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An explanation is proposed for the occurrence of a periodic structure when a photoconductor is illum­
inated near the temperature of the first-order phase transition. The temperature region in which a 
layered structure is formed is determined. The motion of the layers resulting from the flow of current 
through the sample is considered. 

1. INTRODUCTION 

IN many semiconductors, illumination can produce a 
carrier density greatly exceeding the equilibrium value. 
Near a phase-transition point, the photoelectrons exert 
an appreciable influence on the character of the transi­
tion. In SbSI, for example, a decrease of the tempera­
ture of the ferroelectric transition was observed upon 
illumination [1 ' 2 J. The explanation proposed by Fridkin [3 J 

for this fact is based on the increase of the width of the 
forbidden bands occurring on going over into the ferro­
electric phase. 

In addition, an inhomogeneous state of the ferroelec­
tric was observed[4 ' 5 ' 6 J, consisting of alternating layers 
of the paraelectric and ferroelectric phases. The oc­
currence of a layered structure becomes understandable 
if account is taken of the fact that the carriers can dif­
fuse through the sample. This facilitates the formation 
of regions with increased carrier density near the tran­
sition temperature. These regions remain paraelectric, 
and the region with the low density becomes ferroelec­
tric. Owing to the finite lifetime of the carriers, the 
dimensions of the regions cannot greatly exceed the dis­
tance over which the carriers have time to diffuse dur­
ing their lifetime. This gives rise to a periodic struc­
ture with a period determined by the diffusion length. In 
this paper we determine the temperature and carrier­
density regions in which such a layered structure is 
formed. 

2. FUNDAMENTAL EQUATIONS 

The change of electron energy in the phase transition 
is the result of the interaction between the electrons and 
the produced electric field and of the change of the en­
ergy spectrum due to the displacement of the ions. The 
small change of the carrier effective mass is insignifi­
cant, and we take into account only the change of the 
width of the forbidden band Eg = En + Ep· The energy 
connected with this change can be written in the form 

(1) 

where En and Ep are respectively the energies of the 
electrons and of the holes, and nn and np are their con­
centrations. 

The influence of this energy on the thermodynamics 
of a ferroelectric substance is appreciable only near the 
transition temperature. We shall assume that the first-

order transition is close to the critical point and that 
the free energy can be written in the form 

F(P) = F0 + 112a(T- TR}P2 - 1/4bP'+ 116cP6 + 1ha(VP) 2• (2) 

Most of the results do not depend on the explicit form of 
the free energy. 

At a fixed electron distribution, the equation deter­
mining the polarization P(z) is obtained by equating the 
forces -oF/oP exerted on the ions by the lattice, to the 
force exerted on the ions by the electrons. As a result 
we obtain the equation 

den dep (3) 
a(T- T")P -- bP3 + cP5 - a/'J.P + nndP+ np dP -- E = 0. 

The electric field E is determined by the Poisson equa­
tion 

div(E + 4nP) = 4ne(nn- np). (4) 

When the interaction with the electrons is disregar­
ded, F(P) has two minima corresponding to the ferro­
electric and paraelectric phases. At To= Tc + 3b2/4ac, 
the values of the free energy at the points of the minima 
coincide, and at this temperature the phases can coexist. 
In this case there exist, beside the homogeneous solu­
tions, also a solution with a single interphase boundary, 
in the form 

Po2 ( z ) P•(z)=- 1+th- , 
2 rc 

(5) 

where Po is the jump of the polarization at the transition 
point, and rc = [a/a(To- Tc)]1 12 is the thickness of the 
boundary layer. 

If the temperature is close to the transition tempera­
ture, To-T<< To- Tc, then the electrons have little 
influence on the magnitude of the spontaneous polariza­
tion Po, but to determine the position of the boundaries 
and their number. To take into account the influence of 
the electrons on the phase transition, it is necessary to 
find their spatial distribution, which is determined by 
the diffusion equations 

V[Dn{Vnn + nn(Ven + tE) IT}]+ G -R = 0, 

V[Dp{Vnp + np(Vep- eE) IT}] +G- R = 0. (6) 

Here Dn and Dp are the electron and hole diffusion co­
efficients, and G and Rare the numbers of the electron­
hole pairs generated by the light or recombining in a 
unit volume per unit time. 

