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The basis of any biological structure is the extremely long molecular chains of biopolymers, whose 
links are joined together with strong valence bonds. However, in addition to these bonds, there are 
also other forces of "lateral" or "volume" interactions between the links of the chain that have ap
proached one another because of its bending. They determine the phase state of the system that 
arises. In the absence of a volume interaction, a free chain winds itself into a loose random coil, 
owing to fluctuations in the bending. At certain critical values of the temperature and other param
eters of the medium, additional attractive forces lead to collapse of the loose random coil into a com
pact globule. Such globular states are essentially states of partial equilibrium in which the primary 
structure of the chain and the bonds between its links are considered to be fixed, and to form a 
"linear memory" in the system. Equilibrium is attained with respect to the additional interaction 
forces, with restrictions imposed by the linear memory. A systematic statistical-thermodynamic 
theory of such systems is constructed in this study, and the random coil-globule transition is analyzed 
in these systems. 

INTRODUCTION 

THE basis of any biological structure is the extremely 
long molecular chains of biopolymers. These chains 
are suspended in the solvent medium, and occur in vari
ous conformational states, depending on the strength and 
nature of the volume interaction between the elements of 
the chain, the temperature, and the parameters of the 
medium. Since each chain contains an enormous num
ber of links, it can be considered as a statistical sys
tem, and its different conformational states as the 
macroscopic phases of this system. In order to con
struct the statistical thermodynamics and kinetics of 
biopolymers, we must formulate the characteristic dis
tinguishing features of these systems, which might be 
introduced into their statistical models to construct a 
general and systematic theory. 

The primary structure of a chain fixes the sequence 
Aj of its links (identical or differing). The probabilities 
of the relative positions and orientations of adjacent 
links are intercorrelated. This primary structure is 
considered invariant, short of rupture of the polymer 
chain, and forms a fixed linear memory of the system. 
Since the characteristic time of conformational relaxa
tion of a long and flexible chain T ~ N2 , the energy bar
riers Eo preventing rupture of the longitudinal valence 
bonds in the primary chain mu~t Sl:};tisfy the condition of 
stability wT « 1 (where w ~ e Eo/T is the frequency of 
chain rupture). Evidently, we thereby have generally a 
case only of states of partial equilibrium, and the fixed 
memory is an expression of this fact. 

The simplest type of memory involves only fixing the 
site of each link in the linear sequence along the chain, 
i.e., the fact that the links seem to be connected together 
by a continuous flexible cord. This memory exists even 
in a chain of identical elements (homopolymer), and we 
shall simply call it the linear memory. It can be des
cribed by the correlations gj between adjacent links. 
However, in addition to the interactions along the chain, 

which are already taken into account by assigning the 
correlations g~, there is also a "lateral" or "volume" 
interaction of 1ts elements. Generally speaking, this is 
an interaction between distant links of the chain that 
have come together because of its bending. This is what 
determines the phase states that arise in the system. If 
dr) is the energy of this interaction, the linear memory 
is manifested in the fact that the equilibrium distribu-

N 
tion function e-dr)/T is replaced by e-dr)/T j~ 1 gj, 

while the statistical integral Z takes on the form 

z = s e-e(r)/T IT gj ar. 
; 

In complex heteropolymers having differing links, the 
sequence is fixed by the additional informational mem
ory. In principle, we could take into account the con
crete and complex sequence of links by detailed tracing 
of the volume energy interactions arising in such a sys
tem. However, this course is practically unrealizable, 
and most often the informational memory can be taken 
into account at least partially by introducing "informa
tional interactions," along with the energy interactions. 
The former amount to extra prohibitions and limitations 
on the allowable region of integration in phase space (in 
other words, it amounts to the systematics and selection 
of allowable microstates) .11 These prohibitions also 
correspond to the expeditious introduction of states of 
partial equilibrium. 

The considerable variety in the phases that arise in
volves the nature of the interaction forces between the 
regions of the chain that have approached one another. 
Thus, an interaction involving saturation of the free 
hydrogen bonds of each of the links leads to the combina
tion of two or three chains into a helical cable, such as 
forms the secondary structure of a biopolymer (DNA, 

llFor example, one can conveniently introduce various models 
of informational interaction in analyzing helix-coil transitions in 
biopolymers having a helical secondary structure. 
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fibrous proteins). The volume interaction between the 
links of a flexible chain entangled into a loose random 
coil involves weaker forces not generally having the fea
ture of saturability (e.g., van der Waals forces), and 
leads to the appearance of relatively compact globules 
of characteristic structure. The nature of the problems 
arising with regard to helix-coil and coil-globule transi
tions differs considerably. 

