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The Heisenberg model of antiferromagnets with an easy axis of magnetization is examined using 
perturbation theory. The temperature dependence of the spin wave energy at low temperatures and 
the spin wave damping at low temperatures, as well as in the vicinity of the Neel point are calcu­
lated. The free energy, sublattice magnetization, and magnetic susceptibility are also investigated. 

1. INTRODUCTION 

THE energy spectrum of spin waves and thermody­
namic quantities of Heisenberg antiferromagnetics 
have up until now been investigated predominantly in 
the Holstein-Primakoff approximation[!] or by the 
method of time Green functions. [21 However, as is well 
known, the applicability of the results obtained by 
these methods is limited, and hence in[3 J the spin waves 
and thermodynamic properties of ideal Heisenberg 
antiferromagnets were investigated in the framework 
of perturbation theory pro~osed for ferromagnets by 
Vaks, Larkin, and Pikin. r 4 

Actually, in crystalline substances there is always 
some kind of anisotropy, and therefore it is of interest 
to investigate the effect of magnetic anisotropy on the 
spin wave spectrum and magnetic properties. In this 
paper we investigate a magnetically anisotropic anti­
ferromagnet of the "easy-axis" type. After a short 
exposition of a diagrammatic technique, which differs 
somewhat from the technique used in [3 J, we shall de­
termine the spin wave spectrum and its temperature 
renormalization. In addition, we investigate the damp­
ing of spin waves both at low temperatures and in the 
vicinity of the Neel point and obtain the condition for 
the existence of long-wavelength spin waves in this 
temperature interval. In particular, from these expres­
sions the damping of spin waves in an isotropic anti­
ferromagnet is obtained. In Sec. 4, we consider the 
free energy, sublattice magnetization, and magnetic 
susceptibility. 

2. CORRELATION FUNCTIONS AND SPIN WAVE 
SPECTRUM 

We shall investigate a Heisenberg antiferromagnet 
with magnetic anisotropy of the "easy-axis" type and 
suppose that the Hamiltonian of the system contains, 
besides the exchange term, an anisotropic part con­
sisting of both single- and double-ion terms, i.e., 

2/C = -~,H( ~ Sj' + ~Sg')- ~ V(!- i!)S1Sg 
I g l,g 

-6~·V(f-g)Sf'8g'-K[ ~(Sf')'+~ (Sg')']. (2.1) 
j,g f g . 
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where f and g indicate sites of the first and second 
sublattices, respectively, and o and K are anisotropy 
constants. 

In order to use perturbation theory to calculate the 
correlation functions and free energy, we divide the 
Hamiltonian into two parts: 

(2.2) 

where 

dCo = ~ V (/-g) (1 + 6) (SJ'>o<Sg'>o + K ( ~ <S1'>d'+ ~ \Sg')o") 
~~ I g 

-~~y1SJ'-_1__~y8Sg', (2.3) 
~ I ~ g 

Yt=~[llH+,~ V(f-g)(1+o)<S.'>o+2K\Sf'>o J. (2.4) 
g 

Y• = ~ [ [tH + ~ V(f- g) (1 + 6) (Sf')o + 2K (Sg')o]; (2.5) 
I 

:JC, =- ~ V(f-g) (1 + o) (S!'- (SI')o)(S1'- (Sg')o) 
f, g 

f, g 

- K [ ~ (Sr'- (Sf') 0) 2 + ~ (81'- (81 ')0) 2 1; (2.6) 
f g 

:!Co approximates the molecular field, :Jf1 is the per­
turbation. As in[3 l, we define ( sf)o and ( S~) 0 in self-

consistent fashion with the aid of ::JC0 and fix their 
values: 

(Sf)o = b(yt) = (8 + 112) cth (8 + 112) Yt- 1/2 cth 1hY1> 

(Sg')o = b(y1 ) = (S + 1/2) cth (S + 1h) yg- 1/2 cth 1/2yg. (2. 7) 

Note that in the absence of an external magnetic field 
Yf = -yg, and consequently (Sf)o = -(S~)o. 

