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We investigate nonpotential electronic plasma oscillations with frequency eH/miC « w << eH/mec 
in a strongly inhomogeneous magnetic field. We consider the instabilities of a nonlinear magnetosonic 
wave in a rarefied plasma. It is shown that a front of width o smaller than c/wpi may turn out to be 
unstable against perturbations of the "whistler" type with scale o. These instabilities develop within 
a time shorter than the time of steepening of the nonlinear wave, and should prevent formation of a 
front with a width smaller than c/Wpi· It is shown in addition that the front of a nonlinear magneto
sonic wave with width smaller than (mi/me)114c/wpe can be unstable against high-frequency perturba
tions (w > eH/(mime)1/ 2c) with k. H = 0. 

J. In the present article we investigate the stability of 
plasma states realized in experiment on collisionless 
shock waves in a rarefied plasma situated in a magnetic 
field. [1- 31 In this case the most interesting physical 
question is that of the mechanism of dissipation of the 
front of a nonlinear magnetosonic wave under conditions 
when the pair collisions in a plasma do not play an es
sential role. Credit for formulating this problem be
longs to R. Z. Sagdeev. Theoretical investigations in 
this direction have shown that the collisionless dissi
pation necessary to form the profile of the shock wave 
can be connected with the small-scale instability of the 
current flowing on the front of the wave. [4- 61 

However, besides the small-scale instabilities that 
lead to a decrease of the effective range of the electrons 
in the plasma, there can occur on the front of a non
linear magnetosonic wave also instabilities with wave
lengths comparable with the width of the front. Such 
instabilities are the subject of tl.e present study. We 
shall show that under certain conditions large-scale 
instabilities can determine to a considerable degree the 
structure of the wave front. It should be noted that the 
instability of a nonlinear magnetosonic wave and, in 
particular, of a steady -state shock wave, against large
scale perturbations was investigated also earlier, but 
only within the framework of the equations of magneto
gas dynamics[7' 81 • However, theoretical considerations 
and experimental data pertaining to collisionless shock 
waves show that the width of the front of such a wave 
lies in the interval of values from c/wpe to c/wpi 
(wPa = 4me2/ma, WHa = eH/mac). At such scales it 
is necessary to use the equations of two-component gas
dynamics for electrons and ions. 

The most significant circumstance that makes it pos
sible to simplify the stability investigation within the 
framework of two-component gas dynamics in a mag
netic field is the existence of high-frequency oscilla
tions of the ''whistler" type, which can propagate in the 
plasma transversely to the magnetic field at a velocity 
much larger than the velocity of the shock wave. This 
makes it possible, in investigations of stability against 
such oscillations, to neglect the change of the form of 
the profile of the magnetic field in the unsteady wave 

flow velocity through the front and the rate of deforma
tion of the profile of the magnetic field are not contained 
in explicit form. But the values of the magnetic-field 
gradient and of the pressure on the front of the nonlinear 
wave can themselves be determined essentially by the 
rate of flow of the plasma through the wave front: 

{ a~ } 1 m,n0 -+(v0V)v0 =- Vpo+-[rotlfo,Ho]. at 4n 
(1)* 

This is precisely why some of our results can be ap
plied directly to a plasma at rest. 

We note also the following. As is well known, sta
tionary nonlinear solutions of the equations of two-com
ponent magnetogasdynamics in a collisionless plasma, [41 

or solutions describing ·nonlinear flows ahead of a mag
netic piston [SJ in a dense plasma (wpe >> WHe) have 
characteristic magnetic-field and density oscillations 
with a scale c/wpe· We shall not consider henceforth 
the stability of smooth and broader profiles, where 
there are no oscillations on such a scale. We have 
made this choice, first, because in experiments with 
a dense plasma the profile of the wave front is rela
tively smooth and its width is o?; (7-10)c/WpeY-31 

The absence of oscillations with scale c/wpe can be 
explained by taking into consideration the possible ef
fect of the scattering of electrons by the small-field 
turbulent electric fields resulting from the instability 
of the current on the wave front. [s,eJ 

Second, as shown by calculation [91 and by experi
ment, [11 if oscillations with scale cfwpe do appear at 
all, it is in the final stage of the steepening of the non
linear magnetosonic wave. The instability observed by 
us, on the other hand, can develop much earlier. 

