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It is shown that in degenerate semiconductors or semimetals with appreciably different conduction
and hole electron masses (mp <K mp) and relatively high mobilities, a specific superconductivity
mechanism, due to the interaction of the electrons with the low-frequency weakly-damped branch

of the collective longitudinal oscillations of the electron-hole plasma (the so called ‘‘plasma sound’’)
may exist. The critical temperature of the transition of the semiconductor (semimetal) to the
superconducting state is determined by the Langmuir (plasma) frequency or the Fermi energy of the
‘“heavy’’ holes and, in principle, can be much higher than in metals (T¢ ~ 10% deg K).

1. INTRODUCTION

SUPERCONDUCTIVITY is a rather universal phenome-
non, wherein any arbitrarily weak attraction between
the electrons near the Fermi surface leads, as is well
known to the formation of bound electron pairs (the
Cooper phenomenon!')),

For most pure metals, the main electron-pairing
mechanism is electron-phonon interaction'®*!, In many
cases, however there are apparently also other causes
of superconductivity, not connected with the crystal-
lattice vibrations, as indicated, in particular, by the
absence of the isotropic effect in some of the super-
conductors!®l,

In this connection, and principally with an aim at
discovering superconducting materials with sufficiently
high critical temperatures, various nonphonon conduc-
tivity mechanisms have been discussed for ferro- and
antiferromagnets!®®], in transition metals and
alloys®'°) in polymers!'*), and also in thin metallic
films with dielectric or semiconductor coatings
(“‘sandwiches’’)"*2,

It is shown in this paper that in degenerate semi-
conductors or semimetals with greatly differing effec-
tive masses of the conduction electrons and the holes
and with relatively large free-carrier mobilities there
can exist a unique superconductivity mechanism due to
the interaction of the electrons with the low-frequency
weakly-damped branch of the collective longitudinal
oscillations of the electron-hole plasma (the so-called
‘plasma sound’’). The width of the energy gap in the
conduction-electron spectrum, which characterizes the
binding energy of the Cooper pairs, is determined by
the Langmuir (plasma) frequency or by the Fermi en-
ergy of the ‘“heavy’’ holes, so that the critical tempera-
ture of transition to the superconducting state may, in
principle, be much higher in such semiconductors
(semimetals) than in metals.

2. “PLASMA SOUND’’ IN A DEGENERATE ELECTRON-
HOLE PLASMA

Let us consider the collective oscillations of a de-

generate electron-hole plasma of semiconductors®” or
semimetals whose band structure is such that the hole
effective mass my is much larger than the effective
mass my of the conduction electrons. As is well
known, if the free-carrier mobility is sufficiently high,
there can exist in such a plasma, besides the electron
Langmuir (plasma) oscillations at the frequency Qp
= (4me n/mn) , where Np is the concentration of
the conduction electrons, also a low-frequency weakly-
damped branch of collective longitudinal oscillations
with a phase velocity in the interval vrp <w/q< VFp,
where vpp and vEp are the Fermi velocities of the
degenerate electrons and holes (it is assumed that the
crystal temperature is close to absolute zero, T ~ 0).
In the simplest case of an isotropic semiconductor
(semimetal), the dispersion equation of these oscilla-
tions is

e(q, ®)— - (@ 0)+ Lp(g, 0)} = 0. 2.1)

Here €(q, w) is the longitudinal dielectric constant of

the crystal, and Iy(q, w) and llp(q, w) are the polari-
zation operators of the conduction electrons and of the

holes, which are respectively equal to!****]

3Nn 7 ol
lln(‘[,m)"’_*{g(v\—k 3 aom (@ <€ qUrn), (2.2)
~ Ny
Hp(g, o)== ml,(v)(u*) T i) (0 >>quryp), 2.3)
where
II — x2 1—{-x ] z2
(@) =-t+ 11‘ 1 ~\,z1-~7 (0<z<1);2.4)

Egp = p%‘n/Zmn is the electron Fermi energy, reckoned
from the bottom of the conduction band, pgp

= (31°Np )"/? is their Fermi momentum (h=1), Ny is
the hole density (we assume henceforth for simplicity
that Np = Np =N ), and Tp is the time of hole momen-
tum relaxation due to scattering by impurities (defects)
and phonons.

D1n intrinsic semiconductors, a degenerate electron-hole plasma can
be produced by external carrier injection (for example by ‘‘pumping” the
crystal with a laser).
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Assuming that the frequency of the oscillations in
question lies far from the natural frequencies of the
crystal (and, in particular, does not coincide with any
of the optical or acoustic branches of the lattice vibra-
tions), so that we can approximately assume that
€ = const, we obtain if wty > 1, i.e., at a sufficiently
high hole mobility, the following expression for the
oscillation frequency from (2.1), with allowance for
(2.2) and (2.3),

Re‘DEQq:Qp{ (2.5)

qZ }'/:
@+ %:2(q) ’
where Q. = (41re"‘N/emp )"/2 is the Langmuir (plasma)
frequency of the ‘‘heavy’’ holes (mp > my), and

N

is the electron Debye screening radius.