We shall seek below periodic solutions of the system 
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(3), (4), and (6), with a period larger than the correla­
tion length r c and the Debye length rD, which are as­
sumed to be small compared with the diffusion length. 
At small distances from the boundaries it is possible to 
disregard the last two terms of (6) and to neglect the 
particle fluxes through the boundary. Then 

[ en + ecp J ( ep - eq: J 
lln - exp - --1'- , llp - exp - --T- , (7) 

where cp is the potential of the electric field. 
At distances that are large compared with rD and rc, 

we obtain from the Poisson equation (4) and from (7) 
the electroneutrality condition nu = np = n/2. The ratio 
of the asymptotic values yields 

n. I nv = cxp [ -L\eg/ 2T], (8) 

where Ag = E:- E~ is the jump in the width of the for­
bidden band. 

In a region far from the boundary, when the deriva­
tives V' Ep and v En can be neglected, the equations of (6), 
when account is taken of the electroneutrality, can be 
reduced to the form 

(9) 

where D = 2/(Dn + Dp) is the coefficient of bipolar diffu­
sion. At large photoelectron concentrations, the re­
combination term can be regarded as linearly dependent 
on the concentration. Equation (9) then takes the form 

d'n 1 (10) 
dz" + £2 (n0 -n)=ll, 

where L = v'DT, and n0 is the generated carrier concen­
tration, which is proportional to the illumination and to 
the carrier lifetime T, the latter depending on the phase 
of carriers. The linearity assumption is immaterial for 
the obtained qualitative results. 

The condition for the equality of the carrier-number 
fluxes to the boundary 

Ds dn, = Dv dnp 
dz dz 

(11) 

is compatible with relation (8) and is the boundary con­
dition for (10) on the interphase boundary. 

3. EQUILIBRIUM BETWEEN PHASES 

Let u::; obtain the condition for the equilibrium of the 
boundary in the presence of electrons. To this end, we 
multiply (3) by the derivative dP /dz and integrate over 
z in a region larger than rD and rc, but smaller than L. 
The electron distribution in this region can be written 
in the form (7); taking (4) into account, we obtain 

F,(P) + Tn, +E?/Sn = Fp(P) +Tn1, +Ep2 /81f.. (12) 

Here Es and Ep denote the electric field far from the 
transition region in the ferroelectric and paraelectric 
phases, respectively. This condition has the simple 
meaning of the equality of the pressures exerted by the 
two phases on the boundary. In the derivation of the 
equilibrium condition (12), the explicit form of the free 
energy (2) is immaterial. 

At temperatures close to the first-order transition 
temperature, the difference between the free energies 
is expressed in terms of the heat of the transition AQ 

and the proximity to the transition point T0 - T. Neglect­
ing the pressure of the electric field in the condition 
(12), we obtain 

L\Q r ( L\eg ) J 
To' (T0 - T)= n,L exp1 ZT -1 , (13) 

where we have used the connection between the concen­
trations ns and np (8). The quantity ns in (13) should be 
obtained from the diffusion equation. Its order of mag­
nitude is n0 and it is determined both by the intensity of 
the illumination and by the distance between boundaries. 

The temperature at which one boundary is at equili­
brium is the temperature of the phase transition in the 
absence of electrons. To determine this temperature, 
let us find for the diffusion equation (11) a solution 
satisfying the boundary conditions (7) and equal to n~ 
and n~ respectively at infinity: 

n(z)= n0·'-

1 + '/tpD'/T,DP e-1'.' .. " 

ez/L8 , z <0; 

z>O. (14) 

Assuming that the diffusion coefficients change little 
in the phase transition, Ds = nP, we can simplify (14) 
and obtain the following expression for the carrier den­
sity ns near the boundary, which enters into the equili­
brium condition (13): 

n, = n0' 1 +a ( 1 + V _::,_) , 
~ a Ts 

where we put 01 = ../ Tph s exp (- AEg/2T), and use the 

relation n~ = n~Tp/Ts· We shall henceforth omit the 
superscript of n~. 