Thus, let us consider the stability of the profile of a 
nonlinear magnetosonic wave against small perturba
tions within the framework of the equations of two-com
ponent gas dynamics. We confine ourselves here to an 
investigation of the stability of the front of a plane non
linear wave moving along the x axis perpendicular to 
the main magnetic field Ho, which in turn is directed 
along the z axis. The plasma mass velocity Vox is di
rected along the x axis, and the electron current veloc-

and the flow of the plasma through the wave front. There- ____ _ 
fore, in most of the results presented below, the plasma *[rot H0, H 0 ] =curl H0 X H0. 
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ity v0y is directed along the y axis. All the foregoing 
quantities, and also the density no and the pressure po, 
vary only in the direction of the x axis. We denote the 
width of the wave front by 15, and in some cases the pro
files of the different quantities may have different widths. 
In the investigation of the stability, we use the hydrody
namic approximation for the electrons: 

on at+ div(nv)= 0, 

dv e VPe 
m.-=- eE- -[vH]---- m.vv, 

dt c n 

and Maxwell's equations. 

(2) 

(3) 

(4) 

The motion of the ions in oscillations of the ''whis
tler" type can be neglected if w » WHi and kz » Wpi/C. 
Thus, we shall consider the instabilities connected only 
with the motion of the electronic component of the plas
ma, and not affecting the ionic component. Owing to the 
quasineutrality we have here n~.e = nli = 0. 

The hydrodynamic equations (3) and (4) are valid 
only if the collision frequency v is high enough. The 
collisions can be either of the pair type or scattering 
by small-scale fluctuations of the electric field. The 
choice of the equation for Pe is determined by the char
acter of the oscillations. Thus, if the thermal conduc
tivity of the electron gas along the magnetic field is 
high, w « k~v~e/v, then y = 1. In this case the electron 
temperature on the force line is constant, i.e., 

BT.+c[EH] VT =Oo 
{)t Jl2 e 

(5) 

2. In this section we consider perturbations for which 
kz/k » w/wHe· Then the motion of the electronic com
ponent of the plasma in small oscillations can be re
garded as non-inertial. The effect of the ohmic dissipa
tion in such oscillations can be neglected if v / w 
<< w~e/k2c2• If we use the assumptions made and take 
the curl of Eq. (3), expressing the electron velocity v in 
this equation in terms of curl H, then the equations for 
the investigation of the stability of the nonlinear wave 
take the form 

4Mm r1 ~ ) --=rot\-[HrotHJ+-Vp. , 
c ot n n 

(6) 

d 
dt (p.n-<) = 00 (7) 

The simplest way of reducing the linearized system 
of Eqs. (6) and (7) to a single equation is as follows. It 
is necessary to take the x components of the first equa
tion and of its curl. Then we obtain, together with the 
second equation, a system of equations with respect to 
the variables H1x, (curl Hhx, and P1e. Eliminating from 
them P1e = iHlxP~e/kzHo and (curl Hhx, we obtain one 
differential equation for H1x 

r11e pe' = n' (p.n-<) ', k2 = k,2 + kv'• 

c2 H' c2 n' 
VH=• Wpi2 WHiff' Vn=--WHi-, 

Wpi2 n (8) 

and the prime denotes differentiation with respect to x. 
We have omitted the indices designating the unperturbed 
and perturbed quantities. 

If the plasma is homogeneous, the result is a disper
sion equation for oscillations of the ''whistler" type: 

To take into account the ion motion, it is necessary to 
add to the right side of this equation the term 
(k2 + k~) W~i/k~c 2• Then the oscillations in question go 
over into magnetic sound when kz << Wpi/C. 

We shall now show with the aid of Eq. (8) that a weak 
nonlinear wave (.6.H << H) is stable against perturbations 
of the surface-wave type, k/5 « 1. We choose the origin 
in the center of the profile of the nonlinear wave. Then 
outside the front of the nonlinear wave, where the mag
netic field and the plasma are assumed homogeneous, 
the solution of Eq. (8) is 

( (i) (i) ,;;' )' 

{ Aexp(xx), x<O, x2 =k2 - 1--2 o 
llx= .\WHi k,c 

Aexp(-xx}, x>C, Rex>Oo 

We integrate (8) with respect to x over a region whose 
dimensions 01 satisfy the condition 15 « 01 << K-\ Neg
lecting under the integral sign the change of Hx and the 
terms containing no derivatives, we obtain the following 
dispersion equation for the surface oscillations: 

