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The phase transition in an Ising lattice containing impurities that are in thermodynamic equilibrium 
with the lattice is considered. For the partition function of a lattice containing impurities, an expres­
sion is obtained in the form of a certain contour integral of the partition function for the pure lattice. 
The dependence of the phase-transition temperature on the concentration is obtained. It is shown that 
the presence of impurities in a lattice leads to the result that a third-order phase transition develops 
instead of a second-order phase transition. 

1. A solution of the question as to how impurities 
affect the nature of the phase transition in a ferromag­
net is of considerable interest. However, contemporary 
mathematical methods of statistical physics do not 
enable us to give a reliable answer to this question in 
general form; therefore it is reasonable to resort to a 
simple model in order to obtain exact results. We shall 
use the two-dimensional Ising model (see, for exam­
ple, [l,zl) with an interaction between nearest neighbors. 
In this model the atoms are located on the lattice sites, 
and the state of each atom is characterized by a spin 
variable a having two values ±1. It is assumed that 
the interaction energy between two nearest neighbors 
is given by Ja 1a 2 (J is the interaction constant). Now 
let us imbed in this lattice impurities which, by intrud­
ing between neighboring atoms, change the intensity of 
the interaction between them. The total energy of such 
a lattice containing impurities depends on the configu­
ration of spins and on the way in which the impurities 
are distributed. Our goal is to find the partition func­
tion Zs, 

Z, = ~ exp[- ~E(Q,[cr])], (1) 
[a], Q 

where the summation goes over all spin configurations 
[a J and over all ways Q of distributing s impurities 
over the lattice. The free energy obtained from (1) 
gives us information about a system in which the im­
purities are able to reach thermodynamic equilibrium 
with the lattice. If we wanted to study the properties 
of a system containing impurities that are randomly 
distributed but fixed on their own sites, then it would 
be necessary to average the free energy with respect 
to the distribution of impurities. [3 ] However, this is a 
more complicated problem (see, for example, [4 l ). 

2. Now let us show that the partition function for a 
lattice containing impurities may be expressed in 
terms of a certain contour integral of the partition 
function Z for the pure lattice. The latter obviously 
can be written in the form 

Z = ~ g(r)xN-'y', 

where N is the total number of bonds in the lattice (we 
shall call a line joining two neighboring atoms a bond), 
r is the number of negative bonds (lines which join 
atoms with oppositely directed spins), x = y-1 

= exp ( {3J ), and g( r ) is the number of spin configura­
tions for a lattice containing r negative bonds.Pl Let 
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us consider some configuration with r negative bonds, 
and let us distribute s impurities between the atoms 
of the lattice in all possible ways. The number of ways 
to arrange p impurity atoms on N - r positive bonds 
and s - p atoms on r negative bonds is cPN Cs-p. At -r r 
the same time xP is replaced by up and ys-p by vs-p 
( u = v-1 = exp ( {3J 1 ), where J 1 is the new coupling con­
stant obtained as a result of screening). Thus, the 
contribution of a single configuration with r negative 
bonds to Zs is 

(2) 

The integral in (2) is taken around the circumference 
of a circle with center at the point z = 0. It is impor­
tant to note that only the order of the terms in the sum 
in Eq. (2) depends on the arrangement of the spin con­
figuration of the lattice, but not the magnitude of the 
contribution itself. This circumstance enables one to 
relate Zs and Z since g( r ) will contain terms of the 
form (2): 

1 A', dz 
Z, = -. ;y- ~g(r) (x + zu)"-'(y + zv)' 

2::rn zs+1 r 

1 A', dz ( y + zv ) =-;y -(x+zu)NZ --- . 
2ni z'+1 x + zu 

(3) 

For specific calculations it is convenient to make the 
change of variable zuy( 1 + zuy r1 = t in expression (3 ). 
Then 

(4) 

where 

0 <a< 1 and S(z) = ~ g(r)z'. 

The function S( z) is well known only for planar Ising 
lattices (seeP,zJ) although formula (4) itself is also 
valid for the three-dimensional case. 