(15) 

The transition temperature is determined by formula 
(13) and equals 

To'=To- To' no-a-(1+ V'r•) · 
L\Q 1 +a ' Ts 

X [e!'.e,/2T- 1). (16) 

Thus, the change of the transition temperature is pro­
portional to the carrier density. The transition line is 
shown dashed in the figure. When AEg << T and the life­
times in both phases are equal, formula (16) coincides 
with Fridkin' s result l2 ' 3 1 : 

To- To'= noTol\eg I ZL\Q. (17) 

4. LAYERED STRUCTURE IN WHISKER CRYSTALS 

It is seen from (16) that at a fixed illumination one 
boundary can be in equilibrium only at a definite tem­
perature. There exists, however, a finite temperature 
interval, in which a system of boundaries can be in 
equilibrium. This occurs because the carrier density 
ns near the boundary, which determines the tempera­
ture, depends not only on the illumination but also on the 
distance between boundaries. Such a system of boundar­
ies should form a periodic structure, for only in this 
case does the diffusion equation have a solution in which 
ns is the same on all boundaries. The condition for the 
equilibrium of the boundaries (13) gives the relation be­
tween the dimensions x and y of the ferroelectric and 
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paraelectric layers. Solving the diffusion equation (10) 
for the periodic structure, we obtain ns, and substituting 
its value in the equilibrium condition (13), we get 

where 

th ~ cth _!!___ = 
2L, 2L, a 

t-al'~ 
1-t 

t = (To- T)l:J.Q / T02n0 [exp(~eg/ 2T)- 1]. 

(18) 

It is seen from this formula that the periodic struc­
ture can exist in the temperature interval 

T02n0(ell.•ai2T -1) T02n0(ell.•,I2T -1) y-rv 
1'1Q > T0 - T > O.Q a ~. (19) 

In the figure, this region is bounded by dash-dot lines. 
The period of the structure can be arbitrary, but a limi­
tation exists on the phase dimensions: 

V-rv a ( y-rv) a -<t<-1+ 1,+ - , 
'Ts a 't's 

(20) 

The equal sign in the limitations (20) corresponds to the 
equilibrium of one layer of the ferroelectric phase in­
side the paraelectric phase and one layer of the para­
electric phase inside the ferroelectric phase. 

The condition for mechanical equilibrium, which im­
poses significant limitations on the equilibrium dimen­
sions of the layers, does not determine these dimensions 
uniquely. To determine the period, it is necessary to 
supplement the obtained equilibrium condition (18) with 
the condition for the stability against fluctuation produc­
tion and vanishing of the regions. Such a condition, 
under thermodynamic equilibrium, is equivalent to the 
condition that the free energy have a minimum. It can 
be assumed that in this case the fluctuation probability 
is determined by the minimum work. Then the probabil­
ity of creation of a new layer is proportional to 
exp (-2aS/T), and the vanishing probability is 
exp(- RminS/T), where a is the surface tension and 
Rmin is the minimum work that must be performed 
against the pressure forces in order to close the boun­
daries of the layer. Stability corresponds to equality of 
these probabilities: 

Rmin = 2a. (21) 

The minimum work is proportional to the carrier 
concentration n0 • Therefore, for sufficiently low con­
centrations, Rmin is smaller than the surface energy at 
any temperature, the homogeneous state will be the 
stable one, and the layered structure will be metastable 

(see the figure). The boundary of the region in which 
the layered structure is stable and the homogeneous 
state is metastable is determined on the n0T diagram 
from the condition (21) for the case when there is only 
one layer in the sample. To calculate the minimum 
work in this case, we find the pressure on the boundary 
of the layer, which equals the difference between the 
right and left sides of (12). Finding ns from the diffu­
sion equation, we obtain 

T ( " /2T 1) fTp/T, + th(x/2L,) O.Q(T - 1') (22) 
P = no e eg - a 1 +a th (x/2Ls) To 0 • 

