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A general theory of noncanonical transformations is constructed, which offers a possibility of finding 
essentially new invariance properties of physical systems. A connection is established between non­
canonical change from one Hamiltonian to another and the replacement of the time by other parameters. 
It is shown that in quantum theory such a change has corresponding to it a method of quantization of 
physical quantities such as charge and mass, for example. As an example we consider the application 
of the general theory to the Coulomb interaction of two nonrelativistic particles. There is a unique 
relation of the new Hamiltonian to a 15-parameter group C1 5 which is different from the Malkin­
Man'ko group. The group so introduced changes the interaction constant and makes it possible to 
proceed without solving the equations of motion for the two particles, and find the solutions by means 
of transformations from the known solutions for noninteracting particles. 

1. INTRODUCTION 

THE existing methods, based on the use of the usual 
Poisson brackets, for studying the commutation rela­
tions of observables with the Hamiltonian do not offer 
the possibility of discovering many relations charac­
terizing in variance properties of physical systems. 
For example, this is indicated by the fact, not explain­
able by these methods, that the majority of the special 
functions applied in the exact solutions of physical 
problems have been found[1-4J to have their natural 
origins in groups. The theory of noncanonical changes 
to new Hamiltonians and new Poisson brackets, con­
sidered in this paper, allows us to find previously un­
known invariance properties of physical systems and 
greatly extends the applicability of group methods to 
the solution of physical problems. 

The invariant relations hold both in classical and in 
quantum theory, and they can be treated in the frame­
work of a unified theory[s,sJ of classical and quantum 
systems. Instead of this we shall verify them inde­
pendently for corresponding classical and quantum 
cases. The examples treated in this paper are merely 
illustrative and do not exhaust the new approach to the 
problems touched upon. 

2. INVARIANCE AND GROUP PROPERTIES OF 
PHYSICAL SYSTEMS AND THE GENERAL METHOD 
OF NONCANONICAL CHANGE TO NEW POISSON 
BRACKETS 

The invariance properties of a physical system with 
respect to an r-parameter continuous group are char­
acterized by the prescription of r observables FA 
= FA ( p, q) which form a Lie algebra: 

(F~,F~,]= ~CA~v~ ... 
1., 

(2.1) 

A a 
Here cA A 

1 2 
are the structure constants of the group, 

and [] are Poisson brackets; the respective formulas 
for these in the classical and quantum cases are 
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i 
(Ft.Fzl=h(F,F,-F:J?,). (2.3) 

If [H, FA]= 0, then the group defined by (2.1) charac­
terizes the invariance properties of the Hamiltonian H. 
In the more general case when H is one of the elements 
FA, and does not commute with the other elements, the 
relations (2 .1) characterize the dynamicalinvariance of 
the physical system. If we introduce canonical parame­
ters ~A for the group and set X= :E~AFA, the depend-

A 
ence of an observable on the parameters ~A is given 
by the equation 

F(s',p,q)= F(O,p,q)+ i~ (X,F(O,p, q)J+}[X,[X,F(O,p,q)]]+ ... 

(2.4) 

In the special case when X= tH, Eq. (2.4) gives the 
dependence of the classical and quantum observables 
on the time t. 

The transition from the commutation relations (2.1) 
to the group transformations (2.4) is, as we know, not 
associated with the specific form of the Poisson 
brackets. All that is necessary is that ~he conditions 

[F,F2] == -[F,Fi], (2.5) 

[F., [F,, Fa]] + [F2, [Fa,F.]] + [Fa, [F., F2]] ""'0. (2 ,6) 

be true identically for arbitrary F 1, F 2, F 3• It follows 
that if we can find new Poisson brackets, which are 
canonically nonequivalent to (2.2) and (2.3) (i.e., which 
change the canonical relations between the observa­
bles), but which satisfy the identities (2.5) and (2.6), 
then we get essentially new ways of studying the invari­
ance properties of physical systems. In fact, in this 
case the possibility of satisfying (2.1) will depend on 
the choice of the Poisson brackets; that is, to each new 
choice there will in general correspond the emergence 
of different invariance- group properties of the physical 
system. 

