is greatly redu2ed, 
i.e., most degrees of freedom of the Hamiltonian ;;tess 
are "frozen." In the limiting case Ps = 1, only one 
configuration is possibl!!· To define the DDS it is neces­
sary to separate from .'"lfss that part which corresponds 
to the "unfrozen" degrees of freedom. Change of the 
polarization, i.e., a change of Ts, changes strongly the 
number and the energy spectrum of the admissible con­
figurations, i.e., it is necessary to redefine the DDS. 
This means that at low temperatures the separation of 
the electron spin system into two statistically indepen­
dent subsystems EZS and DDS is impossible. 

We shall consider the case of strong EPR saturation. 
Then, as shown by Redfield[llJ, the electron spin system 
(ESS) in the stationary state can be described by a single 
spin temperature T* (see also[6 J ). Redfield's approxi­
mation is valid in the case T c << T s, where T c is the 
correlation time in the ESS. If the EPR line is broad­
ened by dipole-dipole interaction, then T c ~ wii\ where 
wo is approximately equal to the EPR line width, and the 
inequality T c « T s is violated only for electronic polar­
izations Ps ~ 1, such that wo ~ T"fr The density matrix 
of the ESS and NZS, in the case of strong EPR satura­
tion, takes in this case the form 

exp [(116S'- ~,)/kT* + llwn"NkT,] 
p = ' ' ' (19) 

Sp {exp [(nM'- de_,)/kT' + nw,J'/kT,]} 

(We assume that y eH1 << wo, which is true even in strong 
saturation if w 0 » T~1). If we disregard the spin-lattice 
relaxation, T* can be determined from the energy con­
servation law[7J: 

-11!1· Sz + 3£'"' = cons!, (20) 

where the bar denotes statistical averaging. The inter­
action 3Csl equalizes Tn and T*, but only if (11) is satis­
fied, just as in the high-temperature case Tn ~ T*, 
except that now g1(w) is defined by 

(21) 

We call immediate attention to the fact that the larger 
the electron polarization Ps, the smaller the frequency 
region at which g1(w) differs noticeably from zero. In­
deed, for the second moment M; if the ESS is in equili­
brium at the temperature Ts, we can readily obtain 

M2' = AN(oo)ch-2 (1lw./2kT .• ), (22) 

where M~(00 ) is the second moment of g1(w) calculated 
for an infinitely large temperature T s. Recognizing that 
Ps = tanh(liwe/2kTs), we obtain 
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(22a) 

Thus, the condition (11) that the temperature of the NZS 
be equalized with T* is satisfied the worse, the larger 
the stationary electron polarization. This factor must 
be taken into account when choosing the optimal condi­
tions for obtaining large nuclear polarization by the 
dynamic cooling method. 

We shall now attempt to calculate the stationary ESS 
temperature T*, equating in accordance with (20) the 
values of - ti ~sz + :itss in the stationary state under the 
influence of the alternating field and in the initial 
equilibrium state: 

Sp{(- MS'_j- ic,.)exp[(MS'- ic .. W]} 
Sp{exp[(MS'- ie,.) ~·]} 

Sp { (- tu'y,};z + ie .,) exp[- liroeB'~o]} 
Sp{exp[-liro.s~~o}} 

(23) 

Here (:3* = 1/kT* and f:3o = 1/kT0 • In (23) we used, for the 
ESS density matrix in the equilibrium state the expres-
sion 

Po= exp[-liro.S'~o] /Sp{exp[-liro.S'(:lo]}. 

In the equilibrium density matrix Po we have retained in 
place of the Ham.gtoni~ fiweS'Z + .;mss only the first 
term, since fiweS >> ~ss· 

An exact calculation of the expression in the left side 
of (23) is impossible at present. To calculate approxi­
mately the corresponding traces of the matrices, we 
expand exp[(ti~sz- ~ss)f:3*] in a series in .iessf:3*: 

exp[(MS'- .7£,.) ~·] = exp(MSz~') ( 1- :1i .. ~· + ; Ji .. •~··- ... ). 
(24) 

In the expressions for the corresponding traces, we can 
confine r,urselves to only a few terms of the resultant 
series, namely, we retain only the dipole-dipole inter­
action averaged over the different pairs of the interact­
ing spins, and disregard the dipole-dipole interaction of 
three, four, and more closely-lying spins. Thus, for 
example, let us consider the term of the series in the 
left side of (23) 

Sp{exp(M· ~·s;) · (1/~~,?~:_'2 
Sp{exp(M· ~'S')} 

It contains both terms of the type a): 
(Sp{exp(M· ~'S')} )-1Sp{exp(M· ~'S'). 

1 ~ -- --} 1 1 
·- ~·3 2.J B;,•(S,+S.-)2(Sk-Sk+)• = --- p''~ B k•..,...,...,..,.,...,.......,~ 

3! i# ' · 3! i# ' 4ch2(1illp'/2)' 

and terms of the type b): 
- { - 1 ~ (Sp{exp(M·p'S')})-1 Sp exp(M·p'S')3i·P'3 LJ B;"2 Bkm2 

• i=Fko#m 

------} 1 1 X(S;+S,-) (S.-S.+) (Sm+Sm-) =- ~· 3 ~ Bu,2Bkm2-- ---1 -. 
3! i*"*"' 8ch3 (.1ic\ · p• 2) 