3. In what follows we shall be interested in the free 
energy per bond F c of a lattice with impurities as 
N- oo, s- oo and c = s/N (c denotes the concentra­
tion of impurities); therefore the integral appearing in 
expression (4) can be found by the saddle-point method. 
Since the pre-exponential factors do not give any con­
tribution to the free energy as N- oo, then the whole 
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calculation apparently reduces to the determination of 
Fe at the saddle point: 

Z, ~ cxp ( -~NF,). 

The quantity F c is related to the free energy F of a 
pure lattice by the formula 

-~F, = F(rt) -cins- (1-c) In (1-£) +c~J 1 + (1-c)~J, (5) 

where rJ = ( 1 - 0y 2 + ~v2 and the saddle point ~ is 
determined from the condition a (J3Fc )/a~ = 0, which 
is more conveniently written, using the variable rJ, in 
the form 

c 1-c 
---+--+F'(rt)=O. (6) 

'1- y" v'- '1 

In the case of a square lattice the expression for F( rJ) 
is well known (see, for example,P, 2 l): 

1 1 • 
F(TJ) =-In rt (1- TJ') +- ~ In[A- cos <p + l'(A- cos cp)"- 1] dcp, 

4 8n 0 (7) 

where A= (1 + rJ 2 ) 2/2T}(1 - YJ 2 ). Equations (5) and (6) 
determine the temperature dependence of Fe. 

A phase transition occurs at rJ = T}a = 12- 1 (at this 
point F( rJ) has a singularity). Since A( rJ) has a mini­
mum at YJ = T}a, one can easily show, by using formula 
(7), that F' (T}a) = 1274. Substituting this number into 
Eq. (6), we obtain the dependence of the phase transi­
tion temperature on the concentration: 

c 1-c l'Z 
---+--+-=0. (8) 

!]o - y2 v' - !]o 4 

We shall find an explicit solution of this equation in two 
cases: 1) the impurity completely breaks the bond 
( J 1 = 0 ); 2) the impurity changes the sign of the inter­
action (J1 =- J ). 

In the first case v = 1 and Eq. (8) gives 
1-2c 

Y'A2=·--_c_~ 
1 +12-2c 

where YA = exp( -J/TA.( c)] and TA. is the phase-transi­
tion temperature. For c = 0.5 the value of TA. tends 
to zero, i.e., the phase transition disappears. A simi­
lar calculation for hexagonal and triangular lattices 
shows that in those cases the phase transition disap­
pears when the concentration equals (15 - 5,13)/18 or 
(3 + 5/3)/18, respectively. 

In the second case v = y-1 , and from Eq. (8) we find 

4c- 2 +12 
Y>.' = ~- ~----. 

4c- 2-12 

This expression is negative for 2 - ..f2 < 4c < 2 + 12, 
i.e., there is no phase transition in this range of con­
centrations. For 4c < 2 - ..f2 a phase transition oc­
curs into a ferromagnetic state, and for 4c > 2 + 12 
a phase transition occurs into an antiferromagnetic 
state. The dependence of TA. on c for various cases 
is graphically shown in Fig. 1. 

4. In order to find out how the impurities influence 
the behavior of the heat capacity near a phase-transi­
tion point, let us consider the solution of Eq. (6) for 
small deviations of YJ from T}a and T from TA. ( c ). For 
simplicity we shall assume that the bonds are com­
pletely broken ( v = 1 ) and the concentration is small. 
Without these assumptions the result remains qualita­
tively the same, but the calculations become more 
cumbersome. Thus, we transform Eq. (6), taking 

c 
FIG. I. Dependence of the phase-transition temperature on the im­

purity concentration for various disturbances of the bonds. J 1 = 0 for 
curve I, J 1 = -J for curve 2, and J 1 = (1/2)1 for curve 3. 

T} = T}a + o and Y2 = Y1 + Oa where o, Oa << 1. As are­
sult we obtain 

6 - llo - ...:_ /lin Ill I = 0. (9) 
a 

Here a = 7T( 12 + 1 )J' 2 • Let us make the substitution 
o = y exp (a/c). Then for y we have the simpler equa­
tion: 

c ( a) 1 bo=-;_;-exp--;;- ylnTYT. 