The general method of noncanonical change to new 
Poisson brackets, applicable to both the classical and 
the quantum cases, is as follows. Let T be a linear 
transformation (homomorphism) of the infinite­
dimensional space formed from all possible observa­
bles F which are under consideration. We introduce 
new brackets by the formula 



106 G. A. ZAITSEV 

(2.7) 

The transformation T with inverse will be canonical 
if for arbitrary observables 

(2.8) 

In particular, let us examine the meaning of the 
transformation T for the quantum case, in which one 
takes for the observables F arbitrary Hermitian op­
erators in a Hilbert space.1> If F1 and F2 are two 
observables, their linear combinations c1F1 + c2 F 2 

(where c1 and c2 are real numbers) will also be ob­
servables, and therefore the set of all quantum-mechan­
ical observables considered forms an infinite-dimen­
sional linear space. The canonical transformation 
characterized by a unitary operator S takes an ob­
servable F over into TsF = SFS-1; such operators are 
also Hermitian and therefore belong to the linear space 
of observables. The canonical transformation Ts has 
an inverse (so that from TsF = 0 it follows that F = 0) 
and is characterized by the property that if a Poisson 
bracket was not equal to zero before a transformation 
it will also be different from zero after the transfor­
mation. In contrast with this, a homomorphism or 
automorphism of (2. 7) can be a noncanonical transfor­
mation, and in this case, as will be seen from later 
examples, it can take nonzero Poisson brackets over 
into zero. 

Let us return to the general case. Let T be chosen 
so that the transformation is not canonical. We shall 
show that the identities (2.5) and (2.6) are satisfied. 

The relation (2.5) for [ h follows from the defini­
tion (2.7). With the old brackets the Jacobi identity 
(2.6) is valid for arbitrary observables, and therefore 
it is still valid when F1, F2 , F3 are replaced by TF1, 
TF2 , TF3• Using the definition (2.7), we see that the 
new brackets satisfy (2.6), i.e., it is in fact permissi­
ble to take them as the new Poisson brackets. 

3. NONCANONICAL CHANGE FROM ONE HAMILTON­
IAN TO ANOTHER IN CLASSICAL MECHANICS 

Let us consider a noncanonical change of a special 
type in classical mechanics, which will be important 
for what follows. This change, as we shall see, allows 
us to discover new invariance properties of the New­
tonian and Coulomb interactions, and furthermore the 
results so obtained can be carried over into quantum 
theory by means of the correspondence principle 
(associated with replacement of classical Poisson 
brackets by quantum Poisson brackets). 

Let the classical Hamiltonian be a function of some 
constant Ko: 

H = H(p, q,Ko). (3.1) 

We shall assume that (3.1) can be uniquely solved for 
Ko: 

Ko = <D(p, q,H), (3.2) 

and that conversely (perhaps with some supplementary 

1 >In the general case it is not necessary that the set of quantum-mech­
anical observables include arbitrary Hermitian operators; it suffices to 
require that this set constitute an algebra with the algebraic operators 
of Lie and Jordan multiplication. 

restrictions) (3.1) follows from (3.2). We define the 
automorphism T as the transformation under which 
observables F( p, q, Ko ) go over into 

TF{p,q,Ko} =F{p,q,<D(p,q,H0 )}, (3.3) 

where H0 is a fixed number, the numerical value of the 
energy. The constant K0 accordingly goes over into the 
function 

K = <l>(p, q, Ho). (3.4) 

Under the inverse transformation T-1 the number H0 

is again replaced by the function (3.1). Since with the 
change from (3.2) to (3.4) the Poisson bracket of H0 

and F becomes zero, the transformation (2. 7) is here 
a non canonical change to new Poisson brackets. 

It follows from (3 .2) that since 

[H,F]= L; ( .!.!._ dp. + iJE dq" )= dF' (3_5) 
• . ap. dt aq. dt dt 

for an arbitrary observable F we have the identically 
true relation 

[Ko,F]= ~(iJ<D iJF- iJ<D iJF )+ iJ<DdF ==0. (3.6) 
• ap, aq. aq. ap, an dt 

On the other hand, according to (3.4), 

(K,F] = ~( iJ<l> ~- iJ<D iJF). (3.7) 
• ap. oq• aq. ap, 

It follows from this that if TF = F, i.e., if F does not 
depend on Ko, then 

iJK dF 
(Ko,F]T = (K F] =---

' iJH0 dt · 
(3.8) 

We now introduce instead of the time t an independent 
parameter r, for which 

dT = dt f (- aU:.). 
It then follows from (3.8) that 

dF 
dT = (K, F] = [Ko, FJT, 

(3.9) 

(3.10) 

so that it is possible to regard K as a new Hamiltonian 
corresponding to the new time r. Therefore the trans­
formation T, which corresponds to replacement of K0 

by K and H by the constant H0 , can be interpreted 
physically as a noncanonical change from one Hamil­
tonian to another. 

As an example let us consider the case of a free 
relativistic particle, for which, as is well known, 

(3.11) 

For the constant Ko we here take -mc2 • Then from 
(3.11) we have 

K = - (H02 - c2p2) ''', (3.12) 

Using the fact that c2 p2 /H~ = v2/c2 , we find from (3.9) 

dT = dtl'1- v2 I c2, (3.13) 

so that the new parameter r is the proper time of the 
relativistic particle. 