We shall discuss in this paper some general problems 
of statistical thermodynamics of long chains, and prob
lems involving the random coil-globule transition in 
systems having a simple linear memory (i.e., chains 
consisting of identical elements and systems reducible 
to them). While the actual structure of globular proteins 
with their complex informational memory proves to be 
incomparably more loose-structured and distinctive, 
however, the sensitivity of the system to this informa
tion resides in the presence of a linear memory, and it 
becomes evident even from the simplest theory. 

We shall begin with establishing some statistical
thermodynamic properties of chains having no volume 
interaction, but having an external field constraining the 
system. The concepts introduced here and the obtained 
results will permit us to formulate and solve the prob
lem of the volume interaction in such systems. 

1. DENSITY AND DENSITY CORRELATIONS IN A FREE 
RANDOM COIL 

Let xj (j = 1, ... , N) be the coordinates of the links 
of the chain (these are generally the coordinates of the 
links that can interact with one another or with an ex
ternal field (see Fig. 1)). The distribution function in 
configuration space for a free chain is given by the 
correlations between adjacent links gj = g{xj, Xj + 1): 

p(x~, ... ,xN)=fig;,g;=g(y;), y;o±x;+t-x;, ~gd'y=i. {1.1) 
I 

(We shall assume for simplicity that gj depends only on 
the coordinates of adjacent links, but not on their orien
tations.) For large k, the probability pk{x) that the k-th 
link should be located at the point x, when the zeroth 
link is fixed at the origin, will be 

P•(x)~k-'"e-x'f'ha'; a2= ~ y2=f-) g(y)y2d'y. {1.2) 

As we know, when N >> 1, owing to fluctuations in curva
ture, a free chain will be wound into a random coil of 
linear dimensions ~ RN = a../N and of volume 

I \ 
\ - ~/ 
~-

FIG. I. Schematic drawing of a region in space of a polymer 
chain. The circles mark those links that can interact substantially with 
one another or with an external field. 

VN ~ a 3N312 • Its mean density is: N/VN ~ a-3N- 112 • Let 
us formulate some properties of such random coils in a 
form that we shall require hereinafter. 

Let us introduce the density of links at the point x: 
N 

n(x)= ~1\(x-x;). (1.3) 
j=t 

Its mean value 
N 1 

ii(x)= ~ p;(x)= N ~ p,N(x)ds 
j=1 0 

will be, according to (1.2): 

ii(x)d'x = Np (s)d'6, 5 = xf RN, RN = a'{N, 

1 1 . ds 
p(s)= -.- r e-6'1"-. 

BnJI~ J s312 
0 

(1.4) 

On the new scale ~ = x/RN, the density p(~) differs con
siderably from zero at distances ~ ~ 1. That is, the 
radius of the system ~N ~ 1. However, the density 
correlation 

Is•- 62! 2 1 ds, ds2 
4js1 -s2 j f s;,ls1 -s2 j'f, 

(1. 5) 

also declines at distances ~ ~ 1. Thus, the correlation 
radius turns out to be of the order of the radius of the 
system, and the density ceases to be a thermodynamic 
parameter (i.e., an exact quantity as N- 00). This 
means that the random coil pulsates macroscopically, 
and the density p(~) given by Eq. (1.4) is the time-aver
age value. The characteristic time of these macroscopic 
pulsations (the relaxation time) is T ~ N2 • However, 
such a situation arises because the random coil is free, 
i.e., the external pressure is zero. In other words, 
there are no external fields constraining the system, 
nor any volume attraction between the links. The situa
tion changes radically if we include interactions (where
by the density fluctuations can be made arbitrarily 
small). A free random coil is a degenerate case, and 
in certain conditions does not give a good zero-order 
approximation for describing such a system even in the 
presence of weak interactions (as N- oo). 

Hence, the first problem to solve is to derive a sta
tistical thermodynamics for random coils in an external 
field constraining the system. Such a derivation will 
permit us to introduce and define important statistical
thermodynamic concepts for chains, including the en
tropy of a random coil as a functional of its smoothed 
density n{x) (when the latter is made a thermodynamic 
quantity). 

