
SOVIET PHYSICS JETP VOLUME 29, NUMBER 1 JULY, 1969 

EFFECT OF SPATIAL DISPERSION ON THE SPECTRUM OF MAGNETOPLASMA WAVES 

IN BISMUTH 

V. s. EDEL'MAN 

Institute for Physical Problems, USSR Academy of Sciences 

Submitted June 19, 1968 

Zh. Eksp. Teor. Fiz. 56, 25-31 (January, 1969) 

The dependence of the speed of magnetoplasma waves in bismuth has been studied as a function of the 
magnetic field strength at a frequency of 9 MHz and for strong spatial dispersion due to electron 
drift along the wave vector. The wave spectrum is calculated on the basis of an ellipsoidal model of 
the Fermi surface of bismuth, with account taken of spatial dispersion, and the results of the calcu
lations are compared with experiments. The speed of the magnetoplasma wave is found to depend on 
the distance from the sample surface in the case of strong Landau damping. 

INTRODUCTION 

THE appearance of Landau damping of magnetoplasma 
waves in bismuth was discovered in Pl. It arises in a 
strong spatial dispersion when the projection of the 
drift velocity of the current carriers on the direction 
of the wave vector is equal to the phase velocity of the 
wave, i.e., k · v/ w = 1. This phenomenon was used 
in[1•2l for the measurement of the Fermi velocity VF 
of electrons of the limiting point. 

The spatial dispersion appears not only in the damp
ing of the wave but also in the dependence of its speed 
on the magnetic field H. This is precisely the cause 
of the deviation from periodicity (as a function of the 
reciprocal field H-1 ) of the oscillations of the surface 
resistance of bismuth, which are produced by the ex
citation of standing magnetoplasma waves, which dis
covered in[3l (see Fig. 4 in[3l). By developing this 
theory, we can calculate the spectrum of the waves in 
the presence of dispersion if the shape of the Fermi 
surface is known. Excellent agreement of the calculated 
results, which use the ellipsoidal model of the Fermi 
surface, with experiment in the asymptotic region of 
strong fields (i.e., for (w/0)2 « 1, (k·vF/w)2 
<< 1)[4 1 allows us to hope that this model will describe 
the behavior of waves in the case considered by us with 
sufficient accuracy. 

Starting out from what has been said, we calculate 
in the present work the velocity and damping of mag
netoplasma waves in bismuth for the cases 
H II k II c/> and k II c2, H l Cs, 1: (H, Cs) « 1 with 
the use of the parameters of the ellipsoidal model of 
the Fermi surface of bismuth, given in[4 l. The results 
of the calculations are compared with experiment. Ac
cording to the analysis given above, the theory suggested 
in[sJ is applicable only so long as the Landau damping 
does not SUrpaSS the value ( W'T r 1 ( 'T is the relaxation 
time of the current carriers). For very strong Landau 
damping, the wave field cannot be described by the law 
exp[i (k · r- wt )], and the velocity of the wave depends 

1 >The following notation is used for the axes of the bismuth crystal: 
C1 -bisector, C2-binary, C3 -trigonal. 
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on the coordinates. An experiment was undertaken 
which confirmed this phenomenon. 

EXPERIMENT 

The experiments were carried out at a frequency 
~9 GHz in fields up to ~10 kG at a specimen tempera
ture of ~ 1.5°K. The experimental technique was simi
lar to that described inP'4 l. Bismuth samples were 
used in the form of disks of 18 mm diameter and 1 mm 
thickness. The normal N to the plane of the specimen 
surface coincided, with an accuracy ~l-2°, with the 
direction of the trigonal axis C3 or the binary axis Cz 
of the bismuth crystal. 

The direction of the magnetic field H II C3 was de
termined with an accuracy ~ 10' on a sample with 
N II Cs from the equality of the velocities of magneto
plasma waves of two types.£41 The direction H I i C2 
for a sample with N II C2 was established with an ac
curacy ~to' using the cyclotron resonance for elec
trons shifted by the Doppler effect, (lJ and the direction 
H II C1 l N with an accuracy ~ 30' using the cyclotron 
resonance. 