This noncanonical transformation from one Hamil­
tonian to another can be generalized in various ways. 



NONCANONICAL CHANGE FROM ONE HAMILTONIAN TO ANOTHER 107 

4. NONCANONICAL CHANGE FROM ONE HAMILTON­
IAN TO ANOTHER IN QUANTUM THEORY 

In quantum theory, where the observables F are 
Hermitian operators in Hilbert space, one could con­
struct a general theory of noncanonical transformations 
for Hamiltonians corresponding to the classical theory 
expounded above. For brevity, however, we shall 
consider only a special form of noncanonical change, 
in which one can trace all of the main features of the 
new approach to the problem of studying the invariance 
properties of quantum systems. 

Let the Hamiltonian operator H depend linearly on 
a constant Ko: 

H= A(p, q) -KoB-I(p, q), (4.1) 

where A and B-1 are Hermitian operators. If the 
system is in a state belonging to an eigenvalue H0 of 
the operator H, then 

H.p(Ho,K0 ) = Ho¢(Ilo,Ko). (4.2) 

Let us introduce a new function cp which depends on 
the parameters Ko and Ho and is connected with the 
wave function 1/J(H0 , Ko) by the formula 

'¢(Ho,Ko) =BffJ(Ilo,Ko). (4.3) 

Then, when we use (4.1), Eq. (4.2) can be rewritten as 
a new eigenvalue equation: 

Kf{J(Ho, Ko) = KoffJ(Ho, Ko), 

where the operator K is defined by the formula 

K=AB-HoB. 

(4.4) 

(4.5) 

With respect to the usual definition of the norm the 
operator K is not Hermitian. The spectral theory of 
this sort of nonhermitian operators is known (see, for 
example, the monograph[7 l), but if the operator B-1 is 
positive definite, so that (1/JIB-11/J) 2:: 0 for arbitrary 1/J, 
it is possible to regard operators of the form (4.5) as 
Hermitian operators in a Hilbert space with a new 
definition of the norm. In fact, let us introduce the new 
norm with the definition 

{ffJdffJ2:> = (ffJdBffJ2) = (B-1'¢d¢2), 

where cp 1 = B-11/J1, cp2 = B-11/J2 . Let X = YB, where Y 
and B are Hermitian operators with respect to the old 
norm. Then 

{<pdXffJ2:> = (<pdBYB<p2) = (YBffJdB<p2) = {X<pd<p2}, 

i.e., the operator X is Hermitian with respect to the 
new norm, and in studying it we can use the ordinary 
theory of Hermitian operators. The operator K is the 
result of multiplying the Hermitian operators A - Ho 
and B, and therefore according to this demonstration 
it is Hermitian with respect to the new definition of the 
norm. 

The change from (4.1) and (4.2) to (4.4) and (4.5) 
can be interpreted as a noncanonical change from the 
Hamiltonian operator H to the new Hamiltonian K. 
According to (4.3), the wave functions for the two 
alternative ways of writing the equations are mutually 
determined in terms of each other. In fact, if the solu­
tion of Eq. (4.2) is known, then according to (4.4) 

cp = B-11/J will be the eigenfunction of the operator K, 
and conversely, if cp is an eigenfunction of the opera­
tor K, then Bcp will be the eigenfunction of the opera­
tor H. Nevertheless there is an essential difference 
in the statements of the eigenvalue problems. For the 
first Hamiltonian one regards the constant K0 as given 
and looks for the spectrum of energy levels H0 • For 
the second Hamiltonian the energy H0 remains fixed 
and one looks for the constants K0 and the correspond­
ing eigenfunctions cp • Along with this the existence of 
a dynamical invariance of the new Hamiltonian will 
lead to new group-theoretical methods for finding the 
wave functions and to a simplification of the solution 
of the ordinary wave equation (4.2). In particular, if 
by means of an appropriate transformation one can get 
solutions of (4.4) for Ko >1f- 0 from the solutions with 
Ko = 0, this will provide a possibility of getting solu­
tions of the ordinary wave equation (4.2) for K0 >1f- 0 
from the solutions with K0 = 0. 

If in physical applications constants of the type of 
Ko have the meaning of physical constants, for exam­
ple charge or mass, this method of noncanonical 
change to a new Hamiltonian will lead to a way of 
quantizing them. 