2. STATISTICAL THERMODYNAMICS OF A RANDOM 
COIL IN AN EXTERNAL FIELD 

Let us express the energy characteristics in tem
perature units, and denote the energy of an individual 
link at the point x by cp{x); cp{x) = u{x)/T. The energy of 
the system at the point r of configuration space is 

N 

e = ~ <p(x;) = S n(x)<p(x)d3x. 
j=1 

(2.1) 
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The free energy F{cp} of the random coil in the ex
ternal field with respect to the free energy level of a 
free coil will be 

.'f' T } } --y==F==F{!Jl -F{O =-lnZ~-. (2.2) 

Z.v = ~ exp{- ~ !fl(X;)} n g(y;)df, df =II d3x; =II d3y;. (2 .3) 
] 

The equilibrium density is 

n(x;} = 6F I 6rp. (2.4) 

The energy is given by the expression 

e; ==E==E{<p}-E{O}=(rp,ii)= ( <p, ~:). (2.5) 

and the entropy by 

S = S{<p}- S{O} = E- F = (<p, n)- F. (2.6) 

Here, as usual, (f, g) denotes jfgd3x. 
In order to calculate ZN, let us introduce the quantity 

Z ( x;: ~) = ~ exp{- ~rp(x;) }11(x1 - x')li(xN- x) II g;df, (2. 7) 

This is the statistical integral for the fixed values X1 

= x', xN = x. That is, apart from a coefficient, it is the 
probability of finding the beginning and the end of the 
chain at the points x' and x, respectively. 

When considered as a function of x and N, the quantity 

ZN(x) = z(~', ~) satisfies the obvious recurrence rela-
' tion 

gf =) g(x- x')/(x')d3x' = ~ g(y)f(x- y)d3y 
(2.8) 

with the initial condition Z 1 (x) = 1i (x - x ')e -cp (x). Its 
solution is: 

ZN(x)= ~ e-•,N,j)k(x)c,(x'), g¢• = e~-'•¢•· (2.9) 

If the first eigenvalue Ao of Eq. (2.9) belongs to a dis
crete spectrum, i.e., is separated by a finite interval 
from the next eigenvalue, then for large enough N, the 
memory of the initial condition is erased, and only one 
term in the series (2.9) remains: 

where A is the smallest eigenvalue of Eq. (2 .11). 

(2 .1 0) 

(2 .11) 

In view of the symmetry of the expression z(~', ~) 
' in x and x', we get the following as an asymptotic ex-

pression in N: 

(·x' x) Z 1: N = e-1N1jJ(x)tiJ(x'). (2.12) 

Equation (1.12) implies that ZN ~ e-AN, and hence 

F = NJ. = NJ.{<p}. (2.13) 

If the function cp(x) is smooth enough (varying little 
over distances ~a) and the kernel g(y) is spherically 
symmetric, then glj! = lJ! + a 2C.I/J, and Eq. (2.12) takes on 
the form 

a2llt!J + (1- e•H)t!J = 0. (2.14) 

If the field vanishes at infinity (cp (oo) = 0), then Eq. 
(2.14) will acquire a discrete eigenvalue when the poten
tial well cp(x) = u(x)/T reaches a critical size. This 
means that the potential well can retain practically the 
entire random coil within its own volume, and turn it 
into a compact globule. If the volume of the well is large 
enough, then for the first eigenvalue Jcp(x) -A\ « 1 (at 
least, in the region where lj!(x) differs substantially 
from zero). In this case, (2.14) takes on the form 

a2<l¢+(J.-<p)t!J=O. (2.15) 

Thus, for example, for a deep spherically symmetri
cal well in which the ground level is near the bottom, 
where cp(r) = qJo + ar2/2, we obtain 

I.= <po + 3MJI{t, a= (A<p)o = (f'..u}o/ T. (2.16) 

At high temperatures, there are no discrete levels 
in the field cp(x) = u(x)/T. As we lower the temperature, 
a first discrete level Ac = A{cp}c, (/Jc = u(x)/Tc will ap
pear, starting at a critical value Tc. In general, this 
level continuously splits off from the boundary of the 
continuous spectrum (Ac = 0). If the potential well is 
close to the critical value cpc(x) = u(x)/Tc, then, as we 
can verify, 

(2.17) 

Since the well does not hold the random coil when 
T > Tc, and FT = 0, then a second-order phase transi
tion occurs at the point Tc: 

~= I.T={A(T- Tc) 2/2, T < Tc, 
N 0, T> Tc· 

(2.18) 