To determine the spin-wave spectrum we shall in­
vestigate the Fourier component of the Green function 
of the spin operators 

~ 

Kl(k,iwn)=-i- \ ei"'n'dl~e-ik(f,-h)(j {8,,+(t)81,-(0)}), (2.8) 
-~ _.ll f, 

where {3 = 1/T, iwn = i21TTn are the imaginary fre­
quencies of the temperature technique,csr and S (t) 
= e "tse- ·"t. An analogous expression can be written 
down for the second sublattice. 

In the zeroth approximation the Green functions 
have the form 

,(0) • (O) • ( z) (SI')o 
At (twn) =Gt (<wn) St o = . , 

Yt- !~Wn 
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(2.9) 

The Green function of the first sublattice K£0>( iwn) 
is represented in the diagrams by a solid line, and the 
Green function of the second sublattice K~> ( iwn) by a 

broken line. A wavy line corresponds to the interac­
tion V ( f - g) and its Fourier component Vk· In this 
it is necessary to consider that the interaction coupling 
the z components of the spins contains the factor 
( 1 + o ). A circle represents single-ion anisotropic 
interaction. 

In the first approximation the Green function can be 
represented as the sum of staircase diagrams (Fig. 1). 

This sum will be represented as a solid line with 
two arrows. The equation for this quantity is given 
graphically in Fig. 2. Analytically, it has the form 