5. INTRODUCTION OF THE 15-PARAMETER GROUP 
C1s WHICH CHARACTERIZES THE INVARIANCE 
PROPERTIES OF THE COULOMB INTERACTION 
IN CLASSICAL AND QUANTUM MECHANICS 

We shall apply the method of noncanonical change 
from one Hamiltonian to another to the case of the 
Coulomb interaction of two particles with charges e1 
and e2 and reduced mass m = m1m2/(m1 + m2 ). 
Setting Ko = -e1e2, we have 

H = p2/2m - Ko/r. (5.1) 

It follows from (3.4) and (4.5) that in both classical and 
quantum mechanics the new Hamiltonian will be of the 
form 

K = p2rf2m - Hor. (5.2) 

Taking as generators the new Hamiltonian K and the 
components rs (s = 1, 2, 3) of the radius vector, and 
calculating all possible Poisson brackets expressed in 
terms of these generators, we find that K and rs un­
ambiguously generate a Lie algebra of 15 linearly inde­
pendent elements Xi\. Using (2.4), one gets from this 
the local definition of a 15-parameter Lie group. 

We can write out the generators Xi\ of the group so 
found in explicit form for both classical and quantum 
theory. To make the forms the same we use the concept 
of the Jordan product of observables, which will be de­
noted by a dot: 

(5.3) 

It follows from (5.3) that in quantum theory, where the 
observables are Hermitian operators, the Jordan 
product of two observables is also a Hermitian opera­
tor, and in classical theory the Jordan product is the 
same as the ordinary product. The indices s take 
values 1, 2, 3 and indices a, {3 the values 1, 2, 3, 4, 
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and raising and lowering of indices is done by means 
of gctf3• where 

lJn = 1J22 = lJ•• =-g.-= 1, lJa~ = 0 for a =I= fl. (5.4) 

We set 

Q,= -r, P,=- (p,·( P·+ )) r+ 12( p2 • r~) r, 
P, = - 1/.p2r (5.5) 

and introduce the quantities 

1 1 
K, =-TK = 2m (P4 - mH0Q4 ), 

1 
K, = -(P,- mH0Q,), 

2m 
(5.6) 

1 
L, = 2m (P, + mH0Q,). 

(5.7) 

Then the generators X>c will be the elements Ma{3, 
Ka, La, S, and one easily finds from (5.4)-(5.7) that 
in both classical and quantum theory they satisfy the 
following relations: 

Ho 
(Ka,K~]=- 2m Ma~, 

(Ma,a,,L~] = ga,~La,- ga,~La,, 

(S,Ma~]= 0, 

Ho 
(La,L~]=-Map, 

2m 

(5.8) 

(5.9) 

(5.10) 

Ho 
(Ka, Lp] = - 2m gapS, [S, Ka] = -La, [S, La] = - Ka. 

(5 .11) 

It follows from these relations that the group we have 
introduced, which characterizes the dynamical proper­
ties of the new Hamiltonian K, is locally isomorphic 
to the 15-parameter group Cis of the conformal trans­
formations of a four-dimensional pseudoeuclidean 
space. 

At the time when the writer found this 15-parameter 
group Cis, which characterizes new invariance proper­
ties of the nonrelativistic Coulomb interaction, anum­
ber of papers were publishedra-I 3 J devoted to the broad­
ening of the group characterizing the invariance proper­
ties of the Coulomb interaction with the usual choice of 
the Hamiltonian. The most interesting results are 
those of Malkin and Man'ko, [1 31 who introduced a 15-
parameter group whose generators allow one to raise 
and lower the energy levels for the Hamiltonian (5.1). 
But although the Malkin-Man'ko group is also locally 
isomorphic to the group of conformal transformations 
Cis, it is decidedly different from our group. Whereas 
our group does not change the energy H0 but changes 

the Coulomb interaction constant eie2 , i.e., takes the 
system from states with one value of this constant into 
states with another value of the charges, the Malkin­
Man 'ko group does not change the charges, but takes 
the system into states with different energy values. 
Furthermore it is not hard to verify that the invariants 
formed from corresponding generators of our group 
and the Malkin-Man'ko group are not the same, and 
therefore the abstract mathematical properties of the 
two groups are also different. 

As an example, for the classical case we take the 
subgroup with the generators K, L, S, which is locally 
isomorphic to the group of rotations of a three-dimen­
sional pseudoeuclidean space. We can always choose 
the one-parameter transformation with the generator 
S, which appears in this subgroup, so that for H0 > 0 
the numerical value of K is zero, and for H0 < 0 the 
numerical value of L is zero. Therefore from the 
physical quantities characterizing the rectilinear mo­
tion of two noninteracting particles we obtain by means 
of a transformation with the generator S physical quan­
tities which describe the Coulomb interaction of two 
particles with the same value of Ho. 
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