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The effect of the finite probability of jumps between filaments on the nature of the superconducting 
transition is examined. It is shown that in a broad range of transition temperatures f3Eo $ Tc $ f3 113E0 
(f3 is the jump probability and Eo is the Fermi energy) the superconducting state retains characteristic 
"one-dimensional" properties. l1' 31 

IN a previous paper l11 the authors showed that in 
quasi one-dimensional (filamentary) structures a tran
sition to the superconducting state is possible in princi
ple whose properties coincide with those of the "one
dimensional" superconducting state considered by 
Little, [21 and Bychkov, Gor'kov and one of the authors. [31 

At the same time only one of the factors preventing the 
transition to the superconducting state in the purely one
dimensional case was taken into account-the electron 
density fluctuations. There is, however, another factor 
which destroys superconductivity-peculiar fluctuations 
of the phase of the wave function of a Cooper pair at 
finite temperature. Their existence was first pointed 
out by Yaks, Galitski'l, and Larkin [41 ; the effect of these 
fluctuations on the superconductivity in the one-dimen
sional case was first considered by Rice. [s 1 

The presence of phase fluctuations in filamentary 
media necessitates an account of the finite probability 
of a jump between filaments f3 (f3 « 1). This in turn 
leads to the fact that the superconducting transition 
temperature turns out to be bounded from above: 

{1) 

For T » {3113 Eo the transition is in general impossible 
on account of the destructive action of the phase fluctua
tions. For T c << f3Eo the superconducting state has the 
usual three-dimensional character, and finally for 

a transition to the previously consideredl1' 31 "quasi 
one-dimensional" superconducting state is possible. 

{2) 

Inequality (1) can be derived as follows. In the purely 
one-dimensional case Hohenbergl61 derived the inequal
ity 

T !12 
~-2 dq< oo, 

q 

where~ is the gap. In the quasi one-dimensional case 
the inequality is replaced by 

~ T 112 
-c-c--~ dq d2k < 00, 
q2 + ~2k2 {3) 

where k is the momentum of the transverse motion, or 

T/12 I~< oo, 

whence (1) follows for ~ ~ T ~ T c· The appearance of 
the quantity {3 2 in the denominator of (3) is due to the 
fact that the coefficient of k2 is according to the method 

1259 

of deriving Hohenberg' s inequalities proportional to 

<(j, p]) C'<l imn(,Pmm- Pnn) C'<l imn2, 

where j is the transverse current, p is the density, and 
the matrix elements are taken over states localized on 
different filaments. 

If at zero temperature the gap ~ 2: f3Eo, then there 
exists a lower limit for the transition temperature 

{4) 

In order to derive this inequality, let us determine the 
temperature at which the above -mentioned phase flue
tuations begin to affect the size of the gap appreciably. 

Yaks, Galitski'l, and Larkin [41 have shown in the 
three-dimensional case rigorously that the correlation 
function of Cooper pairs 

P(1, 2) = -(T1jJ,+¢,+1jl2"\jlz) 

has a peculiar singularity at wn = 0 (wn = 27TnT) and 
finite T, namely 

P(K) ""112 I [(2, 

K is the three-dimensional momentum. Unfortunately, 
one cannot derive an analogous formula rigorously in 
the quasi one -dimensional case [1' 31 because in [1' 31 all 
considerations are carried out in the logarithmic ap
proximation. In order to obtain such a formula, one 
must proceed to the next approximation which meets 
with so far insurmountable difficulties. 

We have made the natural assumption that in our 
case 

{5) 

where q is the longitudinal and k the transverse momen
tum. Formula {5) can be obtained rigorously if one 
neglects the effect of the doubling of the lattice period. [31 

Then f3 ~ a/Eo where a is the energy of the transverse 
motion from l 1 J. We note that {5) is in agreement with 
the Hohenberg inequality. 

On the same basis one can use for the function Z 
connected with the doubling of the period the expression 

{6) 

where K is the dielectric gap. l31 

The contribution of fluctuations of P and Z to the ex
pression for the Green's functions is given by diagrams 
of the type shown in the Figure where the wavy line de-



v 

1260 I. E. DZYALOSHINSKII and E. I. KATS 

/--- .... 
I ' .._______. 

notes P and the dashed line-Z. 
The contribution of the first diagram is of the form 

T 2 i dqd2k F 
X .I q2 + ~2k2 (p + q). 

In the region T :S {3Eo $ t::. ~ K the important region 
of integration is q ~ {3po. In it one can replace F by 1/t::. 
which gives for the first diagram a contribution Tt::./{3Eo. 
Hence it follows that 

(7) 

The second diagram imposes a weaker limitation on 
T. The same region of integration q ~ {3po is important 
here. Replacing in it F by 1/t::. and G by T/t::. 2 , we find 
the contribution of this dia~ram to be T4ff32E~ whence 
it follows that T $ ({3Eot::.) 1 2• One can convince oneself 
that the remaining diagrams do not impose on T a limi-

tat ion which is stronger than (7). 
The authors are grateful to A. I. Larkin for impor

tant remarks. 
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