Kt(k, iwn) = K:o> (iwn) + Kj"> (iwn) ~Vk Kir"> (iwn) ~VkKt(k, iwn), 

KJO)(iwn) 
~~~~~· ~~~~~~ 
1- (F•) 2 (St')o (Sg')o G~•>(iwn) c<zl (iw,) . 

The energy of the spin waves is determined by the 
poles of (2.11) after the analytical extension iwn 
- w + iO. In this approximation we obtain 

Bk = (Sf')ol Voll' (1 +a+ w- Yk2, 

where 

(2.10) 

(2.11) 

(2.12) 

Vo=~V(!-g)=~V(!-g), C!=2K/!Vo!, Y•=T\/Vo. A 
I g 

From this, it is seen that the energy of the spin waves 
is positive, if a + o > 0. In the opposite case, if 
a + o < 0, we have an antiferromagnet with magnetic 
anisotropy of the "easy-axis" type. We shall not con­
sider this case here. 

In the second approximation, in expanding over 1/S 
or 1/d, where ro is the mean interaction radius, 
according to[3 l, it is necessary to take into account the 
irreducible parts containing one loop. However, at low 
temperatures, where it is possible to neglect the ex­
ponentially small terms of the type exp ( -yf ), it is 
more convenient to keep the staircase structure of the 
correlation function and renormalize each part of the 
staircase. The graphical equations of the renormalized 
parts are sketched out in Fig. 3. 

As is seen, double-ion anisotropy does not yield new 
diagrams compared with the case of an isotropic anti­
ferromagnet. Its effect consists only in that the inter-

_j ___ r 
f __ r J --

~ + ----..5 + __ r-
+··· 

FIG. I. 

FIG. 2. 
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FIG. 3. 

action coupling the peaks of sz is multiplied by the 
factor ( 1 + o ). At low temperatures the peaks of sz 
always have one line going in and one line coming out, 
so that they are easily distinguished in these diagrams. 
Single-ion anisotropy gives a new diagram in the re­
normalization of the simple Green functions. In these 
diagrams, the circle corresponds to the factor 2K. 

Indicating the renormalized quantities with a tilde 
and introducing the notation 

Kt(iw,.)= Kf0l(iwn)[1 + ~nGJ0>(iwn)], 

Kg(iw,) = Ai"l (i(J),)[1 + ~ggGio) (iwn)], 

(V.)tg = v.[1 + ~~g], 

(2.13) 

we obtain the following expressions for these quantities: 

(2.14) 

The correlation function in the staircase approximation 
has the form 

. Kt(iWn) 
Kt(k,UJJn)= - . ) (f"f) K (" )A(N) · 1-Kt(!Wn ~ Yk jg g tWn p Yk gf (2.15) 

Substituting (2.13) and (2.14) into (2.15) and carrying 
out the analytical extension iwn - w + io, we obtain 
for the spin-wave spectrum 

[ 1 ( 1+6 
w•'= S2 Vo2 1-1--- ~ 

' 2NS " 1 +a+ 6 
Bq Eq )]'2 
-cth;- (1 +a+ 6) 2 
eo 2T 

[ 1"V( Bq Bq 
-S2V·2· 1+-.-LJ 1 1--cth........:+ 

2J\S \ eo 2T 
q 

SZV."[(1+6)(1+a+6)-1] eq)],2 + • cth-
Eof.q 2T 

(2.16) 

Here we have used the fact that in the case of nearest­
neighbor interaction[sJ 

Because of the presence of a gap in the spin-wave 
spectrum, the temperature dependence of the energy 
has an exponential character at very low temperatures. 
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It is interesting to examine the temperature renormali­
zation in this temperature region, where the dispersion 
of the spin waves, whose energy is approximately 
thermal ( Eq ~ T), is already linear. At such tempera­
tures 

1 "" Bq Bq 1 "l Eq 6 ( T )' 
N .:::r§IY.Tclh 2T;::::; K LJ SIVol + n21']3 \;( 4) SIVol + ... , 

q '1 

1 SIVol Bq 1 SIVol 1 ( T ) 2 

-;;: ~--cth21';::::;1V~ -.-+-,-, \;(2) \-SIV I + ... , 
H q Bq 1> q Bq :rt 1'] 0 ( 2 .17) 

where 1J = 1/(3)112 (2) 113 for the simple cubic and 
11 = % for the body-centered cubic lattice. It is seen 
from this that, unlike the isotropic case, where the 
first temperature correction is proportional to T 4 , 

there is a term proportional to T2 in the spin-wave 
energy in the case of an anisotropic antiferromagnet. 
It should be noted, however, that the factor 