Finally, if the random coil is held in a spherical vol
ume V = (4/3)JTR3 (R » a) by potential barriers, then 

n2a2 sin kr n (2 .19) 
!.=w· til=~, k=Ji· 

The pressure on the walls holding the random coil 
here will be 2 > 

--oFT,_ -NT {}J.- Nrr.a2T (2.20) 
p - oV - oV- 2R5 ' 

or, upon introducing the volume per link v = V/N, 

(2.21) 

Let us return to determining the fundamental thermo
dynamic characteristics of the random coil. According 
to (2.4) and (2.13), we have the following for the equili
brium density: 

n(x) = Np (x), p (x) = rfJ.. I li<p. (2 .22) 

On the other hand, if we write (2.11) in the form 

(t!J, 'g;p) = (¢2, e"'-') 

2)Jn order to permit us to proceed from (2.9) to (2.10), the 
spacing li"A. = "11. 1 - "11.0 between the first two eigenvalues of Eq. (2.11) 
(or (2.15)) had to satisfy the condition N li"A. ~ I. For a spherical 
potential well of radius R, this gives as the condition of applicability 
of the derived formulas (a/R)2 ~ 1/N. That is, the condition for the 
pressure will be p ~ T/V = PgiN, wher Pg is the pressure of a gas at 
the same values of V, N, and T. 
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and let it vary over 6lj!, 6cp, and 6A, we get 

(II'$, g.p) + ('$, g6'1jl) - 2(1l'ljl, 'ljle~-1.) = (.p2e~-\ &p-Ill..). 

Taking into account the fact that (lj!, g61j!) = (glj!, 61j!), 
we have 

(2.23) 

Hence, 

p(x) ~ .p2e~, } p(x)d'x = 1. (2 .24) 

Analogously we obtain for the correlation of density 
fluctuations 

(2.25) 

The obtained result shows that when the potential well 
suffices to hold the random coil, the density p(x) ~ lj! 2ecp 
becomes a thermodynamic characteristic of the coil. 
Nevertheless, the density p(x) does not coincide with the 
density of the distribution Po (x) of the endpoints of the 
random coil. According to (2.12), the latter is 

Po(x)='¢(x) /} '¢d3x. (2.26) 

Thus, for example, according to (2.19), (2.24), and 
(2 .26), for a random coil constrained by potential walls 
within a spherical volume of radius R, we have 

sin2 kr sin kr :rr 
o(r)~-- Po(r)~-kr , k=-. 
· k2r2 ' R 

In order to trace how the equilibrium density p(x) is 
formed as N- oo, let us derive Eq. (2.24) by direct ex
amination of the statistical integral. In addition to the 

expression z(~ 1' ~N), which corresponds to the fixed 

ends of the chaln, let us introduce the value z(~~· s~, ~N) 
of the statistical integral for a chain having fixed ends, 
x being the coordinate of the intermediate link of num
ber sN. From the structure of the statistical integral, 
we can easily derive the relation 

z(X" X,XN)=z(Xt, X)eq>(x)z(X' XN ). (2.27) 
1, sN, N 1, sN 1, (1-s)N 

If the point sN lies far enough from the ends of the 
chain, i.e., sN » 1, and (1- s)N » 1, then according to 
(2.12), we get 

( Xt, X, XN\ 
Z. 1, sN, N }-+e-1-N.p(xi).p2 (x)e<P(xi.p(xN) ~ '¢(xi)ljl(xN)P(x).(2.28) 

This means that the probability density p~W(x) coincides 

with the expression for p(x) for links remote enough 
from the ends of the chain. Since p(x) = j01p~W(x)ds, 
i.e., it is precisely the links far from the ends that con
tribute most to the density p(x) for a given chain, this 
explains the obtained result. 

3. THERMODYNAMICS OF NON-EQUILIBRIUM STATES 
OF A RANDOM COIL WITHOUT INTERACTION. 
VARIATION PRINCIPLE 

The results of the last section permit us to construct 
the thermodynamics of a random coil in a non-equili-

brium state, as given by its density function n(x) 
= N p ( x). We can find the entropy of such a state by 
including an external field (j5 ( x) that will give rise to the 
given equilibrium density n(x). If we multiply (2.11) on 
the left by 1J! and take (2.24) into account, we gee> 

(3.1) 

{i>-1=ln(n/¢2)=ln(g,p/'¢) (:;J,=<j){nl(x), 1=1..{~}). (3.2) 

Equations (3.1) and (3.2) define lj! and cp - ~ in terms 
of the given density n(x). If the distance a between 
links (the smoothing radius of lj! by the kernel g(y)) is 
small in comparison with the dimensions R of the ran
dom coil, then Eq. (3.1) takes on the form 

a2L\'¢ + '¢- n(x) / '¢ = 0. (3.3) 

According to (2.6) and (2.13), we get the following 
expression for the configurational entropy: 

S= (.P-(n). 

