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Using an exact solution of the Boltzmann kinetic equation, we calculate the components of the conduc
tivity tensor in crossed electric and magnetic fields. It is shown that if the momentum relaxation 
time depends on the particle energy, then the diagonal component of the conductivity tensor can be 
larger in a weak field than in the absence of a magnetic field. 

IN a conducting medium placed in a magnetic field, the 
connection between the current density and the electric 
field intensity in the region of small electric fields re
mains linear, but the components of the conductivity 
tensor depend on the magnitude of the magnetic field. 
In a homogeneous and isotropic medium, in crossed 
electric and magnetic fields, there are, besides the two 
independent diagonal components of the conductivity 
tensor, also nonzero two nondiagonal components, called 
the Hall components, which are equal in absolute magni
tude. 

For this to happen in a solid it is necessary to have, 
beside spatial isotropy, also the existence of spherical 
or ellipsoidal constant-energy surfaces of the carriers, 
but then the conductivity tensor is referred to a coordi
nate system which is connected with the principal axes 
of the energy ellipsoidr1 J. It is therefore possible to 
confine oneself to a consideration of only a quadratic 
dependence of the energy on the momentum, and to a 
calculation of two components of the conductivity tensor, 
the diagonal transverse component a, and the Hall com
ponent aH, since the diagonal longitudinal component 
does not depend on the magnetic field. 

In a rarefied plasma media, even at moderate values 
of the magnetic field H, the particle has time to exe
cute during scattering a sufficiently large number of 
revolution with cyclotron frequency Slc = eH/mc, 
where e is the charge and m the effective mass of the 
particle, and c is the velocity of light in vacuum. In 
this case the particle trajectories are such, that the 
conductivity a appears only as a result of the presence 
of a definite collision mechanism. 

The Hall conductivity is connected with the existence 
of a constant drift with velocity -cE/H, where E is 
the intensity of the electric field and does not depend 
on the scattering mechanism. In a dense medium, when 
the particle does not have time to execute even a single 
revolution during the time between collisions, the mo
tion trajectories can be close to straight lines (as in 
the absence of a magnetic field), but the presence of a 
constant drift causes the particles moving in one of the 
directions from the plane of the fields to have a larger 
kinetic energy than particles moving in the opposite 
direction from the plane or in the plane of the field. 

The carrier free paths in different directions are 
different, and the mean free path can depend on cE/H. 
In the case of the motion of a charged particle in 
crossed fields, the integrals of the motion are the 

velocity along the magnetic field vy and the energy of 
the rotational motion W, equal to 

Thus, Vy and W remain unchanged between two 
scattering acts, whereas the kinetic energy e: of the 
particle changes. And if the particle trajectories are 
almost straight lines, then the current along the elec
tric field E is the result of the compensation of the 
velocity within the effective collision time. At constant 
vy and W we have 

eE ( H ) !lv, =- 1 +-vx Llt, 
m , cE 

and if the scattering of the particles is the same for 
all values, then t.t is constant and the average t.vz 
does not depend on cE/H. 

In the case when the particle free path time depends 
on its kinetic energy, t.t is the average time along the 
trajectory at constant values of vy and W. In this case 
the conductivity depends on the dimensionless quantity 
a = vTH/cE, where vT = v'2kT/m, T is the absolute 
temperature, and k is Boltzmann's constant. 

To obtain the functions a ( H, a) and aH ( H, a) in 
crossed fields, we start from a solution of the Boltz
mann kinetic equation for the distribution function 
f( v ): 

!__ (E+_!__[vH] )~+-~~~f=-1--S {f), 
m \ c , iJv to(e) to(e) 

(1) 

where To( E) is the total momentum relaxation time, E 

is the energy of the particle in units of kT, and s{f} 
is that part of the collision integral which represents 
the arrival of the particles into the considered velocity 
and energy region as a result of both elastic isotropic 
and anisotropic collisions and inelastic collisions. 