( 1 + 1i) ( 1 +a + 1i) - 1 stands in front of these terms, 
so that in fact the quadratic term is smaller than the 
quartic. 

3. DAMPING OF THE SPIN WAVES 

In this section we shall investigate the damping of 
the spin waves in two limiting cases, namely at low 
temperatures and near the Neel point. For simplicity, 
we consider in both cases the contribution of the sim­
plest diagrams corresponding to the first and second 
approximations in the expansion in 1/d or 1/S. In 
addition, we investigate the special case when a = 0, 
so that the anisotropy of the system has only double­
ion character. 

At low temperatures we take into account the scat­
tering of the spin waves by each other. In this model 
the total number of spin waves is conserved, and 
therefore the division of a spin wave into two or the 
combination of two spin waves into one is not con­
sidered. A diagram describing this process is given 
in Fig. 4, where the heavy lines describe the propaga­
tion of the spin waves, and the solid circle (the upper­
most part) stands for the amplitude of this scattering. 
Again applying the staircase approximation, we see 
that the upper part has a different form in the re­
normalization of the individual parts of the staircase. 
The upper parts at the left and right for renormaliza­
tion of the simple Green function of the first sub­
lattice are given respectively in Fig. 5, a and b. 

By connecting the tails of these upper parts in 
every possible way, we obtain the strictly energetic 
part, which consists of eight diagrams (Fig. 6). 

FIG. 4. 

----7-
a b 

FIG. 5. 

In the contribution of these diagrams it is necessary 
to take into account that each line between points is 

renormalized by a simple ladder, in order that the 
diagrams describe the interaction of the spin waves. 

The strictly energetic part of the Green function of 
the second sublattice has an analogous form, except 
that the solid lines are replaced by dashed lines and 
vice versa. 

The simple interaction is also renormalized; in this 
case the upper parts and the corresponding diagrams 
are given in Figs. 7 and 8. 

FIG. 6. 

FIG. 7. 

1!1___ Ql__ ~---

13_ liS a~ 

FIG. 8. 

After cumbersome calculations and performing the 
analytical extension iwn - w + io the imaginary part 
of the strictly energetic part r(k, w) = Im~ (k, iwn 
= w +iii ) can be represented in the form 

1 "" (i) r;; (k, w) = N' LJ {A,j (k, k" k2) 1'11') 
k~. 11.2 

+A\2/(k. k1, k2)!112l+A\3)(k, kt, k2),',13l}, (3.1) 

where i = f, g and j = f, g correspond to the indices 
of the first or second sublattice, 

~l'l = [n(ek,) (1 + n(ek,)) (1 + n(ek+k,-k,)) 
- (1 + n(ek,) )n(ek,)n(ek+k,-k,) ]·6 (w + Bk, - Ek,- Bk+k,-k,), 

~\l) = [n(-ek,) (1 + n(ek,)) (1 + n(-ek+k,-k,)) 
- ( 1 + n ( -Bk,)) n ( Ek,) 'l ( -Bk+k,-k,) ]· 6 ( Ul - Bk, - Bk, + Bk+k,-k,), 

!';.13J = [n( -eh,) (1 + n( -ekJ) (1 + n(ek+k,-k,)) 
- (1 + n (-ek,) )n(-ek.)n(ekH,-k.) ]·li(w- Bk, + eh,- Bk+k,-k,), 

- - (3.2) 

and n(x) = (ef3x- 1)-1. 
The expressions for the amplitude A~~>(k, k1, k2) 

lJ 
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are cumbersome, and hence we give here as an exam­
ple only A{{l(k, k1, k2 ): 

(1) . 1 1 1 
Aff(k,k,k2)= -nSf\---~~--· 

2EJt 1 2Eh 2 2eh+k ,-k 2 

X{V.~,Vn,Vh,-'<,(1 + 15) (en,- Eo) (Ek+n,-k, + fo) 
+V,,V,,Vn,-1<,(1 + 15) (en,- eo) (ek+k,-n, +eo) 
- V,Vk,-n,Vk+k,-k,(1 + 15) (e,,- eo) (e,,- eo) 
1 2 

- S Vk,-k,(1 + 6)'(e,,- eo) (en,- eo) (ek+k,-n, +eo) 

+ SVk Vk,Vk, Vk+n,-k,(Ek,- co) 
+ SVI!:._n)1k,-n, Vn, Vk+n,-n, (1 + 15) 2 ( en, -eo) 

- SV,,zV.,'(en+R,-n, +eo) 
- sov,_,, v., v,,' Vn+R,-k,(1 + 15)}. (3.3) 

We now investigate these expressions for small 
values of the momentum k. Expanding Vk up to 
squared terms, we have 