1. WAVE SPECTRUM FOR H II K II Cs 

The theoretical consideration of the behavior of the 
waves for k ·v/w R! 1 we begin with the simplest case 
H II k II Cs. For such an orientation of the field and 
wave vector, all the non diagonal components of the 
conductivity tensor vanish, because of the high sym
metry in the approximation (w/0 )2 « 1, and the dis
persion equation breaks up into two identical equations 

4n 
ia.L = -k•, 

c 

where a 1 = a11( 3) = a22( 3 )2>. In the consideration of 
the problem at hand, it is necessary to take it into 
account that, in accord with the estimates made from 
the recording of the experiments (Fig. 1), (w/0)2 
:$ 0.1 when k · VF/W R! 1 (vF and 0 in this case are 
taken for electrons), and therefore, for the calculation 

2lHere and below, we use the same notation as in [3]. 
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FIG. I. Spectrum of a wave for the case of strong spatial dispersion. 
Points-experimental for Hllk11C3 and frequency 9.35 GHz. Curve a
calculation for ( w/0.) 2 ~ I, dashed b-calculation with account of 
correction for time dispersion; straight line c-asymptote for H-1 -+ 0; 
curved-calculation of damping for WT-1 ""2 X 10-2• Vertical bar on 
curve a denotes the accuracy of the calculation. The decrease in the 
amplitude of the oscillations in the middle of the recording of the expen
ment with decrease in Ir1 is connected with the increase in R 3 , and the 
subsequent increase, with the more rapid growth of the amplitude oR/oH 
at the expense of a decrease in the period of t..Ir1 ; as Ir1 -+ 0, the ampli
tude of the oscillations again falls off because of the increase in R3. 

of a 1 one must use Eq. (6) ofr31 • s> The difference from 
the asymptotic case H-1 - 0 lies in the fact that the 
first term in this formula is of the order of the second. 
All the integrals entering in the conductivity tensor can 
be computed within the framework of the ellipsoidal 
model. Since the field enters in a 1 in the form of the 
factor H-2 , it follows that H-1 is expressed in explicit 
form as a function of the parameter t = k · VF/ w. The 
results of the calculation, carried out for t varying in 
the range t = 0 - 1.05, is shown in Fig. 1. There the 
dashed curve is the theoretical curve, which takes into 
account the correction due to the successive terms of 
the expansion in ( w/0)2 • The agreement of the calcu
lation with experiment is seen to be satisfactory; one 
can expect, a priori, significant divergences, associ
ated with the difference in the shape of the electron 
Fermi surface from ellipsoidal, [sJ which is particu
larly appreciable close to the limiting points. 

In addition to the real part k', one can also compute 
the imaginary part k" in this case. By introducing the 
complex k = k' + ik" in the conductivity tensor, as well 
as w + i/T (in place of w), and assuming k"/k' << 1 and 
1/ wT << 1 (which is seen to be true in the region of 
fields under study), we can obtain the k"( t) dependence 
in explicit form from the dispersion equation (here 
t = k'vF/w); it is represented in Fig. 1. The relative 
damping grows smoothly as t increases, from the 
value k"/k' =% wT for t = 0 to ~ 0.8/w T for t = 1. 
Upon further increase in t, an additional term appears, 
connected with the Landau damping, and is proportional 
to l ( t - 1 )2 , where x is the angle of inclination of 
the electron ellipsoid with the basal plane. Setting WT 

= 50 (which is comparable, for example, with the value 
obtained in(l 1), it is not difficult to find that when t 

3 >we note that the sign in front of the first term of Eq. (6) in [3) is 
incorrect. 

changes from 1 to 1.05 (at this value we have k"/k' 
~ 1/wT) the amplitude of the oscillations for a sample 
of thickness of 1 mm falls by a factor of about 2, which 
is in qualitative agreement with experiment (see Fig. 
1 ). The relative value of the impedance oscillations is 
t..R/R ~ 10-2 under these conditions. 

A solution in the form of an exponentially damped 
wave (which was assumed in the calculation of the con
ductivity tensor in[3J) exists only so long as k'/k' 
< 1/wT; as soon as these values are comparable, the 
solution of the problem in this form fails. This is 
natural, since the field in the depth of the plasma, for 
strong Landau damping, changes according to a more 
complicated law than the exponential/5 1 and allowance 
for the effect of the boundary of the sample becomes 
very important. This was not made in the calculation 
carried out for an infinite metal. It is possible that 
allowance for the boundary also brings about some 
corrections in the solution for k'/k' < 1/wT obtained 
by us. 