Considering n to be an assigned quantity from which 
lj! and (j5 - 5: = ln (glj!/lj!) are determined, we obtain the 
entropy of the non-equilibrium state 

S{n} =(In (g'¢/.p), n), '¢g1jl = n. (3.4) 

As we see from (3.4), the entropy density is gener
ally not of a local nature. Such a local nature arises in 
two limiting cases. For a function n(x) that varies 
slowly enough over all space, 

Hence, 

S{n} -+a2 (il.p, '¢)--+ -a2 (Vn'", Vn'h). (3.5) 

In the opposite limiting case where a>> R, in which 
the smoothing radius is large in comparison with the 
dimensions of the system and the bonds between the 
links impose no limitations on the possible configura
tions, then glj! = const., lj! ~ n, and we get the ordinary 
formula for the entropy of a non-equilibrium ideal gas, 

S {n} = -} n In nd3x + const. 

If we consider the free energy F = N~ as a functional 
of (/5, then according to (2.4) and (2.24) we have 

oF= (n, o,P). (3.6) 

Thus we get the following for the variation in the 
entropy S = (n, cp) - F: 

oS = (~, 8n) =(In (g'¢/¢), bn), (1, bn) = 0. (3.7) 

The free energy of the random coil in the external 
field cp = u/T when it has the non-equilibrium density 
n(cp f cp) is 

F{'f', n} = E{'f', n}- S{n} 

= ('!', n) -S{n} = (n, <p-In (g.p/.p)). (3.8) 

The condition that F should be a minimum as a func
tional of n for fixed external field, temperature, and 

31The normalization of -¥ remained arbitrary in Eq. (2.11 ). The 
choice of normalization (x2 , exp(<l> - ;\)) = N leads to the non-linear 
equation (3.1 ). 
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number of particles gives 

(<p-I.- In (/;rljl I ljl), lln) = 0, 

which leads to the previous equation (2.11). Obviously, 
we get the same result by finding the extreme value of 
the entropy S{n} for the assigned values of the energy 
E{ cp, n} and the external field cp. 

4. STATISTICAL THERMODYNAMICS OF CHAINS 
SHOWING A VOLUME INTERACTION 

The results of the last section permit us to construct 
a statistical thermodynamics for chains showing a vol
ume interaction U between the links. We should mention 
that this is not a case of interaction between adjacent 
links in the chain, which is already taken into account 
by fixing the correlations gj (i.e., the linear memory), 
but of an additional interaction. It generally occurs be
tween remote regions of the chain that have approached 
one another because of its bending. For example, the 
energy U can have the form of a pair interaction depend
ing on the geometric distance between the links that 
have approached one another, i.e., 

U(x1, ... , xN) = 1/2 ~ V;k, V;k = V(x;- xk)· (4.1) 

In the general case, we shall consider the external 
field cp also to be included along with the volume inter
action U. Thus we find it possible to study also those 
cases in which the size of the interaction or its sign in 
the absence of a supplementary field does not permit 
the formation of a compact globule. 

The expression for the free energy can be written in 
the obvious form: 

F = -In Z, Z = ) e-u(r)-(n,~) II g;df. (4.2) 
; 

In the expression for Z, we can transform from 
integrating over dr to functional integration over the 
smoothed density function (n = n(x)). Here we must take 
into account the fact that the logarithm of the Jacobian 
of such a transformation is the above -defined entropy 
s{n}: 

Z = ~ eS{n}----{qJ, n)-U{nl5)n, (4.3) 

S{n}= In() II g;df) , 
; (n) 

e-U(n) = (e-U(r)){n) =() e-u(rJ IIg;df) ( ~ II g;df r· . (4.4) 
j {n} j {n} 

Since the smoothed density n(x) is now a macroscopic 
characteristic of the non-equilibrium state, then if we 
know U { n}, we can find the free energy by finding the 
extreme value: 

F = minF{n}, (n, 1) = N = const, 
(4.5) 

F{n} = U{n} + (<p,n) -S{n}. 

Thus, first of all, we should elucidate the meaning 
and find the value of the ave raged quantity U{ n} : 

U {n} = -ln(e-u(rJ)(nl· (4.6) 

Averaging in this way gives an especially simple and 
graphic result for high enough densities n in two limit
ing cases. 