In order to obtain an analogous expression for the layer 
of the paraelectric phase, it is necessary to replace in 
(22) tanh (x/2Ls) by coth (y /2Lp). The equilibrium 

dimension is determined from the condition that the 
pressure vanish, corresponding to the equal sign in the 
limitations (20). Integrating the pressure with respect 
to x from the equilibrium dimension to zero, we obtain 
the minimum work. Condition (21) then becomes 

a {[ 1,- a vTpl a=L,Ton0 (e"'•''T-1)-_- --t+t- -_ 
1- (] (! ,_,_ 

(23) 

h( 1 t- uir:vf-r,\ 1- a1-rp/Ts l 1- 2t + a·v-r,,/r,]} 
xart ---- ------In a · 

, a 1-t 1+a u(1-t)+t-a 

It determines the connection between no and T on the 
boundary of the stability region of the layered structure. 
The second branch of this boundary, corresponding to 
the loss of stability against transformation into a homo­
geneous ferroelectric phase, is described by an equa­
tion similar to (23). The phase diagram in the n0T plane 
is shown in the figure. The critical concentration, be­
low which the layered structure is metastable at all 
temperatures, is obtained from (23) at a temperature 
equal to the transition temperature: 

cr 1- a2 

nc = ----- . (24) 
L,T0 (e"'•''T- 1) a(1- afrp/-r,)ln(2/ (1 +a)) 

The period of the layered structure is infinite on the 
boundary of the stability region and decreases towards 
the inside. It can be determined from Eq. (21). By cal­
culating the work Rmin required to close the boundaries 
of one layer of the layered structure with a given 
period, and substituting it in (21), we can determine 
periods for all other values of no and T in the stability 
region. 

It must be borne in mind that the times of establish­
ment of the equilibrium period can be large. Therefore 
a temperature hysteresis of the phase transition is ob­
served in experiment. 

5. COEXISTENCE OF PHASES IN SAMPLES OF LARGE 
AND SMALL DIMENSIONS 

We considered above, in accordance with the experi­
mental conditions, the phase transition in filamentary 
samples (whiskers) whose thickness is of the order of 
the diffusion length. The layered structure could then 
be regarded as homogeneous, and the bending of the 
boundaries could be neglected. In a sample of infinite 
dimensions, this bending cannot be neglected. For ex­
ample, to determine the limits of the stability region it 
is necessary to determine the stability of a ferroelec-
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tric region surrounded on all sides by a paraelectric 
phase. Neglecting anisotropy, this region has the form 
of a sphere. The pressure on its boundary is 

p = 20 + Tn, (e-'•,IZT- 1.)- tiQ (To-T). (25) 
r To 

The first term corresponds to surface pressure, and 
the two other are analogous to the corresponding terms 
in (12) and (13). Solving the diffusion equation for the 
ferroelectric sphere inside the paraelectric phase, we 
obtain the carrier concentration on the surface of the 
sphere: 

n, = an0{r +[ rV !!'..- L, ( 1 + Tp )lth !__ 11-T.~ T.~ ~ L.~ 

(26) 

At a fixed illumination intensity, ns decreases with 
increasing radius. Therefore, if the temperature is 
sufficiently close to the transition line and the carrier 
concentrations are sufficiently large, the pressure goes 
twice through zero as a function of the radius of the 
sphere. The equilibrium radius corresponds top = 0 
and apjar < 0. Just as in the one-dimensional case, 
mechanical equilibrium can be realized in a finite tem­
perature interval. The condition of stability against 
fluctuation production or vanishing of the ferroelectric 
region is analogous to the one-dimensional condition (21) 
and is given by 

rp (r) 4nr2dr = 0, (27) 

where ro is the equilibrium radius of the region. 
Just as in the one-dimensional case, this condition 

can be satisfied only for sufficiently large carrier con­
centrations. Equation (27) determines the relation be­
tween the temperature and the concentration at which 
the region of the ferroelectric phase inside the para­
electric phase is in equilibrium. Together with the 
analogous equation for the paraelectric phase inside the 
ferroelectric one, Eq. (27) determines the boundary of 
the stability region of the inhomogeneous state on the 
noT diagram; this limit has a form similar to that shown 
in the figure. 

In the opposite limiting case, when all the sample 
dimensions l are much smaller than the diffusion length 
L, the inhomogeneity of the carrier concentration, due 
to the short lifetime, can be neglected. In this case the 
problem can be solved thermodynamically for the case 
of equal lifetimes. 