211 = 1 dx{-.!!_(ll')'+~ 4nn'p/ +.!!_,Z..,,H'n' _ Wp;2 rokv (Hn):__}o 
J H n k,2 nll2 k,2 Hn k,2c2 WHi Hn 

(9) 
In order to be able to neglect the change of Hx on the 
wave front, it is necessary to assume that 

kv' /:;.H /:;.n 
----~1. 
kz' H n 

It is easy to verify that the dispersion equation written 
out above has unstable solutions. Thus, neglecting in 
this equation the two first and last terms under the in
tegral si~n, something possible in the case when f3e « 1 
and ky/kz » H/ .6.H, we obtain 

[ 
!ilpi• w' ]'/, k.' 1 H'n' (9') 

kv'- k,'c' WHi2 = 2k,2 J dx, Hn ° 

It is seen from the equation that when 

M I dx H'n'_ > 1 (10) 
2k,' J lin 

the weak shock wave is unstable. If we take as an esti
mate I H' I /H ~ I n'l /n ~ 1/15 and use the following limi
tations on kz and ky: 

wp; H k.' (H)' 
k,';p--c, t:;.H~ k,'~ \~:o.H ' 

Then the instability condition obtained above can be 
written in the form of the following condition on the 
front width 15 of the nonlinear magnetosonic wave: 

1 1 Wp; t:;.H 
- ~ J dx(ln/:;.H)'(ln/:o.n)'';?--o 
6 c H 

The increment of the oscillations under consideration 
is of the order of 

(11) 
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As already noted, the developed theory can be regarded 
as valid only if the increment of the oscillations greatly 
exceeds the reciprocal of the characteristic time of de
formation of the front of the nonlinear wave. This is 
true if 

H k,c c 
--~--~---. 
i'J.H wp; lhup; 

Thus, we have shown that a weak straight magneto
sonic wave, in which the density and the magnetic field 
are not very strongly "unfrozen," is stable against 
perturbations of the ''whistler" type. As a result of 
the development of such an instability the magnetic field 
components Hx and Hy appear on the front of the non
linear wave in addition to the fundamental component 
Hz of the magnetic field. 

Of course, strong waves may also turn out to be un
stable. Unfortunately, however, it is impossible to write 
a general dispersion relation for a strong wave. An ex
act solution can be obtained only for certain particular 
cases. For perturbations where ky = 0, however, the 
situation is more definite. 

Let us consider Eq. (8) against the background of a 
strong nonlinear wave at ky = 0 and y = 1: 

""'H .2 )' n 1 H' )' 4nn'T.'} ~+Hx{(~ Wp: -k,2--\.,- +-w- =O. (12) 
dx2 wm k,c H n 

In the case of a weak wave (AH « H), this equation is 
unstable against surface perturbations. The increment 
of such a solution is determined by the dispersion rela
tion (9), in which it is necessary to put k = 0 and 
Pe = nTe· 

This conclusion can be formulated also as follows: 
Eq. (12) has at least one solution with K 2 > 0 provided 
the following integral condition is satisfied: 

{ n ( H' )' 4nn'Te'} ~ dx Jj\.,---; - --w,- < 0. 

This solution corresponds to stable oscillations when 
k~ > K 2 and unstable oscillations when k~ < K 2• 

It follows from the foregoing obvious reasoning that 
the front of a strong wave is also unstable against per
turbations with ky = 0, if Eq. (12) for such a front has 
at least one proper solution. 

Let us consider two examples. 
In the presence of ionic viscosity, a nonlinear wave 

may be established, in which the density changes over 
a length on, whereas the magnetic field in the wave 
changes over a length Oj = c2141Tavx, with Oj »on (iso
magnetic jump[101). Then when o = const we have in the 
region in front of the wave (x > 0) 

H,, n.2 

Here Hz 1, n1 and Hz2, n2 denote the values of the mag
netic field and the density ahead and behind the wave 
front, respectively. Let us consider the stability of 
such a front relative to perturbations of the surface
wave type with ky = 0, described by Eq: (12). ~ the 
region behind the wave (x < 0), a solutwn of th1s equa
tion is 

Hx =A exp(xx), Rex>O. 