(3.4) 

If ( 1 + o )2 - 1 » E2k2 , then in the approximation (3.4) 
the energy of the spin waves depends quadratically on 
the momentum: 

'(' 1 e2k 2 ) Ek=SIVolf(1+6) 2 -1 1+- . 
2 (1+15)2-1 

In the opposite case, when ( 1 + o )2 - 1 << E2k2, we 
have 

(3.5) 

e, = SIVolek. (3.6) 

We investigate first the case ( 1 + o )2 - 1 « E2k2, 
which is the more interesting experimentally; this is 
the region of momenta where the effect of anisotropy is 
insignificant. It is easy to see that in this case 

ftt(k, w) = -fgg(k, w) = flSVol'tg(k, w) = flSVoi'gt(k, w). (3.7) 

With the aid of (2.15), we find that a pole of the corre­
lation function appears when 

, ( _ ftt(k, e,) _) 
{i)k = Bk 1 +! , 

flSVo 
(3.8) 

where the real part of the strictly energetic portion, 
which gives a slight energy shift, has been neglected. 
Hence, the relative damping of the spin waves is given 
directly via r ij: 

r. r!f(k, e.) (3.9) 
ek flSVo · 

Substituting the expansion (3.4) and (3.6) into the ex­
pressions for the amplitudes A~~l(k, k1, k2 ), we find 
that lJ 

where J- and 8 are the angles between the vectors k 
and k2, and k1 and k2, respectively. 

Considering this expression in the two cases, Ek 
<< T and Ek >> T, we obtain, to within a numerical 
factor 

r. 1 ( T )' miu(T,SIVol) 
- ~ -;; (ak) 3 --;-;- ln , 
EJ, s s I 0 "" 

r, 1 , ( _ r )' 
~ ~ -Sz (ak)· \ Sl T'"f , (3.11) 

where a is the lattice constant. 
For small momenta, where the expansion (3.5) is 

valid, similar calculations for the relative damping 
give 

~~ ~ c:,): (~~)', 
_fl ~ -y'b exp1 - _.s'~l!~) , ""';PT. 
e1, S2 \ T 

(3.12) 

Near the transition point, the simplest process that 
gives a contribution to the damping is the scattering of 
spin waves by fluctuations in the momentum sz. 

This is sketched out graphically in Fig. 9. 

FIG. 9. 

In this diagram the dashed line corresponds to the 
correlator of the z components of the spin operators. 
In this temperature region it is more convenient to 
use, not the ladder approximation, but the general 
formulas given inr 31• Here we shall symbolize the ir­
reducible parts by Rij ( iwn), since in this paper the 
symbol I: has been used for the strictly energetic part. 
Introducing the notation 

Rtt = b(yt)Gt(i + Att), R 88 = b(y8 )G8 (1 + Agg), 

Rtg = flV,b(yt)Gtb(y8 )G8Atg, R 8t = flV,b(Yt)Gtb(yg)GgAgf, 

(3 .13) 

we obtain for the damping of the spin waves 

V,2b(y1)b(y8 ) 
f(k,w)= . Im(An+A 88 +At8 +A8t). (3.14) 

2e• 

The contribution of the simplest diagrams has the form 

lm(Au + A 88 + Atg -t- Agt) 

1 b'(Yt) 1 
= nN ~ 1- f\2 V~,_:l(i+c5) 2 (l/(Yt}r 2eq O({i)- Bq) 

+ W(Yt) [ 4V,::_q Vo(1 + 15)'- zv,:-q :~,(1 + w- 2Vq' v~~q (1 + o) ]} . 

(3.15) 
Considering this expression again for small momenta 
and substituting Ek in place of w, we obtain for the 
relative damping 

r, c[(1+6) 2 -1] k 
-;,; = Vo -=--'----:-c12=--a-::-2e:--'rr---'- I t I' (1 + 6) 2 - 1 ';P e2k2, 

r. c k 
-- = Vo -_ ---- ( 1 + 6) 2- 1 ~ e'k', 

Ek 48a2e2n ! r I' ' (3.16) 

where a=(%)S(S+1), c=(%o)a(6a+1), 
T = ( T - TN) TN, and Vo is the volume of the elemen­
tary cell. The second expression is also good for the 
case of an isotropic antiferromagnet. From this it 
follows that near the Neel point only long spin waves 
can exist, i.e., if k « I T 12. This condition is more 
stringent than in the case of ferromagnets, where k2 
<< I T I, and therefore antiferromagnetic spin waves 
exist in a narrower interval of momentum for a given 
T than in a ferromagnet. 
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4. FREE ENERGY AND THERMODYNAMIC 
QUANTITIES 

The free energy of the system and the thermody­
namic quantities will be investigated at low tempera­
tures, where exponentially small terms of the type 