1. When the forces have a long radius ro of interac
tion (nr~ » 1), the energy U(r) itself is a functional of 

the smoothed density n(x), and requires no further 
averaging: 

U{n}=(U(f))<nJ=:)) n(x)n(x')V(x-x')d3xd3x'=(e(n),1), 

(4. 7) 

2. When the forces are of small radius ro << a (in 
particular, repulsion forces at atomic distances) when 
the number of particles in the smoothing region is large 
(na3 » 1). 

In this latter case the overwhelming majority of par
ticles in the vicinity of a given particle belongs to dis
tant regions of the chain (see Fig. 1). If we average 
locally (4.6) over the rapidly fluctuating quantity U(r), 
the coefficients g(yj) remain practically constant, and 
can be omitted. Hence, 

(e-U(rl){n) = ( s e-U<I")df) I ( s df) = eFo(n,O)-Fo(n,U}. (4.8) 
' (n) (n) 

Here Fo{n, U} has the meaning of the free energy4 ' of 
a system of links having the same interaction U and den
sity n, but with broken bonds gj, i.e., having no linear 
memory: 

F0 {n, U}= (1,/o(li) )= ~ fo(n)d3x, (4.9) 

Here fo(n) is the free energy per unit volume at the local 
density n; Fo{n, 0} is the free energy of an ideal gas 
(U = 0) of density n: 

Fo{n,0}=-So{n}=-(1,s0 (n)}, s0 (n)=-nln(n/e}. (4.10) 

Thus, U{ n} can be represented in a single way in 
both cited cases: 

U {n} = (1, e(n) ), e(n) = fo(n) + so(n) = fo(n) + nln (e / n). (4.11) 

If we find the extreme value of F{n} under the con
dition (1, n) = N, and take account of the fact that &fo/an 
= J.L o(n) is the chemical potential of a particle in a sys
tern of local density n, we get an equation for lj! analog
ous to the previous (2.11): 

In (g'ljl/1jl} = <ll(n,x) -I.; 

Be 
<ll(n,x)=<p(x)+ iJn =<p(x)+~to(n)-lnn, ljlg'iJ=n, (4.12) 

where the external field cp (X) is replaced by the effective 
self -consistent field .P (n, x). 

Taking into account the fact that ln n = ln glj; + ln lj;, 
we can write this same equation in the form 

~to(n) + <p(x)- 2ln,l;'",p =I.= const. (4.13) 

When the smoothing radius a is large in comparison 
with the dimensions of the system (a » R) and glj; 
= const. (i.e., the memory imposes no limitations on 
the configuration of the links), the condition (4.13) trans
forms into the ordinary thermodynamic condition of 
constancy of the chemical potential in a system having 
no memory: 

Jl.o(n) + cp(x) = const. 

Equation (4.13) is a generalization of this condition 

4lHere and below, when speaking of the free energy or chemical 
potential, we refer to the configurational part of these quantities. 
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to a system having a linear memory. Together with the 
relation n = zpglj!, we can consider it as an analog of the 
equation of state of such a system as a whole. 

5. THE RANDOM COIL-GLOBULE PHASE TRANSITION 
IN A SYSTEM SHOWING A VOLUME INTERACTION 

At zero external pressure in the absence of external 
fields, a loose random coil can collapse into a compact 
globule owing to volume forces of attraction between the 
links. However, unless we introduce repulsive forces, 
the problem of the stable state of the globule under 
zero external pressure can have no solution, since the 
system would tend to unlimited contraction. When we 
take into account the repulsive forces at atomic distan
ces, the dense core of the globule is analogous to a con
densed phase. Its fringe, which is subject to zero pres
sure and is restrained only by the bonds along the chain, 
is an analog of a gas phase. Thus, such a globule should 
form a sort of two -phase system. 

The concrete form of the volume interaction, which 
takes into account both the attractive forces at relatively 
great distances and the repulsive forces at atomic dis
tances, is contained in Eq. (4.12) in the dependence of 
the chemical potential iJ. o(n) on the density. As we in
tend to analyze not only the conditions for appearance 
of a compact globule and its structure, but also the 
corresponding temperature -dependences, we shall 
transform in this section from energy characteristics 
expressed in temperature units to the usual notation, 
introducing the explicit temperature-dependence. This 
amounts to replacing 

flo(n, T) 
~to--+ --r- . 