In the region ahead of the wave (on« x « HII H' I), 
a solution that attenuates as x - + oo is 

{ [ 2 1 n.(n2 - n1) -]'h) 
Hx =A 1- X %1 + {j . 0 1112 J' 

J 

Joining these solutions together, we obtain the follow
ing dispersion equation: 

r 2 1 n2 (n2 - n1) ]'!,-In n2 <- H' _ 4nnTe')' 
x+Lx1+ 6 2 2 - n H H2 (13) i n1 1 

where ( ... ) denotes the mean value of the quantity at 
the point of the density jump. When f3e « 1 there are 
no unstable oscillations, since the left side of (13) is 
always larger than the right side. Instability is possible 
if the electron temperature Te and the magnetic field H 
fall off to one side and 

We now consider the stability of a strong shock wave, 
behind the front of which we have f3e » 1, and in which 
the magnetic field, density, and pressure Pe vary over 
the same scale o. Let ky = 0, and let the perturbations 
of the magnetic field be of small scale, kxo » 1. 

In this case there exist local growing perturbations 
described by the dispersion equation 

r [(~ Wpi2)2-k2+ 4nn'Te']'f,=n(l+..:). (14) 
Jdx . k' z 1:>'2 \.. 2 (t)Ht zC .1 

As a result of the development of such an instability 
with an in current Im w ~ f3ewHi c2 I 02Wpi> the entire 
front of the nonlinear wave breaks up into individual 
cells with scale .\ ~ &1173; F::: oiM, where M is the 
Mach number. 

In the derivation of Eq. (8) we have neglected the 
motion of the ions in the oscillations, a procedure valid 
when kz » Wpilc, and the motion of the plasma through 
the wave front with variable velocity Vx = Mv Ai· It is 
obvious if Im w » Mv Ailo, then the perturbation will 
have time to grow before it is carried away by the 
stream from the region of the wave front. It follows 
therefore that the front of a strong shock wave may 
turn out to be unstable if o < c 173; I Wpi (f3e F::: M2). 

The investigated instability leads to a local pinching 
of the current in the plane of the wave. Let us consider 
first the configurations of the perturbed force lines to 
which the solutions of Eq. (8) correspond when 
w « WHikic2lwpi and ky = 0. In such perturbations, the 
electric field can be regarded as potential, E = - V cp. 
Then the quasiequilibrium states of the electron gas 
are determined by the equations 

a'P a 1 . 
eno-- -(noTie)-- ]yHz = 0, 

ax ox c 

1 . 
eno!jl - noT1e + -- ]oy £xHo, = 0, 

c 
iHx 

Tie=- £xToe', Sx =- k-H ' 
z Oz 

(15) 

~ is the displacement of the electrons in the perturba
tions. The magnetic field is "frozen in" in the electrons. 



INSTABILITY OF A PLASMA IN A STRONGLY INHOMOGENEOUS MAGNETIC FIELD 1229 

From the system (15) there follows Eq. (8) for Hx in 
the case when w = 0. If this equation has localized solu
tions for a certain set of values of ki z, then this signi
fies that there exist a number of quasiequilibrium states. 

We now consider a perturbation with a smaller value 
of k~. In this case the restoring force jyHz/c, at the 
same displacement amplitude ~x• is smaller and cannot 
balance completely the force 

fJ<p f) fJ ( HoHo'\ 
eno---(noTte)= no'Toe'sx-no-f) I sx-4- I 

ox ox x \ nn0 I 

The difference amounting to (k~z - k~) H~~x/ 47T. This 
leads to displacement of the electrons along the x axis. 
The force n0evxHoz/C displaces the electrons in the y 
direction and causes a field Hy to appear. The instabil
ity should cease when the perturbation of the magnetic 
field becomes comparable with H0z· 

The formulas of this section do not contain the elec
tron scattering frequency v. Neglect of the effects of 
ohmic dissipation in the oscillations, as already noted, 
is justified if w » vk2c2 / Wpe. But v determines also the 
minimum dimension of oH over which the magnetic field 
changes: OH ~ cv/wpiWHe• Therefore, for unstable per
turbations with 1m w ~ WHikic2/Wpi and kz < 1/5, this 
condition is satisfied if v « WHe or OH « c/wpi· The 
assumption that w « k~VTe/v, on the basis of which we 
put y = 1 in Eq. (4), is justified if oH < ci3e/Wpi· 