We see that as q — 0 the oscillations have an acous-
tic character (Qq ~ qu, where u = vpp(mp/3mp )/2),
whereas in the region q > kj they constitute plasma
oscillations of the holes (Qq ~ Qp ). This is why this
branch of oscillations is frequently called ‘‘plasma
sound’’®. The weak damping of plasma sound in the
region w > qVpyp is due to single-particle electron
excitations® and to the finite hole mobility. The damp-
ing decrement, according to (2.1)—(2.3), equals
(Qprp >1)

6re2N q
xat(g) =|

elpn  \2pp

tmo = — by —{ 2 w? Q2 | 1
MO= 0= qu‘{"xzu qUFn

21y

(8<<Q0). (2.6)

In the region of q 2> Qp/ VFp the resonant damping
of oscillations on the holes becomes appreciable
(Im w 2 Re w).

We note that at a sufficiently high carrier density
the maximum frequency of plasma sound Qp may
greatly exceed the limiting Debye frequency of the
phonons wo. But on the other hand Qp < Epy, if the
condition pgap > myp/my is satisfied, where ap
= €/mpe? is the effective Bohr radius of the conduction
electron.

3. SUPERCONDUCTIVITY MECHANISM

We shall show in this section that interaction of the
conduction electron with the aforementioned low-
frequency collective oscillations of a degenerate elec-
tron-hole plasma, of the ‘‘plasma sound’’ type, can
lead to the formation of bound electron pairs near the
Fermi surface, and consequently to the occurrence of
superconductivity in certain semiconductors (semi-
metals).

As is well known, the Coulomb interaction between
particles in a degenerate plasma is described by the
following vertex part{**];

-1 e

Tii(q, 0) = 4neiej(q2 - 1tZ/i:rreizﬂi(q, m)) = %, (3.1)

2)This branch of longitudinal oscillations was investigated earlier for
the particular cases of strongly-compressed matter [!5] and a dense degen-
erate electron-hole plasma [**]. In a rarefied non-isothermal plasma
(Te > T,), a similar branch of collective oscillations is called “ion” (or
“non-isothermal””) sound [!¢:17].

3Such a damping is the quantum analog of resonant Landau damp-
ing [16,17] .
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where IIj(q, w) is the polarization operator (loop) of
the particles of species i, and €j(q, w) is the longitud-
inal (self-consistent) dielectric constant of the plasma®.
In the general case the vertex (3.1) takes into account
effects of the delay of the interaction, and has poles
near the natural frequencies of the collective plasma
oscillations, when Re €;(q, w) =0 and Im €;(q, w)

— 0. In particular, the longitudinal dielectric constant
of the degenerate electron-hole plasma of an isotropic
semiconductor (semimetal) in the frequency (energy)
fegi)c;n qQvpp < @ < qvEn equals (see (2.1), (2.5), and
2.6

YT
L), Qy=0,— b,

w?

P
sl(q,m)%e(1+q—2>(1—- (3.2)
so that the vertex of the electron-electron interaction
in this region is of the form (compare with the ‘‘jelly”’
modell8:1°1)
Thn(q, 0)= —liez-————‘—o-z—

? e (@ + xa2) mz._'qu (3.3)
It follows therefore that when w < Qq (but w > qQVFp
we have Re I'yp(q, w) <0 (but |Re I'np |Im Ty |),
i.e., the interaction between conduction electrons has
the nature of attraction that results from exchange of
virtual ‘‘plasmons,’’ which are quanta of collective
plasma-sound oscillations. Indeed, the vertex I'np can
be represented in the form

Fﬂ‘n(qr (’)): —D(qv 0))+ r(q)v (3-4)
where
Q 1 1
o =r@5{ A+t (3.5)
q q
SN 4me?
ST (3.6)

The function D plays here the role of a ‘‘Green’s
function’’ of the plasmons®, whereas I' describes the
Coulomb repulsion.

In the region w =< Q4 we have Re D(q, w )=T(q),
i.e., the effective attraction due to the ‘‘electron-
plasmon’’ interaction prevails over the repulsion®. In
the regions w > Qq and w = qVpy, to the contrary,
the Coulomb repulsion of the electrons prevails
(Re Tpp(q, @) > 0, with |Im I'pp| 2 Re Tpy in the
region w ~ qVpp). In particular, when w/q — 0 we

have
4me’

eo[¢? + %n?(q) + %2*(q)]

an(q’O)E ro(q): (3.7)

where €, is the static dielectric constant of the

“We note that expression (3.1), which is obtained in the high-density
approximation (i.e., under the condition Pra, > 1, where a, is the Bohr
radius), is valid with sufficiently good accuracy and for not too dense
systems, when Pra, <1 (see [19]).