We retain only terms of the first type, where only pairs 
of interacting are taken into account. This is due to the 
fact that at large electron polarizations (ti~ · (:3*/2 > 1) 
these terms are the largest, being proportional to 
cosh-2 (1i~ · (:3*/2), whereas the discarded terms are 
proportional to cosh- n(ti ~ · (:3* /2), where n > 2. Phys­
ically this is explained by the fact that at large electron 
polarizations the probability w that several mutually 
flipped spins turn out to be close to one another (only 

such configurations contribute to "iiss) decreases very 
rapidly with increasing n-the number of the flipped 
spins, namely, w ~ cosh- n(ti ~ · (:3* /2). On the other hand, 
if we consider the case of small polarizations (ti~ · (:3* 
« 1), then it is necessary to retain in the series (24) 
only the first two terms, which give only terms of type 
a). Thus, if we retain only terms of type a) in the calcu­
lation of the traces in (23), then the resultant expression 
is close to the exact one both in the case of large and in 
the case of small (:3*. It is therefore reasonable to as­
sume that this expression can serve as an interpolation 
formula for all values of ti ~ · (:3*. 

As a matter of fact, in the described procedure the 
mean value of the energy of the spin system is calcula­
ted without allowance for the correlation in the direc­
tions of the individual spins. In the Ising model, such a 
calculation yields for the average energy a result close to 
the exact value, provided the polarization is not too 
small [l2J • In our case (spin system with anisotropy 
spin-spin interaction, placed in an external field com­
parable in order of magnitude with the internal field 
(ti~ l':j Aij)), is close to the Ising model (the energy 
spectrum has a gap)[12 l. Therefore the interpolation 
formula for the determination of the stationary (:3* can 
hardly deviate greatly from the exact formula. Taking 
into account the foregoing considerations, we obtain in 
lieu of (23) 

thro- thr = (roo J'r---"-{e•r(1- thr)' +-2-
ll 6 ch2 r ch' r 

+(1+thr) 4 e-•r+2} {25) 

where ro = fiwo/2kTo, r = fi~ · (:3*/2, and the factor 11 

takes into account the influence of the spin-lattice coup­
ling {II = 1-3). 

For simplicity, we consider a sample in the form of 
a sphere, so as not to take the demagnetizing field into 
account. If the sample is not a sphere, then~ in (25) is 
the deviation of the frequency of the alternating field 
from the resonant frequency we, calculated with allow­
ance for the demagnetization field. The problem of 
finding the stationary spin temperature T* = 1/k(:3*, and 
consequently also Tn (if condition (11) is satisfied), re­
duces to a solution of the transcendental equation (25). 

In the study of the optimal conditions under which the 
maximum nuclear polarization can be obtained in the 
DC method, it is necessary to take into account the fact 
that the power P absorbed by the spin system is much 
larger than in the ordinary DNP method, for in this case 
the saturated transitions are allowed and not forbidden. 
Therefore, if the electron-spin density and the field H0 

are very large, difficulties may arise, first with the 
supply of such a large power, and second with the re­
moval of the heat from the sample to keep the tempera­
ture low. The absorbed power is 

liro _ -z !iron, V {26) 
P ~-(So'- S stat)=·-- (thr0 -thr), 

l's 2Ts 

where ns is the spin density and V is the volume of the 
sample. An increase of the field H0 causes also the in­
crease of ns, because when wn is increased it is neces­
sary, in order to satisfy (12) with account taken of (22a), 
to increase the width g1(w), i.e., to increase the spin 
density ns. The value of T s also decreases as a rule with 
increasing H0 • Thus, inasmuch as the experimental tech-
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nique always calls for the condition P < Pmax' this im­
poses an upper limit on the possible constant magnetic 
fields. 

Thus, if we satisfy the conditions (12) (with allowance 
for (22a) and (26)), then the solution of (25) yields 
j3*-the reciprocal temperature of the NZS and the 
nuclear polarization 

(27) 

We shall not present a general investigation of the solu­
tion of (25) with allowance for conditions (12) and (26). 
This can be done in each concrete case. 

Let us consider two cases showing that at low tem­
peratures the DC method can be quite effective. 

1). Sample with organic free radicals and an iso­
tropic g-factor equal to two; the polarized nuclei are 
protons. To= 1°K, Ho = 10 4 Oe. Let a. = Wo and ll = 2. 
Solving (25) under these conditions we get r = 0.225, 
i.e., j3* = 2r/nwo =' 0.45~/116. At To= 1°K we can as­
sume that T 1 "" 10- 1-10-2 sec. From (12a) and (22a) we 
find that when 6 = 0.4wn (or, in Oersteds, 6 R> 6 Oe) 
a"=' 103 » 1, i.e., condition (4) is satisfied. Then (27) 
yields 

0,45y3 
Pn = Lh -- --;;:;; 0,75. 

2-114 

The concentration ns = 5 x 1019 cm-3 • The power P ab­
sorbed in the sample, according to (24), is ~ (2-3) 
x 10-3 W/cm3 • 

2). In a field Ho = 20,000 Oe at a. = w0 we obtain from 
(25) r = 0.35. Then Pn = 0.90. Under these conditions 
6 "=' (12-13) Oe, and the absorbed power increases to 
10-2 W / cm3 • It should be noted that the sign of the polar­
ization Pn can also be easily changed by changing the 
sign of fl. The time necessary to change the sign of the 
polarization is determined by the larger ·ef.. the two 
times: the time required to change the sign -or~, or the 
electron spin-lattice relaxation time Ts. The large 

speed with which the polarization sign is reversed is 
very important in experiments with polarized targets. 

In conclusion, I am grateful to B. N. Provotorov, 
I. I. Levintov, V. P. Sokolov and the participants of the 
Seminar of the Theoretical Division of the Institute of 
Chemical Physics, headed by A. S. Kompaneets, for 
fruitful discussions. 
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