The free energy of the sample is given by 

, [( n, tlegn,) F = F, + Tn, In no+ ~2- x 

+( Fp +Tnp!<:) (1- x) J V +aS. (28) 

Here x is the fraction of the volume V of the sample 
occupied by the ferroelectric phase and S is the area of 
the boundary. The electron densities ns and np are ex­
pressed with the aid of (8) in terms of x and the total 
number of carriers noV. From the equilibrium condition 

<lF ;ax = 0 we obtain 
(To -T)tiQ- To2no(1- e--'•gfZT) (29) 

X= (To-T)tiQ(1-e .>e,I2T) 

The region of existence of the inhomogeneous state is 
determined by the condition 0 < x < 1, which assumes, 
when account is taken of (29), the form 

T02n0 To2no 
~-(1- e-t>e,I2T) <To-T< ~-(e-'•,I2T -1). 

tiQ tiQ 
(30) 

To determine the region of temperatures and concentra­
tions in which the inhomogeneous state is stable, it is 
necessary to compare its free energy with the free en­
ergy of the homogeneous ferroelectric and paraelectric 
phases. As a result we obtain the equation for the boun­
dary of the stability region: 

a tiQ(T0 -T) tiQ(To-T) =O, -+ Tn0 ---------- Tn0 ln=----'------:--'-=::-
l T0 (1- e-"•ci2T) T0'n0 (1- e··-'•,I2T) 

a tiQ(T0 - T) tiQ(To- T)e-'•,!1' _ --+ Tn - ---------- Tn0 In - 0. (31) 
l 0 To(e-'e,I2T -1) To'no(1- e t.e,f2T) 

Equation (31) can also be obtained, as before, by equat­
ing the surface energy to the work required to displace 
the boundaries. 

At a carrier concentration below nc ~ a/lAEg, the 
inhomogeneous state is metastable and the stable state 
is the homogeneous ferroelectric or paraelectric phase. 
The line of transition between them is obtained by equat­
ing the free energyr3 J 

T _ T , _ noTotie!_ 
0 0- 2/'lQ . (32) 

The diagram in the noT plane has the form shown in 
the figure. 

6. MOTION OF LAYERS 

Motion of a layered structure under the influence of 
an electric field was observed experimentally in r7 J • As 
noted by Fridkin, this fact can be explained by recog­
nizing that heat is released or absorbed when current 
flows through the boundary (Peltier effect). Therefore 
the dependence of the temperature on the coordinates is 
a sawtooth function-the left and right boundaries of one 
layer have different temperatures. The carrier concen­
tration, on the other hand, is determined only by the 
location of the boundaries. We see therefore that it is 
impossible to satisfy the equilibrium condition (13) on 
both boundaries, and the boundaries are acted upon by 
forces proportional to the difference between the boun­
dary temperature and the mean temperature. As a result 
of the dielectric losses, the motion of the layers has a 
finite velocity. In order to determine this velocity, it is 
necessary to take into account in (3) the dependence of 
the polarization P on the time, and to add to it the term 
yP. The coefficient y as expressed in terms of the tan­
gent of the loss angle and is connected with the dielec­
tric constant in the paraelectric phase by the relation 

a(T- Tc) + iwy = 4n /e. (33) 

Multiplying the obtained equation for the polarization by 
dP/dx and integrating over the coordinate, we can ob­
tain, in analogy with the derivation of (12), an equation 
of motion for the boundary. Recognizing that in the case 
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of uniform motion P depends on the combination z- vt, 
we have 

too ( dP )' C..Q yv ~dz- =------(T0 -T)+Tn,(e~'»,I2T-1). 
--oo dz T0 

(34) 

The slow motion of the boundary has little influence 
on its structure. Therefore, we can use formula (5) for 
the P(z) dependence. It is also necessary to recognize 
that the distance between the boundaries, and conse­
quently also ns, is established in such a way that the 
velocities of all boundaries are equal. On different 
boundaries of the same layer, the left sides of (34) have 
different signs, and the right ones have different tem­
peratures. As a result we get 

11Q11Tlirc 
v = 2ToPo ~y--. 

(35) 

For a quantitative comparison with experiment it is 
necessary to know the difference t:. T of the boundary 
temperatures of one layer; this difference enters in 
formula (35) and is proportional to the Peltier heat, 
which in turn is equal to the product of the current by 
the contact potential difference. 