In passing, we note that Kaner and Skobov, [7 1 in 
consideration of the Landau damping of magnetoplasma 
waves, obtained the result formulated in the following 
way: for H parallel to k and directed along the axis 
of symmetry of higher order (third and above), the 
Landau damping is absent. 4 ) This statement is in 
contradiction with the calculation given above and with 
experiment. The fact is that the results ofC7 l refer only 
to the case in which the portions of the Fermi surface 
that are capable of making a contribution to the Landau 
damping possess high symmetry; in our case, each 
separate ellipsoid does not have such symmetry and 
only three ellipsoids in the set possess symmetries of 
third order. Besides, for the absence of Landau damp
ing, it suffices that the field be directed along the axis 
of symmetry of second order of the part of the Fermi 
surface which makes a contribution to the damping. 
For example, for bismuth, for H II k II c2, the elec
trons of the ellipsoid whose major axis is perpendicular 
to the binary axis under study have the maximum 
velocity. From the symmetry requirements for this 
case, it follows that 

vx('Jl) =- vx(n + rp), Vy(rp) =- Vy(:n: + rp), v,(rp) = v,(:1 + rp). 

Expanding vx, vy, and Vz in Fourier series in cp, 
making use of the definition of lf!(cp) and the expression 
for the conductivity tensor from(3l, it is easy to see 
that the nondiagonal components azx = axz = azy = ayz 
= 0 in any order of expansion in 1/J/0, while the coef
ficients in axx, ayy and axy are equal to zero for 
terms containing w - k · Vz in the denominator. This 
leads to the absence of Landau damping for both waves, 
in agreement with experimentY1 

The absence of Landau damping in the case under 
study is easily explained. Actually, the electrons that 
contribute to the damping, which move along with the 
wave in the coordinate frame connected with the wave, 

4 lJn the paper of Kaner and Skobov [8) it was reported that the 
Landau damping is absent only in the particular case when the wave 
vector k and the field H are parallel to axes of third or sixth order and 
the centers of the orbits of each group of carriers are located on a line 
parallel to this symmetry axis. 
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are situated in a constant electric field perpendicular 
to the magnetic (this is guaranteed by the vanishing of 
the components O"za) and the action of the electric 
field, averaged over the cyclotron period, on an elec
tron moving along a symmetric orbit does not give 
dissipation of the energy. 

Similar considerations allow us to understand the 
results given above for H II k II C3. The electron 
orbits in this case are inclined to the magnetic field. 
It is evident that the action of a spatially inhomogene
ous electric field on an electron moving along such 
orbits leads to the appearance of finite Landau damp
ing due to the inclination of the orbit to the magnetic 
field, because of the slope of the latter relative to the 
axis of the ellipsoid. Since the diameter of the orbit 
for electrons moving in phase with the wave increase 
with increase in t, beginning with a zero value at 
t = 1, it follows that for t = 1 the damping is equal to 
zero and successively increases, as was obtained in 
the calculation. 

2. SPECTRUM OF THE WAVES FORk II C2, H l C3, 
1: ( H, c3) « 1 

It is possible, by the method outlined in Sec. 1, to 
consider the speed of magnetoplasma waves, within the 
framework of the ellipsoidal model, for H directed 
not parallel to any symmetry axis. However, in this 
case, the calculation can be very complicated, because 
of the necessity of accounting for a large number of 
components O"ik· Thus, for k II c2, H l c3, 1 (H, k) 
=J~ 0, J II C3 (J is the microwave current) it is 
necessary to take into account O"xx, O"zx, and O"zz. The 
dispersion equation here takes the form 

4n ., . r . <Joxzl -A~'" = /, CJxx T - . 
C L O'zz. _ 

The result of the calculation of the wave velocity for 
J = 4"40' is represented in Fig. 2. Qualitatively, the 
behaviors of the experimental and computed curves are 
the same, although, in contrast with the case of Fig. 1, 
a notable ( ~10%) quantitative difference is observed. 
This divergence can evidently be due to the fact that in 
the calculation, under the condition k·VF/w ""1, the 
electrons of the limiting points, near which the Fermi 
surface differs from an ellipsoid, make the chief con
tribution. [6 l 

Allowance for the terms O"zx and O"zz in the dis
persion equation leads to great difficulties in the cal
culation of the damping as a function of the parameter 
t for values of the latter that are close to unity, i.e., 
in the most interesting region. This is connected with 
the fact that as t- 1 the value of I O"zz I, neglecting 
the dissipation processes, approaches infinity, while 
Re O"zz jumps from zero at t < 1 to 7T for t > 1 (see 
Eq. (5) inf3l). Allowance for the collisions and for the 
finite value of k'/k' leads to the result that I O"zz I re
mains finite, but is a rapidly changing function of t, 
and hence, in a narrow range of t (~t ::>< 1/ WT ), the 
damping of the wave increases jumpwise; its value is 
proportional to J 2 and is comparable with the relaxa
tion damping at J "" 3-4°. 