5)Compare with the phonon Green’s function in the case of electron-
phonon interaction [13].

6)In other words, the presence of “heavy” holes leads in this case to
the effect of “antiscreening” of the Coulomb interaction between the
conduction electrons, just as the presence of bound d-electrons in transition
metals leads to a net attraction between the free s-electrons [*1°].
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crystal” and kg (q) is the effective radius of screening
of the charge by the ‘‘heavy’’ holes ( Kf) = kpmp/mp ).
Nonetheless, as will be shown below, the electron-
plasmon interaction leads under definite conditions to
a pairing of the electrons near the Fermi surface.

The equation for the energy gap in the conduction
electron spectrum at T =0, as is well known! %%
is of the form

An(k, 0)= dk’ do’ Fp (K, 0" ) Cpn(k— K, 0 — ), (3.8)

1
—-(Q )AS

where

Falk, ©)=Ar(k, 0)/Qa(k, 0), (3.9)

Qa(k, @)=[0—En(k) = Zn(k, ©)][0 + & (k)+ Za(k,—0)]—An*(k 0),

(3.10)
¢n(k) is the electron energy reckoned from the Fermi
surface, and Zy(k, @) is in turn determined by the
equation®®

20k, 0) = —— { di do’ Gn (K, ) Ton (k — Ky 0 — o); (3.11)

i(2m)t

here Gp(k, w) is the Green’s function of the conduc-
tion electrons (with pairing taken into account).

We assume first for simplicity that expression (3.4)
for I'yp(k - k', w - w’) is valid for all values of
|w - 0’| (see below). Then, assuming that Q, < Egy,
and consequently that |k — k' | ~ pp, we obtain with
the aid of the method developed by Eliashberg!®! the
following equation for the function C(w ) characteriz-
ing the binding energy of the electron Cooper pairs:

{ Qe,0)C (")

Co)= \ ———="do’, 3.12
@= e (3.12)
where
Tm
1 1
0,00 = [1= 2] fr@eaq
Q, 1 _ 1 -
X{TI: m’—(o+9q+ <o'+w+§2q] 1}' (3.13)
Im
Q, +
flo)= B S T'(9)Qq lﬂl Q, |¢1dq, (3.14)

A = C(0) is the gap parameter on the Fermi surface,
q=|k-X'|, and qm ~ 2pF.

It is easy to see that when w — 0 the kernel
Q(w, w’) of the integral equation (3.12) is negative for
all values of w’ = 0. On the other hand, when w’ =0,
we have in accord with (3.13)

B(m) f(w) o) .15
T i SR TEAT RS
where
_ aw? _ %a2(0) _
ﬁ(w)_—sz—-mZU—“a/Z) ’ C=T e 4pg? 'Ippa - (3.16)

The kernel Q(w, 0) is s positive when B(w) =Y, i.e.,

in the vicinity of w =< Qp_ Qp(1 + Y,a)™2, and is
negative when w > Qp d1verg1ng logarithmically at the
point w = Qm = Qy,(1 +a/2)"/2 (i.e., at B(w)=1).
This divergence £sappears however when the finite
damping of the collective oscillations is taken into ac-

DFor certain crystals, €, may be much larger than the dynamic
dielectric constant in the frequency region w ~ Qp.
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count, and the maximum negative value of Q(w, 0) has
an absolute value (g~ l/an)

(3.17)

According to (3.14), the function f(w) in the region
w < Qp equals

flo)=—

[Q(Qm, 0) | = '2In [aQptp].

“i«lnt-zf” (F(0) < 0), (3.18)
20 |

and when w > Qp its modulus decreases like 1/w
with increasing w.

It must be borne in mind, however, that Eq. (3.12)
has been obtained under the tacit assumption that
A > qqVFp ~ 4EFp (Where Epp = pf/2my is the
Fermi energy of the holes, so that in the entire inter-
val w, w’ = A the vertex I'yy, is determined by the
expression (3.4). Actually, this condition can be satis-
fied only subject to the very strong inequality £p
> EFp, i.e., at rather large effective-mass ratios
(n /mn >> 1), but small carrier densities
(a xnf)o )/2pF >> 1). For real semiconductors (semi-
metals), however, the parameters u and a are not
very large (u < 10, @ ~ 1), and therefore the case
when Qp 2 Erp and A < Efp is of practical interest.
It is necessary here to take into account the fact that
expressions (3.4) and (3.13) no longer hold in the
vicinity of |w — w’| S Epp. In particular, when
w =w’ =0 we have, according to (3.7)