It is convenient to change over to the dimensionless 
quantities 

Eo= e-r0 (1)E, Wo= e-ro(i\)H' a=~. (2 ) 
'/2mkT me Eo 

Then in a spherical coordinate system, with the polar 
axis along the field Eo, Eq. (1) takes the form 

cos e of of -( of sin a of ) 
wo-. -;;in<p -;-- Wocosrp-+Eopie 2cos 8-- ---;-

Sill 8 iirp o8 iJe E o0 . 

I s {f} 
+--=---~, 

To(E) To(E) 
(3) 

where e and q; are the polar and azimuthal angles, 
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and To( E) is now normalized in such a way that To(l) 
=1. 

When Eo<< 1, we can confine ourselves to there
laxation part of the collision integral (see the appendix), 
and if we assume for simplicity that the particle scat
tering is isotropic, then S { f} = fo (E), where fo (E) is 
the equilibrium distribution function. In this case the 
solution of such an equation is usually obtained by 
putting the function f ( E, 8, cp ) in the parentheses of the 
left side equal to the equilibrium value fo( E) (the so
called linearization with respect to the electric field; 
see, for example,P1. Mathematically this corresponds 
to retaining in the expansion of f( E, e, cp) in spherical 
functions of the variables e and cp only the first 
spherical function with coefficients f1 (E) and f~ (E), the 
first of which is proportional to Eo and the second to 
WoEo. 

Such a linearization, generally speaking, is possible 
only in the absence of a magnetic field or in magnetic 
fields when a>> 1. In the presence of a magnetic field, 
retaining in the parentheses of the left side of (3) the 
equilibrium function fo( E) alone, we neglect terms of 
order E~ compared with the remaining terms of order 
woEo, or even smaller ones, of order w~Eo, if Wo is 
small. In the general case it is easy to obtain the solu
tion (3) with respect to the right side S{f} =So+ S1, 
where So and S1 are the symmetrical and antisym
metrical parts of S{f} with respect to the variable 
J.J. = cos e. To this end it is necessary to change over 
to the variables 

--- z-y; --
e, ~ = ye(i- f.l2)sinq:, w = e +-1'1- ft2 cosrp. (4) 

a 

In terms of the new variables, Eq. (3) takes the form 
8.f± + /" ±So-f-S, 

ae- <Uoto(e)y(e.-e)(e-e,) =:-.~o(e)y(e2-e)(e~-)' (5) 

Here f+ = f when j.J. ~ 0, r = f when j.J. s 0, and E2, El 
are the roots of the equation J.J. = 0, which do not de
pend explicitly on E, such that E1 < E < E2. The ex
plicit dependence of E2 and E1 on the variables E, e, 
and cp, is 

e2, 1 = e + 2e~(vo + ~) ± 2elfl'(vo + ~) 2 + f.12 , 

at constant values of the variables 1; and w. Multiply
ing (7) by J.J. and v0 and integrating over the solid angle, 
we obtain 

dQ "'[ dS /l(e)=S,- .\ hit ( {sh..p(e) S sh[IJl(e2)-..p(x)]-0 

S '¢ Ez) e d.:; 

as, J 1 - ch[IJl(e2 )-IJl(x)]-- dx + sh[..p(ez)-..p(e) 
dx 

~ f as. as, J } X J sh tJ:(x)--1-chiJl(x)-d dx , 
L dx x ,, 

(9) 

The densities of the conduction and of the Hall cur
rents are expressed as follows: 

2rre v 2kT ~~ 2ne v-2kT r 
jz=~- ---· /f(e)ede, jx=- ----1 f, 1(e)ede.(10) 

3 m 3 m • 
0 0 

Just as in the absence of a magnetic field, when Eo 
« 1 the deviation of the symmetrical part of the dis
tribution function from its equilibrium value fo( E) is 
proportional to E~. This can be verified by considering 
the equation 

Eo to(e) d(E/1) =-/o-f-So {to} 'to(e), 
ye de 

which is obtained from (3) by integrating over the solid 
angle. Therefore, confining ourselves to weak electric 
fields, we retain in S { f} only the relaxation part of 
the collision integral. 

Let the elastic scattering be isotopic and let (we 
omit the index zero throughout) 

't(e) = (1- l5 + el5)-1, 0 ~ 6 ~ 1. 