Hence 

y = abo/c exp ( ~ )1n~. (10) 

Let us substitute this expression for y into the right 
hand side of Eq. (10). Then neglecting terms 
~ ln ln loa l-1/ln loa I, we obtain the following expres­
sion for o: 

ullo 
~~~-
~ a+c!nc-cinlllol 

(11) 

For loa I » exp (-a/c) expression (11) gives o ~ oa, 
but for loa I « exp (-a/ c ) we have o ~ -aoa/ c ln loa 1. 

Now let us expand expression (5) for the free energy 
Fe near a critical point in powers of o and oa, and 
we retain the terms proportional to og and ooa (the 
terms ~o 2 give a contribution which is 1/ln loa I 
times smaller). We write down only the terms of 
second order (the terms of first order vanish because 
of condition (6 ), and the terms of zero order do not 
give any contribution to the heat capacity): 

c 6o2 -2Mo 1 'I l~l ~Fe= -- --0 n u . 
2('1o-Y>.") 2 2a 

From Eq. (6) one can easily find, having expanded 
F' ( TJ) in a power series, 

- _!___ llinlli I= coo/ ('lo- Y>.2) 2 • 
a 

Then expressing T}a - YA in terms of c and taking 
expression (11) into consideration, we obtain (in the 
region oa«exp(-a/c)) 

~F __ c Oo2 -Mo __ (t+r'z)' Oo'[t+-a-]. (12) 
c- 2 (rto- y>.2)2- Hie clnllll 

In order to calculate the heat capacity it is convenient 
to change from the variable Oa to T = ( T - TA. )/TA. 
according to the formula Oa = 2Jy{T /TA.. One can easily 
find the heat capacity from Eq. (12), setting y~ = 12- 1, 
correct to within terms ~ c: 

fJ2F (1+12)' !' [ a J 
c =-Tar,~ 2c T,.2 1 + c!nl-rl · 

A graph of the heat capacity is shown in Fig. 2. 
5. Thus, we see that at the critical point the heat 
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FIG. 2. Behavior of the heat capacity 
as a function of the temperature for impur-
ity concentration c = 0.2 (J 1 = 0). J 

ll I Z J TjJ 

capacity remains finite, but its derivative tends to in­
finity like -1/r ln IT I, that is, the impurities change 
a second-order phase transition into a third-order 
phase transition. However, this unusual behavior of 
the heat capacity will be observed only in an expon­
tially narrow range of temperatures, T :s exp( -a/c), 
and since the value of a is numerically large 
(a::>! 19 ), this region will remain very narrow even 
for high impurity concentrations. Outside of this region 
o ::>! Do, and the heat capacity will exhibit the usual 
logarithmic dependence. 

It is not difficult to extend the results obtained 
above to the three-dimensional case. Numerical cal­
culations show that at a critical point the free energy 
of a three-dimensional Ising lattice has a singularity 
of the form IT 12 -a where a= Ya. The solution of Eq. 
(6) near IT I= 0 then gives C ~IT Ja/(1-a>~ IT J 1 i 7 

for the singular part of the heat capacity, that is, the 
heat capacity even in this case will be finite at the 
critical point. 

The question as to what will happen if the impurities 
are distributed not on the bonds but on the lattice sites 
remains open. Then each impurity breaks k bonds (k 

is the number of nearest neighbors); however, this is 
still not the complete story since, let us say, two im­
purities may break either 2k bonds or 2k - 1 if they 
are nearest neighbors. If the impurity concentration 
is not large and one can neglect those impurity con­
figurations in which the impurities are distributed on 
neighboring sites, then one would think that the results 
of the present article should remain valid for this case 
as well. It is possible, of course, that the singularity 
will not be unique since as the temperature is lowered 
the impurities may start to condense into drops, and 
still a phase transition of the first kind will occur. 
Then it is impossible to neglect configurations in which 
the impurities are nearest neighbors, but this conden­
sation will occur at a temperature which is substantially 
more dependent on the concentration than TA is; there­
fore these two singularities may be separated by an 
appreciable temperature interval. (As c decreases 
the condensation temperature tends to zero but T.>t 
remains finite.) 

In conclusion the author wishes to thank V. G. Vaks, 
A. I. Larkin, and M. A. Mikulinski1 for helpful discus­
sions. 
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