3. We now consider purely electronic oscillations on 
the front of a nonlinear ma~etosonic wave when kz/k 
« w/wHe. w » (wHeWHi)1 2, and 13e « 1. In this case 
it is impossible to neglect in (3) the inertia of the elec
trons. We are interested, as before, in instabilities that 
develop more rapidly than the deformation of the wave 
front. Under the conditions formulated above, the equa
tion for Hz has in the quasiclassical limit kxo >> 1 the 
following form: 

CFH, ( Cilpe" CiJ- k,vn ) H O 
--- k 2+-- z= 

dx2 " c2 w- kyvu + iv ' 
(16) 

where 
c2 Ho' 

VH = Wpez WHeHo t 

We shall henceforth neglect the collision frequency v 
compared with w. This equation is similar to the equa
tion obtained in hydrodynamics in the investigation of 
the stability of plane-parallel flow of an ideal liquid. [UJ 

It is known that such flows are unstable in the presence 
of an inflection point on the velocity profile. As applied 
to our problem, this means that Eq. (16) has exponen
tially growing solutions only in the case when at least 
at one point we have vn(xo) = VH(xo) = w/ky. However, 
there is a difference between these problems. In the 
hydrodynamic formulation the existence of a localized 
solution is guaranteed by the presence of walls. In our 
problem it is still necessary to show that a solution that 
is localized, i.e., that decreases away from the front, 
exists. 

Equation (16) coincides in form with a Schrodinger 
equation whose effective ''potential" depends on the 
profiles of the magnetic field Ho and the density no 
(see the figure). Arguments in favor of precisely such 
profiles of the magnetic field Ho and the density no are 
given in Sec. 1. It is clear here from physical consid
erations that the profile of the magnetic field should 

-=== r"=---"' .z; A> 
Contour C 

"lead" the density profile. 
It is seen from the figure that at a fixed phase veloc

ity of the oscillations w/ky the effective "potential" of 
(16) has four turning points, two of which are zeroes 
and the other two are poles. At different values of the 
parameters kyc2/wpe and w/kyvo, where vo is the veloc
ity at the intersection point VH = vn, there can be differ
ent sequences of the turning points. We shall show sub
sequently that the existence of quasiclassical localized 
solutions is possible only for the singular-point se
quence shown in the figure. This corresponds to param
eter values kyc2/wpe< I vD_/vii I and w/kyvo > 1. If we 
take into account the rule for going around the poles in 
accordance with the Landau rule[12J (w ~ w + iE, E > 0), 
then Eq. (16) can be represented in the form 

iFH, Cilpez H (17) --. - k02 (x)H, = -in--( w- l>yVn) li ( CiJ - kyvn) ,, 
dx2 c2 

where 

In the complex x plane it is possible to introduce a 
X 

contour C, along which the phase Jko(x')dx' is real or 
imaginary, depending on our position relative to the 
turning point. The usual rules of quasiclassical quanti
zation are applicable along such a contour. The figure 
shows the arrangement of the turning points and of the 
contour C for the profiles of Hz and no given above when 
ky > 0. 

We now find the localized solution for the chosen se
quence of singular points. We construct first in the 
zero-zero well between the turning points X1 and x2 a 
quasiclassical solution that falls off to the left of the 
point x1o We then construct an analogous solution in 
the pole-pole well between the turning points X1 and X2; 
this solution falls off to the right of the point X2. Then 
we join the obtained solutions in the region of the "po
tential" barrier (x2X1) separating the zero-zero and 
pole-pole wells. The general method for continuing the 
quasiclassical solution through the turning point is as 
follows. In the direct vicinity of the turning point we 
construct an exact solution, which goes over asymptotic
ally far from the turning point into the quasiclassical 
solution. Joining the exact and quasiclassical solution 
at a certain intermediate region, where both solutions 
are valid with sufficient degree of accuracy, and using 
the boundary conditions at the turning point for the ex
act solution, we can obtain the connection between the 
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coefficients of the quasiclassical solutions. The only 
difference between a zero and a pole is that the boundary 
conditions for Hz at the turning point are different. Using 
this method we find that the solution falling off to the left 
of the zero x1 