Making the change of variable 

e = 1/2(ez + e!) - 1/z(e2- 8,) cos TJ 

~ = 1 I aY£. vo = Yi- f.t2 Cos rp. (6) we calculate from (8) the scattering factor 1/J(TJ): 
So and S1 are expressed in terms of e and cp in ac
cordance with (4). 

As a result we get an expression for f ( E, e, cp ) : 

e-~<•J { •.• dS0 "s dSo 
f'=S++ ~ sh[IJl(e2)-IJl(x)]-dx-ew(e,) shiJl(x)-dx 

shiJl(ez) , dx ,, dx 

e, as, • as, 
- r ch[IJl(e•)-tj;(x)]-dx-e>l<••)r ch¢(x)-dxj)' 

J dx J dx . ~ 

e"'<•J { 7 dSo • dS0 
j- = S-+--- J sh[¢(e,)-..p(x)]-dx- e--'l(e,) S shiJl(x)-dx 

sh..p(e2 ) , dx ,, dx 

•• as, • as, 
- ~ ch[¢(e2)-tJ:(x)]-dx.dx-e->1<") ~ chtj;(x)-ax-dx}, (7) 

e ~ 

where 

1 r dx 
tj;(x)=- J , 

<Do ,, to(x)t' (e2- x) (x- et) (8) 

and the derivatives under the integral signs are taken 

¢(TJ)= ~ {[t-6-1- ~ (e2-f-e1) ]11- ~ (e2-et)sinTJ}. (11) 

Further, for the scattering mechanism under con
sideration we can write 

2..p(e2)- ..P(TJ) = 1Jl(2n- TJ), 

as a result of which we obtain from (9) the following 
useful expressions 

/t(e)= ~ f1e->I<"JdQ f e->l<t-"JdSo(~;:-TJ) dg, 
0 , 

(12) 

From (12 ), (11 ), and (10) with So = fo( E) we obtain for 
a nondegenerate carrier gas 

a 
ne~(i) 

m 

r e-g(ifidy { 
J (1 -l-l5y)'i• coswy 
0 
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26 1 -cos wy ( sin wy 1- cos wy 'i} -- --+ /j ---,--.:__ 
u2 1 + by w w2 , ' (13) 

26 1- cos wy [ 1- cos wy 6 ( sin wy )]) 
-~-i+oy w +-;;; y--w-- J' 

where 
2/l [ sin wy 

g(y) = (1-ll)y+~- y--w-

ll ( y2 sin wy 1 - cos uly )l 
---- -- y ---+ -----=---'-

1 +by 2 w w2 J 

(14) 

For a degenerate gas we have 

a = - ~·e'• ( 1 J Yin_ r x'l, dfo dx f e-g,(y) 
m 4e 3i~ J dx .) 

u 0 0 

{ b;,(2yax) [ 2/l sin wy J >< --, - cos wy- -- ---- (1- cos wy) 
al• a2 <u 

262 ,,- bh (2yax) ( sin wy 1 -cos wy)) 
+--;:;:,rx a''J, (1-coswy) y-~--- w' fdy, 

noe2t(1) 3y;:;-f 'I dfo d f < Jf bJ,(2y--;;;j f. 
O'H= --m-- 4e1i2 ·' x 4 dx x ) e-g~ Y "\ a314 l stn wy 

0 0 0 

26 (1-coswy) 2 ]· 21i,1-1•1,(2yax) [ y • 
-a2 w +~rx a"!, --;(1-coswy)· 

_ _1_ ( y _ sin wy )]} dy, (15) 
o\ w 

where 

26 ( sin wy ) go=(1-ll)y+xlly+- y------, 
a2 (J) , 

62 [ 2 sin wy 1 
a==- y2 +-(1-coswy) -2y-- , 

(12 (rl2 (J} j 

no= e~1' t 2rrzk'J'__ )'!, 
3n lz2 

Eo is the Fermi energy in units of kT, li is Planck's 
constant, and Inf 2 is a Bessel function of imaginary 
argument. 