7. CONCLUSION 

The considerations advanced above allow us to state 
that in ferroelectric semiconductors in which the car­
rier density exceeds a critical value nc, an inhomogene­
ous state is produced in a temperature interval close 
to the transition temperature. In whiskers, this state is 
realized in the form of a periodic layered structure. At 
concentrations on the order of the critical value, the 
period of the structure coincides with the diffusion 
length and decreases with increasing concentration. At 
sufficiently high concentrations, the temperature inter­
val in which the layered structure is stable is propor­
tional to the concentration, and as t:.Eg ~ T it coincides 
in order of magnitude with the shift of the transition. 

The described phenomena are apparently observed 
in SbSI. For this substance, the diffusion length of the 
electrons is I..n f':; 0.03 em. If the diffusion length of the 
holes does not differ greatly from I..n, then the typical 
period of the layered structure has the same order 
0.01 em, in good agreement with experiment. As shown 
by estimates of the surface energy, presented in the 
appendix, a f':; 5 x 102 erg/cm2 for SbSI. From this we 
can obtain by means of formula (24) the critical con­
centration nc ~ 1017 cm-3 , which also agrees with the 
observed value. The authors thank E. I. Rashba and 
V. M. Fridkin for numerous discussions. 

APPENDIX 

SURFACE ENERGY OF BOUNDARY 

The energy of the boundary separating two phases 
co1.sists of the pure lattice energy, the energy of the 
electric field, and the energy of the carriers. The lat­
tice energy results from the fact that the polarization 
in the transition layer assumes not only its equilibrium 
values, but also all the intermediate values, while the 
free energy is not equal to its minimal values, but ex­
ceeds them slightly. The additional energy per unit area 

is equal to 
+oo 

Go=~ [F(z)-F0]dz. (A.1) 

Using expression (2) for the free energy and taking (3), 
(5), and (33) into account, we obtain 

2nPo 
<1o=--rc. 

e 
(A.2) 

The contribution from the electric field to the sur­
face energy is connected with the fact that in a layer of 
thickness rD = (Te/4JTe2no) 112 the carrier density is not 
equal to its equilibrium values, and the field differs 
from zero. Assuming that rc << rD << L, we obtain in 
the self-consistent field approximation[sJ the system of 
equations 

where 

d2<p 4rre 
- dz2 = --"- (n,.- np), 

T ln nn + e<p- en ( z) = 0, 
no 

Tln~.':.- e<p- ep(z) = 0, 
no 

En= (U+I1sg/2)8(z), ep= (-U+I1eg/2)8(z), 

(A.3) 

and U denotes the change of the energy corresponding to 
the middle of the forbidden band. The boundary condi­
tions are of the form 
dcp d<p(O+) 
-~(±oo)=O, <p(O+)=<p(O-), 

(A.4) 
Solving (A.3) with the aid of (A.4) and choosing cp(-oo) 
= 0, we obtain for the potential on the boundary 

exp(l1eg )sh e<p(O)- U +,sh~cp_(_()_)_ = nPo . (A.5) 
4T 2T 2T f2rreTn0 

In formula (A.1) for the surface energy we can take 
into account the dependence of the free energy on the 
electric field and on the carrier density. In the self­
consistent field approximation, with allowance for (A.3), 
we have 

e -too d2<p 
a = ao + -- S cp -----;;-- dz. 

8rr -oo dz-
(A.6) 

Substituting in (A.6) the solution (A.3) subject to the con­
dition (A.4), we obtain finally 

a= a0 + _!_Po<p(O)- 2T "f2neTn0 [ sh2 e<p(02+ exp (~~ )sh2 _:__<p(O)- Ul· 
2 rre 4T 4T · 4T _ 

(A.7) 
In the case of SbSI considered here, it can be as­

sumed that U ~ t:.Eg ~ T and Po» enorD· Then the sur­
face energy is 

TP0 [ 2nPo J a = a0 +- ln - - 1. . 
e )'2neTn3 {1 + exp[(ne,- 2U)/~T]} 

In the other limiting case U << T, t:.Eg << T, Po 
« enorD, and 

(A.8) 

3nP02T UP0 U2 --
a= ao+--~+-----l'2rreTn0. (A.9) 

16e)'2neTn0 4e 16neT 

According to this expression, the surface energy can 
become negative at sufficiently high carrier density and 
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when U ;;e. 0. The case considered in this paper corre­
sponds to positive surface energy. A negative surface 
energy should lead to an inhomogeneous state with a 
characteristic dimension on the order of rD. 
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