A r -r - ) If = --- exp J :J/k0'dx' 
' (ko') •r. \ x, , 

(18) 

corresponds on the right side to an oscillating solution 

H,= 2A cos(~1-ko2 dx-!!..). (19) 
1-ko') 'I• x, 4 

In turn, corresponding to this solution on the right of the 
zero xz is 

2A (x~ -· ) /~ --- ll) ---,-,-exp Yko2 dx' sint i-ho2 dx"--, 
( k02) " \ 2 

X2 X1 

(20) 

This solution is valid provided the second term is 
smaller than or of the order of the first. When finding 
the quasiclassical solutions in the region of the pole
pole well it is necessary to take into account the fact 
that H6 experiences a discontinuity at the pole: 

1 , Wpe2 Vn - VH 
{H,} = H,m-"--

1
-,

1
-. 

C"' VII 
(21) 

Here and throughout we shall assume that ky > 0. It is 
then easy to find that the solution 

(22) 

which decreases to the right of the pole Xz, corresponds 
on the left of this pole, inside the pole-pole well, to the 
quasiclassical solution 

H,= B, exp{-i(fy-k02 dx'+.::r._)}. (23) 
(- ko') r. x, 4 

It is significant that, unlike (19), we obtain a traveling 
wave [l3J. In the region to the left of the pole X1, the 
traveling wave corresponds, with exponential accuracy, 
to a solution that increases away from the pole, namely 

In the subsequent calculations of the increment of the 
instability, we shall need the values of Hz at the poles 
X1 and Xz: 

iB I ffipe2 VH- Vn )-'!. ( XI• -- ) 
H,(X1)= --=1-----,- exp i J y- k02 dx' , 

Yn \ cz vH xl x~ 

(25) 

In order to join the solutions in the region (xzX1), we 
make use of the fact that the wells (X!Xz) and (X1X2) are 
separated by a broad barrier and consequently the cou
pling between the oscillations is exponentially weak in 
the wells. Therefore the equation 

., 1 
~ '/-k02 dx=n(l+-z) 
x, (26) 

is, with exponential accuracy, the quantization condition 
for the entire system. We then obtain the following con
dition for joining together the amplitudes: 

Xt X 1 

Bexp (i ~ 1- ko'dx )~ (-1) 1A exp(- ~ yk02 dx), (27) 
x, ~ 

where l is the number of the level in the zero-zero well. 
We now find the small imaginary correction tow. To 

this end we multiply Eq. (12) by a~, subtract from the 
resultant expression the complex conjugate, and after 
integrating with respect to real x we obtain 

r dxiH,I'ffipe' y(vH-vn) =0, 
-oo c2 (ffio-kyvH)'+v' 

Reffi = ffio, Imffi =v > 0. (28) 

Using the joining condition (27) and the expression for 
Hz at the poles (25), and assuming that y << wo, we ob
tain the following expression for the increment: 

x. d 2 k ( ) x, 
P 1 X ffipe y VH- Vn I 2 I ,fk2d ) (29) 

y J-=-. -· =exp\- J r o x • 
y-kr,2 c' (ffio-kyvH) 2 

X1 ~ 

Here the integration on the left side is over the region 
inside the zero-zero well, where VH - Vn > 0. The ex
pression for the increment can be represented also in 
the form 

a ~ 1 ~ 
y- ~ '/-k02 dx=-ex/ -2 ~ iko2 dx\. a{J) 2 \ ·! (30) 

Xi ~ 

Let us dwell briefly on the validity of the neglects 
made in the derivation of the equation for Hz. From the 
very procedure of continuing the solution through the 
pole it follows that we go around the pole ( w - kyvH(x) r 1 
in the complex x domain along a certain semicircle of 
finite radius Re: above or below the pole. On the other 
hand, when rigorous account is taken of the quasiclas
sical small terms, which we have neglected, poles of 
second and higher order appear in the equation for Hz. 
We now choose a circle with a radius Re: such that it is 
possible to neglect on it the contribution due to these 
additional poles. In particular, a second-order pole 
appears when the term with the first derivative is ex
cluded from the equation for Hz. To be able to neglect 
this pole, it is necessary to go around the singularity 
along a semicircle with radius 

6 ~ Re ~ {) (c/6ffipe)', 

where o is the width of the wave front. 
Allowance for the motion of matter through the front 

of the wave with velocity v0 x(x) leads also to the appear
ance of additional pole terms of fourth order. These can 
be neglected by going around the singularity along a 
semicircle with radius o » R » o ( OWpi/ c )213 • There
fore, in order for the formulas of the present section 
to be regarded as valid, it is necessary to assume that 
the condition c/wpe « o « c/wpi is fulfilled. 