Putting 15 = 0, we obtain the mechanism of scatter
ing with a constant relaxation time. In this case, as 
expected, the quantities r:r and r:rH do not depend on a 
and coincide with those calculated by the method of 
linearizing the kinetic equation. However, when 6 -;r. 0 
or 15 = 1, the scattering depends on the energy and, as 
seen from (13)--(15), dr:r/da > 0 and consequently, 
when w << 1 the quantity r:r becomes larger than r:ro, 
i.e., the conductivity increases in the magnetic field 
until the trajectory twisting becomes appreciable 
(w ~ 1 ). At larger values of a and w, i.e., when the 
thermal velocity greatly exceeds the magnetic-drift 
velocity cE/H, and there is a strong twisting of the 
trajectories between collisions, the results obtained by 
the method of linearizing the kinetic equation are valid. 

The considered case at 15 -;r. 0 is more likely an ex
ample of an exact calculation than an actually realized 
scattering mechanism. For all forms of scattering, the 
analytic calculation of r:r and r:rH can be carried out 
only for limiting values of a ( w << 1 ), thus obtaining 
small corrections to the components of the conductivity 
tensor. The correction for a, however, is always posi
tive. 

Let, for example, T( E) = E-112 , which in an isotropic 
semiconductor corresponds to scattering by the acous
tic lattice vibrations. The influence of heating can be 
disregarded[2] when Eo<< 2c0 v" m/kT, where Co is the 
speed of sound in the crystal. The scattering is obvi
ously isotropic. When a >> 1, and consequently when 

y = (e2- ct) I (e2 + e,) ~ 1, 

we obtain from (8) accurate to terms in y 2, 

1 1/ €2 + Bt ( y2 \ 
¢('1)=-v--- 1--)'1 

bl 2 16 I 

- _____!,•- 81 -- ( 1 +_!__cos '1) sin '1· 
2wl"2 (e3 + e,) 8 

Just as in the preceding case, using (4), we obtain for 
a nondegenerate gas when w << 1 

a= 4e2n~( 1 +_1__)' oH= --~- ne"-t-(1) w( 1 __ ~ \ 
3l'nm u2 3 m 5u2 I (16) 

and r:r in a magnetic field is larger than without a 
field. 

In (16 ), the quadratic corrections in terms of the 
small quantity Eo are disregarded, and therefore these 
formulas are valid in those regions where a-2 greatly 
exceeds E~. 

In anisotropic scattering by a screened Coulomb 
potential at large a and w << 1, it is necessary to re
tain in the relaxation part of the collision integral all 
the terms of the expansion in spherical functions. This 
can be verified by considering the obtained expression 
for the total function f(E, e, cp) (7) and recalling that 
the derivatives of S are taken at constant<> ?; and w. 
Then the conductivity is determined not by a single 
transport cross section, but by all the moments of the 
scattering cross section, and calculations of r:r and r:rH 
call for a separate investigation. However, for small 
values of a and w << 1 it is possible to confine one
self to the zeroth and first spherical functions. 

Let us consider, for small values of a ( w << 1 ), 
scattering by acoustic lattice vibrations and by a 
charged impurity, when To( E)= E112• Since E2 is large 
when a << 1, the calculation of the factors for scatter
ing by acoustic vibrations and impurities, 1/Jac and 1/Jq 
respectively, will be calculated by expanding in terms 
of the quantity E 1 /Ea. 

Omitting terms of the order of 

[ 1- ( 1 - et/ e2) 'I• )' _ 1 ( e1 )' 
k2- -- --- 1 + (1- Et/fz)''• till ez ' 

we obtain 

Substituting (1 7) in (9) we get 
(' ( d$ )-1 

/l(e) = /o(e) J fl ldx dU. (18) 

·-Further, the integration over the solid angle in (18) can 
be carried out by expanding the integrand in a series 
in powers of the small quantity a. As a result we ob-
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tain for acoustic scattering 

cr=~ne4:(1) (H-~) 
3l'n m 10 (19) 

and for scattering by a charged impurity 

a = _!l~e2-r ( 1L ( 1 + ~2 l . 
nm , .) (20) 

In both cases, the conductivity a increases in an ex
ternal magnetic field. 