The equation describing the state of the entire two
phase, spherically symmetrical globule has the follow
ing form in the absence of an external field, according 
to (4.12): 

<D(n) = J.lo(n, T) / T -ln n, n = n(r), n(oo) = 1Jl(oo) = 0, 

4n ~ n(r)r2dr = N. 

(5.1) 

The latter normalization condition determines the value 
of A if a globule exists. 

For small n (i.e., for a "gas" phase), the expression 
for the chemical potential iJ.o(n, T) has the well-known 
form: 

floiT=lnn+an, a=a(T), (5.2) 

Here a (T) > 0 at high temperatures, and a (T) < 0 at 
low temperatures. In the high -density region, iJ. o(n) 

FIG. 2. Schematic graph of 
the relation <I> = <l>(n) for different 
temperatures. For a globule having 
a continuous density distribution, 
<1>0 = <l>(n0 ) is found from the 
condition J~o (<1>-<1> 0 ) dn = 0. 
The temperature T 0 at which ap
pearance of such a globule becomes 
possible corresponds to the values 
<l>o = 0. 

shows a minimum corresponding to a condensed phase. 
Thus <I> (n) will be given by 

(5.3) 

Figure 2 shows the characteristic course of <I> (n). 
There is generally a discontinuity in the density 

(6n = n2 - nJ in the transition region between the pha
ses, and hence, a discontinuity in zp(61J; = lJ;z- zpd. We 
have assumed the smoothing radius a to be large in 
comparison with the atomic distances. Therefore we 
can assume, to the same degree of accuracy to which 
Eq. (4.14) was derived, that <I>(n) consists of two regions: 

{ 
J.1<>1(n)/T-lnn, 

<D(n)= 
Jloz(n)/T-lnn, 

Here zp and n are continuous within each of them. The 
exact equation (5.1) for zp holds everywhere, including 
the neighborhood of the point of discontinuity (the phase 
boundary). 

As we can convince ourselves, the physical picture 
for large globules (R :::?> a) arising from the solution 
(5.1) has the following form: the core of the globule has 
practically constant density, reaching some value no at 
the center while the transition layer and fringe are of 
small thickness 6R « R (R3no41T/3 ~ N). Hence, if we 
assume that r = R + x, and take into account the fact 
that gzp = zp + a 2 d2 zp/dx2 on both sides of the narrow 
boundary layer at the phase boundary, we can write Eq. 
(5.1) for each of the phases in the form 

a2 :~ = .p ( e<~>(n)-~ _ 1), 1jl2 = ne'--<~><n) ( 5 • 4) 

with the boundary conditions: 

phase 1: n(-oo) =no, 1Jl2(-oo) = .p0z = n0eA-<~>,, 

phase 2: n(oo) = 0, 1)J2 (oo) = 0. (5.5) 

Equations (5.4) and (5. 5) directly imply that A = <I> (no) 
= <I>o, and 1/J~ = n0 • The first integral of (5.4)-(5.5) has 
the form 

(5.6) 

H,'(..P)= f (<ll-!ll0)dn-q(n), 
n 

H 22 (1jJ)= ~ (lll-!ll0)dn-q(n}, 
0 n., 

q(n) = n[e<~>-<1>,- 1- (lll-lll0)], "¢2 = ne"'-<~'•. (5. 7) 

Equations (5.6) can be solved by quadratures, and they 
give 

'!' dljJ 
a~ --=X (I)· 

,., HJ(1Jc) ' 

.. d..p aS·--= -x (II). 
t, Hz(ljJ) 

(5.8) 

In particular, far from the phase boundary we obtain 
an exponential decay: 

n ,....., e-v~~ ( x-+ oo) , 1 --
Vt = -;-"fe-"'•-1; 

v, = _!_[ 2no!ll'(no) -]'/, 
a 1- n0<1l' (no) 

(5.9) 

The value of no must be obtained by matching the 
solutions 1J;1 and zJ;z at the point x = 0. Here we can no 
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longer use the differential form of Eqs. (5.4), but must 
start with the exact equation (5.1). As we can convince 
ourselves, the local chemical potential J..1. o(n) and the 
local pressure p = fo{n) - nJ..i. o{n) must remain continuous 
at the boundary in the adopted approximation. Naturally, 
the following thermodynamic inequality must be sa tis
fied at every point: 

1 Of.to il<D 1 
r--a;-= a7:+n: > o. (5.10) 

Furthermore, the existence of a compact globule 
must be thermodynamically more favorable than a loose 
random coil having n - 0 and F = 0. For large globules, 
according to (4.11), this condition is reduced to the 
elementary requirement: 

/o(n) no "s' e(no)=-T--nolne= <D(n)dn<O. (5.11) 
0 

First of all, let us find out which cases will show a 
continuous density distribution throughout the system 
without a discontinuity at the phase boundary. The right
hand sides of (5.6) differ by the quantity 

H 12- H22 = r (<D- <Do)dn. 
0 

Hence, if there is a solution satisfying (5.5) and continu
ous throughout space, then no must be fixed by the con
dition ... 