Im

Q(0.0)= — 7 § Tota)ado
__® o ;2+a(1+_lgl
& 2‘—‘(1(1 4 }l) 2(1(1-{-”‘) (3.19)
But since Eq. (3.8) with the exact interaction
, 4rue?
frn 80 = ) = o — o)

can be solved only by numerical methods, we confine
ourselves here to a consideration of a certain model
equation for the gap®

K(EE)AE)

A(g)= . dE/, (3.20)
SV§'2+A2 (&)
where (cf.[*%21)
—ou &, ]§']<‘D1—Epp
B N P2, 03 <_|E], |§|<(02_..
KE&E) =)0 0y TIEL |8 1<y =Ep, °
0, |E], IE]| >0 (3.21)

Here p, = -Q(0,0)> 0 (see (3.19)), and the constants
p> and ps are the mean values of the kernel Q(w, 0)
in the positive and negative regions, respectively:

oy @3

! S Q(v,0)do, 03"*& [Q(w,0)|do. (3.22)
[OF] w3 —

02— 04 5 ®2,,

P2 =

Assuming further for simplicity that A(£) = A, when
| £] = w,, that A(&) =A; at w, < |£] < w,, and that
A(£) =A; when w;< |£|= ws, i.e., replacing the exact

8)Such an equation can be obtained , in particular, with the aid of
the Bogolyubov transformation [3] by a suitable choice of the effective
electron-electron interaction Hamiltonian. A numerical solution of the
exact equation for the gap is now in progress.
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values of the gap by their mean values in the corre-
sponding regions, we obtain in lieu of the integral equa-
tion (3.20) the following system of equations (cf.['%)):

2Q : .
At = —piAs In =2 4 poAg In = — p3As Tn —,
Ay Q 5

a2 2

2Q ‘
As — pz{Ailn—i-i— Azlnﬂ] — pshsIn 22,
Ay Q, ©2

- 20
A3=—93J[A1111—A—‘+Aglngz-], (3.23)

where

Q=" (01 4+ Vo2 + Ay, 2?), (3.24)

and 5'3 is the renormalized Coulomb-repulsion con-
stant, equal to®’
- 03
T e ln(os/en)
It was assumed above that A,,|As| K wz ws. If
furthermore A,, A; < w,, then the system (3.23) has,
subject to the condition

p=—(pi+p)+

(3.25)

(p2+ ps— Es)
1 — (p2 + ps — ps) In (@2/ 1)

>0 (3.26)

the following solutions:

Ay =20, Ay = (1 + pl—i&) As,
b

3*—‘—%’[1"‘ (5"“91—!'92) In':::—:]Al- (3‘27)
We see that in spite of the Coulomb repulsion (which
incidentally is strongly screened by the ‘‘heavy”’
holes), the gap in the spectrum of the conduction elec-
trons near the Fermi surface can be finite and positive
in the energy region w I Efyp.

We note that in the case of the very strong inequal-
ity w.,> w,; (but w, K w;3) the system (3.23) admits
also of solutions in the form (w, KA}, A, <K wy)

(3.28)

where 52 =pz+ps—Ps (these solutions correspond to
the case a, p— =),

By way of an example, let us consider a semicon-
ductor (semimetal) with conduction-electron effective
mass mp =~ 0.3m, and hole mass myp = 3m, (m, is the
electron mass), and with a free-carrier density N~ 3
X 10" cm™, As shown by numerical estimates, in this
case (subject to the condition € ~ 1 and €,~ 2), the
width of the energy gap near the Fermi surface is,
according to (3.27), A; ~ 2 X 107? eV, corresponding to
a critical temperature of transition to the supercon-
ducting state T, ~ 102 deg K'©.

Thus, the interaction of the conduction electrons
with the collective oscillations of an electron-hole
plasma in degenerate semiconductors or semimetals
can lead, under certain conditions, to the occurrence
of superconductivity with relatively high critical tem-

AS :“/_'83 Aﬂv

Ay = Ay = 2040710,

9 Compare with the renormalization of the Coulomb interaction in
the phonon model of superconductivity [3].

100of course, this estimate should be regarded as roughly tentative.
More reliable results can be obtained only by numerically solving the
problem.
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perature. Such a conductivity mechanism can be called
‘‘plasmon’’ mechanism.

In conclusion we note that the formation of bound
electron pairs is possible only when the so-called
¢‘coherence length’’ £, ~ Vpp /A is small compared
with the electron mean free path in the crystal, I
~ VvppTn (Where 7, is the electron momentum relaxa-
tion time), and the characteristic electron pairing time
~A™ is much shorter than the damping time of the
collective (plasma-sound) oscillations, ~7p, i.e.,
under the condition

(3.29)

For the example considered above, this corresponds
to Tp,p > 3% 107 sec.
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