In conclusion, I am grateful to L. P. Pitaevskii and 
A. A. Rukhadze for a number of valuable remarks. 

APPENDIX 

TRANSFORMATIONS OF COLLISION INTEGRALS 

The complete collision integral I { f}, which de
scribes the change of the function f ( E, B, cp ) upon co 1-
lision of the carriers with other particles, is given by 
by[3) 

I{/}= N ~ ~ dp,dfiq(u,x')u {/(p')F(p,')- /(p)F(pt)}, (A.1) 

where N is the number of particles per unit volume 
with which the carriers collide, and F(pl) in their 
distribution function normalized to unity; p' and p~ are 
the momenta prior to collision, and p and p1 are the 
momenta after the collision; u = p/m - P1/M is the 
relative velocity; q(u, x') is the differential effective 
scattering cross section as a function of the relative 
velocity of the colliding particles and of the scattering 
angle between the velocities u and u' = p'/m - pUM. 
The internal integration over the scattering angles 
dO= sinx'dx'dK' is carried out at a fixed value of the 
momentum P1· 

Our problem is to reduce (A.1) to the form used in 
Eq. (1), and to ascertain the conditions under which it 
is possible to use the relaxation parts of the collision 
integral in the form -(f- f0 )/r0 (E) in isotropic scat
tering. 

In the case of the elastic collision with a heavy par
ticle of mass M >> m, the change of the energy t.E is 
insignificant, and the change of the momentum is arbi
trary, if there is no predominant small-angle scatter
ing. It is therefore possible to expand the functions 
f( p') = f( € + t.E, {}', cp' ) and F( p~ ) = F ( € - t.E, {} ~' cp ~ ) 
in a series in t. E, and to consider such q ( u, x' ) for 
which small-angle scattering does not make a decisive 
contribution to the collision integral. The opposite case 
leads to the well known Landau collision integral, when 
the expansion of the functions f and F is better car
ried out in powers of t.p = p'- p and t.p~ = p~- p1[4l. 

From the energy and momentum conservation in 
elastic collisions we obtain 

2m' { ( m) 1/ 'II .\e = --u-;-- - 1 - .,.. V :__ ee, ( 1 - cos x') cos fl 
.r1 - 1- m \ 1r1 1n 

+ !!!__ V M ee1 sin x' sin tl cos x' + ( et - e) ( 1 - cos x') \1., 
m' rn 

where K' is the angle between the planes (u, u') and 
(p, P1 ); m' is the reduced mass. We shall assume 
that the heavy particles have a Maxwellian distribution: 
F(p1) = rr-1/ 2 e-Es, and then the series expansion is 
possible if 2,; mEE 1/M « 1. This means that the colli-

sion integral obtained below is valid for carrier energy 
satisfying the inequality (in dimensionless units) 
E « M/m. 

Accurate to terms of order m/M in the result of 
the series function are the functions f( p' ) and F( P1 ), 
up to second order in t.E, we obtain for I{f} the inte
gral 

l{f} =-vo(e)/(p) +~ v(e,x')j'dQ' 

+ Zm ~ '!_ {e'h ~ v,,.(e, x') ( df' + r) dQ' \ 
M Te i}e \ de J 

or, after expanding in a series in spherical functions: 

f(e, 8', <r') = L; fnm(e) Yn,m(O, q:'), 

v(e, x') = ~ L; (2n + 1)vn(e)Pn(cosx'), 
4n 

I {j} =- \'o(e)f(p)+ L Vn(e)/nm(e)Yn,m(S,<p) 

2m"' 1 d f , tdf,."' )1 -f-- L; Y n, m(O, <p) -=.-\ e 1•v,,n(e) ( -- -f- /n"' 1 
M Ye de · de -·-

From this we obtain for isotropic scattering v0 ( E) 
= v(E) 

I{/} =- f- fo + }:_rr:_ ~-~{e'hv (e) ( !!!_o__ + Ia)} 
-r(e) M Ye de V:Ze 

?m 1 d { 1 dft"' )1 - -:_ L; Yt, ,(0, <f)--;=- Ehv(e)( ----- + /t"' I . 
M m Ye 1e · de 