In Eq. (16) we disregarded terms connected with the 
friction of the electrons against the ions. This is justi
fied if v << y. H the "unfreezing" of no and Ho on the 
front of the nonlinear wave is determined by the ohmic 
dissipation, then the effective collision frequency is not 
a free parameter in the foregoing inequality. The quan
tity v itself determines the "unfreezing" of the profiles 
of the density no and the magnetic field Ho on the front 
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of the nonlinear wave, and consequently also the oscil
lation increment y. Using formula (30} for the incre
ment on the limit of its applicability, when the distance 
between the singular points x2 and X1 is of the order of 
c/wpe. we obtain the following condition for the applica
bility of all the conclusions of the present section: 

c ( mi)''• c -<0<- -
ffipe me (l)pe 

We now clarify the physical nature of the obtained 
solution. We note first that when the solution is con
tinued through the pole, the decreasing solution goes 
over into a traveling wave whose phase velocity is di
rected to the side of this pole, thus greatly differing 
from the behavior of the solution in the zero-zero well, 
where it represents a standing wave. Obviously, there
fore, neither the zero-pole well nor the pole-pole well 
has localized solutions. To this end it would be neces
sary to join in the first well the traveling wave with the 
standing wave, and in the second well two waves travel
ing in opposite directions. Neither is possible. We note 
that if the value of w/ky is very close to VH(xo) = vn(xo), 
so that I X1- x2l Wpe/c < 1, then again there is no local
ized solution. This circumstance limits the maximal 
increment y. 

Let us calculate the energy of the oscillations in the 
local approximation, when dHz/dx = ikxHz. In the ref
erence frame where the electrons are at rest, this en
ergy is obviously equal to the sum of the vibrational 
energy of the electrons as they drift and of magnetic 
oscillation energy 

, jH,j 2 vn-VH wk =-----ky 
8 ' ' n oo 

(31} 

w' is the frequency in a reference frame moving with 
velocity VH• Using the conservation of the adiabatic in
variant Wk/w, we go over to the laboratory frame: 

jH,j 2 ky(Vn- VH)oo 
Wk=--· ,, 

8n (oo- kyvH) 2 

We see therefore that the energy of the oscillations is 
positive in the region of the zero-zero well and negative 
in the region of the pole-pole well. Thus, the traveling 
wave propagating in the region of the pole-pole well 
from the pole X1 to the pole X2 carries energy in the 
opposite direction, i.e., in the direction towards the 
zero-zero well. In the poles, owing to the resonant in
teraction with electrons, which drift with velocity VH 
= w/ky, the wave becomes intensified. The additional 
energy connected with the wave passes through the bar
rier (x~1) into the region of the zero-zero well and 
causes an increase of the oscillations in this well. The 
exponential smallness of the increment is obviously 
connected with the presence of the barrier (x~1) in the 
path of the energy flux. 

We shall now show that the resultant electronic plas
ma oscillations lead to an irreversible change of the 
profile of the magnetic field Ho. Using the hydrody
namic equations of motion of the electronic components, 
the induction equation, and expression (16}, and averag
ing over the random phases of the oscillations, we can 
obtain the following equation: 
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(32) 
Here L is the length of the plasma layer in the y direc
tion, l is the number of zeroes of the solution of Eq. (16} 
on the x axis, and Vlky is the Fourier component of the 
velocity vx. 

We see therefore that the coefficient of diffusion of 
the magnetic field Ho is of the order of DH ~ viy/w2• 

In conjunction with the equation 

(33) 

the quasilinear equation (32} determines the collision
less diffusion of the magnetic field on the front of the 
shock wave. It must be emphasized that the quasilinear 
effects do not lead to a change in the density no of the 
electrons, since n1e = 0 in the oscillations in question. 

It is seen from the equations that the buildup of the 
oscillations is a consequence of the resonant interaction 
between the wave and the electrons drifting with veloc
ity VH = w/ky. The increase of the energy of the oscil
lations results in this case from the realignment of the 
magnetic field Ho. 

In conclusion, we are grateful to A. V. Timofeev for 
useful discussions. 
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