5 (<D- <Do)dn = 0, (5.12) 

Together with Eq. (5.11), this gives <I>o = <I>(no) < 0. The 
conditions (5.11) and (5.12) begin to be satisfied when 
T:::; To, where To is given by the equations: 

<D(no, To)= 0, r <D(n, T 0 )dn = 0. 

On the other hand, existence of a single solution means 
that the inequality (5.10) must be satisfied throughout 
the region 0 < n < n0 • In other words, the temperature 
T must be above the critical temperature (T > Tc) 5 >. 
Thus, two cases are possible for a large enough chain: 

1) To > T c. When T > To, the equation of state of the 
two-phase system has no solution, and no globule arises. 
The globule arises at the point T = To, with a continuous 
density distribution, and with an extra free energy 
vanishing at the transition point, as given by 

__!___ = { no<D (no), 
TV 0, 

T<T0, 

T> To; 

r (<D- <Do)dn = 0. 
0 

This corresponds to a first-order transition. On pass
ing through the temperature T c, a density discontinuity 
appears at the boundary between the dense core and the 
fringe of the globule. This discontinuity vanishes at the 
critical point Tc. When there is a discontinuity, the 
condition (5.12) is violated, and this leads to a second
order transition. 

5)The critical temperature Tc here represents the ordinary tem
perature limit of existence of a continuous transition between "liquid" 
and "gaseous" phases, and bears no relation to the transition tempera
ture in an external field introduced in Eq. (2.17). 

2) To< Tc· In this case, there is no globule at tem
peratures T > To, and on passing through To a globule 
appears, having a density discontinuity in the transition 
layer-a first-order transition. 

In the case of a continuous density distribution, as
suming that <I> - <I>o « 1, we can derive from (5. 7) and 
(5.12) the following simple equation for the density 
throughout the transition region: 

~(dn)2= S (<D-<1>0)dn, r (<D-<D0)dn=0, 
2n dx 0 

Hence, 

X r [ r ]-'/• ~ = J 2n J (<D- <Do)dn dn. 
... 

The discussed model is an extremely simplified sys
tem. In particular, substantial changes in the structure 
of the compact core appear even when we take into ac
count the dependence of the interaction forces and 
correlations g(y) not only on the relative coordinates, 
but also on the relative orientation of the links. The 
latter situation corresponds to increasing stiffness of 
the chain and possible appearance of orientational order
ing in the globule. Many of these problems can be stud
ied analogously . 

Even more important changes arise when we take 
into account the informational memory in a heteropoly
mer. The existence of such a memory (i.e., a definite 
sequence of alternation of differing links in the chain) 
can give rise to spatial linkage of certain quite definite, 
remote links, which must be considered to be fixed 
("an aperiodic crystal"). The fundamental problem 
arising here consists in the following: do such fixed 
spatial linkages arise from statistical equilibrium of 
the system having the given primary chain structure 
under the given external conditions, or are they only a 
non-equilibrium or metastable state fixed in greater de
tail? In the former case, formation of such globules 
from free chains requires only creation and maintenance 
of appropriate external conditions. In the latter case, it 
must arise from a definite complex kinetic mechanism. 
Finally, the situation may possibly vary as a function of 
the chain length and the geometric dimensions of the 
globule. Actually, the existence of strictly fixed spatial 
linkages of quite definite remote links (not reducible to 
periodic repetition) implies zero entropy of the system 
by this criterion. This seems improbable for the 
equilibrium state of an excessively long chain (owing 
to the rapid growth in the number of different, almost 
identically favorable variants of such linkages). If this 
is so, then critical dimensions should exist for hetero
polymeric chains capable of self -organization into a 
quite definite aperiodic spatial structure (the so -called 
tertiary structure of the globule). The statistical theory 
of heteropolymeric chains having volume interactions 
should answer these questions. 

Translated by M. V. King 
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