By way of an example of an inelastic collision inte
gral, let us consider the interaction between free elec
trons and lattice vibrations in a solid. For an isotropic 
crystal, without allowance for umklapp processes, the 
collision integral is given by 

/{f} = _v_ \ w(q)dq{[(N(q) + 1)/'+m(t- /(p)) 
(2nll) 3 • PH 

- N(q)/(P) (1- ~~~~)]6(em- ep- w(q) )+ [N(- q)f;!~ (1- /(P)) 

- (N (- q)+ 1)/(p) (1- ~~~~t)]6 (eP+'l- ep + w (q)) }, (A.2) 

where N( q ) is the number of phonons with momentum 
q, w ( q ) is the energy of the phonon in units of kT, 
w( q) is the matrix elements of the transition as a func
tion of the modulus of q, and dq = q 2dq sin~dJdK. 

In scattering by acoustic phonons, the small parame
ter is the ratio 

where w(q) = coq and Co is the velocity of the longi
tudinal sound; it is therefore possible to expand the 

functions f~!~ and wN(±q) in terms of the small quan

tity 
w I kT = l'2mco2e I kT (q ~ 2p), 

so that the integral obtained below for collisions with 
acoustic phonons will then be valid under the condition 
(in dimensionless units) E << kT/mcg. Accurate to 
terms of order 5 = 4mcg/kT, we obtain as a result by 
expanding in a series at N( q) = 1/ ( eW - 1 ): 

/{/} =- v(e) (/- /0) + 6_ ~{ e'l"' (e)r dfa + /o(l- /o) l} 
l'e de L de J 

-cos 8 fJ___!:___ {e·'1•v (e) [!A+ /!{1- /o) ]~. 
) 1e de · de ' 

In the case of optical phonons Wopt 2: kT there is in 
general no small parameter, since the energy and mo-
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mentum transfers from the electron to the lattice via 
the optical phonon are not small. Therefore, for valent 
crystals, when w( q ( = const, w0 pt( q) = Wo, and the 
phonons have an equilibrium distribution, we can readily 
obtain from (A.2), by going over to the variable cos x, 
an exact expression for the collision integral: 

l{f} = -vo[Nte + Wo + (N + 1)Ye- wo]{(p) 
+vo{lle+luo(N + 1-/(p))/o(e + wo) + Ye-wo(N+/(p))/o(e-wo)}, 

or 

At sufficiently small Eo, the quantity f1 (E) is de
termined by the rate of change of f0 ( E ), or in other 
words, y-;: dfo 

/i(e) = -Eog(e,a)--~
v(e) de 

where ,; E _ Wo should be set equal to zero at E $ Wo. where g( E, a) is a bounded function of E and of the 
parameter a = VTH/cE. Therefore, under the condition 

Thus, the considered collision integrals, at an arbi-
trary f( p) dependence, permit separation of a relaxa- E~ << o, the contribution of f1 (E) to the change of f0 

tion part in the form (f _ fo )/To( E) (for isotropic can be neglected, and we can confine ourselves in the 
scattering), provided the energy exchange between the collision integral to a relaxation part (in the general 
carriers and the particles with which they collide is case of scattering) of the type 

small and there is no predominant small-angle scatter- J{f} = ~ v(e, x)/(e, e', q:')dQ' _ vo(e)f(p), 
ing. The remaining part of the collision integral de-
scribes under these conditions, in the main, the devia- where now f0 ( E) is the fully defined distribution func-
tion of the symmetrical part of the distribution fo( E) tion of the carriers, namely the equilibrium function. 
from the equilibrium value, which causes the main part 
of the integral to vanish. Owing to the presence of the 
small parameter o = 2m/M or o = 4mc~/kT, in a suf
ficiently wide range of external constant electromag
netic fields, the deviation of fo( E) from equilibrium is 
negligible, so that we can confine ourselves to allow
ance for only the relaxation part of the collision inte
gral. 

In our case, integrating the kinetic equation (1) over 
the angles, we obtain 

Eo d ( ej,) 6 d [ , ( dfo \] 
-;=---=--=~ el•v(e) -+fo; 
}'e de ie de de 
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