An exact calculation of the current has not yet been 
carried out, not only because of the necessity of 
practically guessing the solution, but also because of 

FIG. 2. Spectrum of the wave for strong spatial dispersion. Points
data of experiment for 9.62 GHz, kiiC2, Hl C3 IIJ, t'J = 4° 40'. Contin
uous curve-calculation for w/rl. 4:; I, dashed curve-with account of the 
correction for time dispersion. Straight line-asymptote as H- 1 __,. 0. The 
vertical bar indicates the accuracy of the calcualtion. 

fundamental difficulties. The fact is that all the formu
las in [31 were obtained under the assumption T = 0°; 
in the experiment, T"" 1.5°K and T/TF"" 10-2 

"" 1/wT, which obviously leads to the necessity of cal
culation of the temperature smearing of the Fermi 
level; on the other hand, allowance for the Landau quan
tization, which is especially significant near the limiting 
point, can also contribute a significant correction to 
the calculation. If we turn to a comparison with experi
ment, then the results of an exact calculation at the 
present stage are not required, since measurement of 
the absolute damping has not been made, and the picture 
of the sharp decrease in the amplitude of oscillations 
with increase of H-1 in the region t ::>< 1 has been ob
served only qualitatively. For "oblique" directions of 
the field H (i.e., for J ~ 0) the value of the region 
~t in which damping increases strongly is evidently 
small, as can be judged from a comparison of the 
electron velocity, obtained under different conditions 
of observation, and calculation according to the model 
of the Fermi surface of bismuth (Fig. 6 fromP 1 ). 

3. PROPAGATION OF ELECTROMAGNETIC EXCITA
TIONS FOR k · VF/ w > 1 UNDER CONDITIONS OF 
STRONG LANDAU DAMPING 

In the consideration of this question, we limit our
selves to a qualitative discussion. As has already been 
shown in Sec. 1, for k"/k' Z 1/wT, the solution in the 
form of exponentially damping waves ceases to satisfy 
the system of Maxwell's equations and the kinetic equa
tion. This can be explained in the following way: let a 
wave be propagated from the surface of the sample 
with a phase velocity Vph = w/k < VF- The presence 
of an electric field disturbs the equilibrium distribu
tion of current carriers. Since there are electrons 
moving with a speed VF > Vph. they "carry" informa
tion on the electromagnetic field to the depth of the 
free path l in a time T "" Z/vF < l/vph· If the damping 
length is less than l (which is determined by the con
dition k"/k' > 1/wT), then, at distances of the order of 
l from the surface, the field will be determined by 
"fast" electrons. In other words, the phase velocity 
increases as one moves into the body of the metal, and 
tends to the value VF-
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FIG. 3. Recording of the oscillations of the surface resistance 
(9.62 GHz, kiiC2 , H 1 C3 IIJ, 1'J = 3° I 0'). He-field of the cyclotron 
resonance on electrons, shifted by the Doppler effect. HL -limiting 
field of Landau damping. Partial oscillations are connected with the 
wave whose ultrahigh frequency currents in strong fields are close to 
the direction of the C1 axis. Hh is the cyclotron resonance (shifted by 
the Doppler effect) on holes associated with this same wave. I :30 is the 
position of change of the magnification of the picture by a factor of 30. 

The described distribution of the field in the metal 
is similar to that which takes place in the anomalous 
skin effect. This similarity is not accidental, since 
the distribution of the high-frequency field correspond
ing to the anomalous skin effect (in a metal without a 
magnetic field) is the limiting case as H- 0. 

These simple qualitative considerations were con
firmed by experiment (Fig. 3). Upon appearance of 
Landau damping, the amplitude of the oscillations falls 
off by two order of magnitude; however, the oscillations 
are traced by means of the cyclotron resonance of the 
electrons, shifted by the Doppler effect. The value of 
the wave vector, averaged over the thickness of the 
sample, can be found by a calculation of the number of 
~scillations: for the experiment considered in Fig. 3, 
k = (1.38 ± 0.06) x 103 cm-1 • In addition, knowing the 
effective massf5 l and the velocity VF (which is deter-

mined from the same recording from the limit of the 
Landau damping) we can calculate the value of the wave 
vector at the surface from the resonance condition 
n = w + k·VF: ks = (1.76 ± 0.1) X 103 cm-1 • The differ
ence between k and ks, which exceeds the error of the 
measurement, is agreement with the qualitative con
siderations given above: as the distance from the sur
face is increased, k decreases, i.e., the phase velocity 
of the wave increases. 
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