exp (- /3E0 ) can be neglected. The expression for the 
free energy in the molecular field approximation con­
tains a new term, compared to the case of an isotropic 
antiferromagnet, which takes into account single-ion 
anisotropy: 

-~F<"l = -~ :z; V(j- g) (1 + ll) (St')o (Se')o 
f. g 

- ~K [ ~ (St)o2 + ~ (8g')o2 ] 

I g 

""'Iush(S+'hJYt, '>'.Insh(S+'/:>)Yg__ (4 .1) 
+ .:; sh (yJI2) '"; sh(yg/2) 

In the first approximation, at low temperatures, the 
anisotropic interaction does not contribute, and 

In the second approximation, besides the diagram 
calculated for the isotropic case, in which, however, 
the interaction coupling the z components of the spin 
operators is multiplied by ( 1 + o ) , there appear two 
new diagrams (Fig. 10). Thus 

, ~ ""' . 1 + ll 1 e,, 1 ek, 
-~F''l=- 4.J Vk2yk2 __ (S1')o(Sg')o---cth---cth-

N ' ' V0 2ek, 2T 2eh.. 2T 
k~, k~ -

J3 .._., 1 Bk, ( 1 eo eo Ek, \ 
+ 2- 2.J Vk 2 (81')o--·· cth- --cth-- ---- cth --•I 

N ' 2e,, 2T 2 2T 2eh. 2T 1 
~~ -

J3 'V ( 1 eo Eo Ek, ) 
--L.... l'o(1+1l) -cth------cth- · 

N 2 2T 2e,, 2T , 
k1, flz 

( 1 Bo Bo Ek, \ 
--cth ------- cth-

' 2 2T 2el<, 2T 1 

~ ~ Eo e,, ( 1 <o Eo e •. ) (4 3) +2- ?. V0a---cth- --cth--- --cth-_::__ . · 
N ~ 2e,, 2T , 2 2T 2ek, 2T , 

k], /{2 

The magnetization of the sublattice is determined 
from the free energy by taking the derivative with re­
spect to yf: 

Comparing this expression with that obtained in the 
case of a isotropic antiferromagnet, we see that the 
first correction here is less, and therefore the devia­
tion from the saturation moment in the anisotropic 
case is less; but the second correction increases this 
deviation. 

The susceptibility can be obtained from the free 
energy or from the correlation function, and in the 
first approximation we obtain expressions similar to 
those for the case of the isotropic antiferromagnet: 

[1 2 .-, 1 ( Eq \ 
XI '= - ">. - 1- cth2 ·-- 1 
· N -'--' 21' 2T ' 

q 
(4.5) 

FIG. 10. 

In both cases the temperature dependence is exponen­
tial at very low temperatures and proportional to T2 

at higher temperatures. Equations (4.5) and (4.6) were 
obtained earlier by Kubo[ 7J and by Hewson and ter 
Haar. [8 J 

5. CONCLUSION 

In this paper we have considered an antiferromag­
netic dielectric with magnetic anisotropy of the "easy­
axis" type. It was found that the temperature renor­
malization of the spin-wave energy contains a term 
proportional to T2 , but this term is smaller than the 
term proportional to T 4 , so that it would be difficult 
to observe it experimentally. The damping of the spin 
waves was investigated at low temperatures and near 
the Neel point. At low temperatures the damping is due 
to scattering of the spin waves by each other, and for 
momenta where the dispersion curve is already linear 
( Ek ~ k), we obtained for the relative damping 
rk/tk ~ k3T2 • Near the transition point the damping is 
associated in the first place with scattering of the spin 
waves by fluctuations of the magnetization, and the 
relative damping is proportional to k/1 T 12 , where 
T = ( T - TN )/TN. This result indicates that only long 
spin waves can exist near the transition point. Since 
in these calculations we investigated only the simplest 
processes, it would be interesting to consider how 
processes of higher order affect the spin wave damp­
ing. It would then be necessary to consider also other 
kinds of interaction, e.g., spin-phonon, dipole-dipole, 
scattering of spin waves by impurities. 
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tality extended to him during his residence in the 
Institute for Theoretical Physcis, and I. E. Dzyalosh­
inski1 for valuable discussions. 
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