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The temperature dependence of the hyperfine interaction constants of F centers in KCl and LiF was 
investigated in the temperature interval 4.2-570°K. Unlike KCl, in LiF a qualitative difference was 
observed between the temperature dependences of the constants in different coordination spheres. 
The performed theoretical calculation is in agreement with experiment. The possibility of different 
behaviors of the hyperfine-interaction constants with variation of temperature for different spheres 
is demonstrated. 

INTRODUCTION 

AN investigation of the temperature dependence of the 
hyperfine interaction constants has made it possible to 
assess the character of the spin-phonon interaction. 
The most accurate data on the hyperfine interaction 
constants can be obtained by the electron nuclear double 
resonance (ENDOR) method. [ 1 - 6 J It is significant that 
when this procedure is used it is possible to obtain the 
values of the constants for several coordination spheres 
surrounding the local electronic center (LEC). 

In the present paper, the ENDOR method is used to 
study the temperature dependence of the hyperfine inter
action constants of F centers in KCl and LiF crystals. 
A theoretical interpretation of the obtained results is 
presented. 

EXPERIMENT 

For the measurements we used single crystals of 
KCl and LiF grown by the Kyropoulos method in an air 
atmosphere. The F centers in KCl were obtained by 
electrolytic coloring, and in LiF by y irradiation. In 
both cases, the F-center concentration was ~ 1018 em -3 • 

The investigations were performed with an ENDOR 
superheterodyne spectrometer operating in the 3 -em 
band. [7J The low temperature measurements were 
made using a cryostat described in [SJ. For the high
temperature measurements we used the device shown 
in Fig. 1. In this device, a stable temperature was 
maintained as a result of good thermal insulation (mica, 
teflon, quartz, ceramic) and stabilization of the power 
supply, (UIP-1). The resonator was not cooled specially 
during the operation, and its temperature did not exceed 
50-60°C. 

To study the temperature dependence, we plotted the 
ENDOR spectra at angles zero and 45° between the mag
netic field and the [ 100] crystallographic axis. In KCl 
the temperature dependence of the hyperfine interaction 
constants was investigated in coordination spheres I-IV. 
Figure 2 shows the results for the isotropic constant a 
of coordination spheres I and II. Coordination spheres 
III and IV were investigated on the temperature interval 
4.2-77°K. We were unable to observe a change in the 

FIG. I. Setup for high-temperature measurements: I -resonator 
at TE011 mode; 2 - cup, 3 - holder with dial for reading the 
angles, 4- copper base of heater, 5- heater, 6- heat insulator 
(mica), 7- thermocouple (copper-constantan), 8- ceramic rod, 
9- teflon ribbon, 10- quartz finger, II -sample. 
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FIG. 2. Temperature dependence of the hyperfine interaction con
stants (in MHz) of the F centers in KCI: I - a1(T), 2- b1(T), 3- au(T). 
Solid lines- theory, points- experiment. 

FIG. 3. Temperature dependence of hyperfine interaction constants 
ofF centers in LiF: I - ay1(T) (right-hand scale), 2 - am(T) (left-hand 
scale), 3- a1y(T) (left-hand scale), 4- aym(T) (right-hand scale). 
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constants for these spheres. 
In LiF [ 8 l in coordination spheres III and IV, when 

the temperature increased from 4. 2 to 570° K, the aniso
tropy of the hyperfine interaction constant increased 
while in IV and VIII it decreased. Plots of the variation 
of the constants are shown in Fig. 3. In coordination 
spheres V and IX, in the indicated interval of tempera
ture variation, no change was observed in the constants. 

In both crystals, the temperature variation of the 
anisotropic constant of the hyperfine interaction, b, is 
weaker than that of the isotropic constant. The constant 
b always decreases with increasing temperature. 

To describe the experimental results, we used for 
the ENDOR frequencies an expression corresponding to 
a spin Hamiltonian of axial symmetry. [SJ The deviation, 
characteristic of spheres VI and VIII, of the symmetry 
of the spin Hamiltonian from axial symmetry, was not 
taken into account in order to simplify the reduction of 
the results. Allowance for this deviation improves the 
hyperfine constant of the interactions by not more than 
1%, which is insignificant in the study of the general 
course of the temperature dependence. 

THEORY. DISCUSSION OF RESULTS 

With sufficient accuracy (for our purpose), the EN
DOR frequencies can be obtained from the spin Hamil
tonian 

:it= ~ ( gnucllnuc Hoin + a,.SI,. + hDnpqS/np ). (1) 
n p, q 

The first term in the brackets is the Zeeman energy 
of the n-th nucleus, and the second and third terms are 
the energies of the isotropic and anisotropic hyperfine 
interactions. 

Let us expand the hyperfine constants (HFC) in a 
series in the independent differences of the displace
ments Unl = lin - uz : 

<•> .._, 1 iJa,. ) 1 ...., ( iJ2a,. ) 
a,. = a,. + .LJ 1 - llnl + -2 LJ i) i) llnl llnl' + ·, · , 

\ dunl o Unl Unl' 0 
l 1,1 

(0) "' ( iJDnpq) 1 "' ( iJ2Dnpq ) Dnpq = Dnpq + LJ -- llnJ +--;--- LJ ~~. ·-- llnz llnl' + ... 
, iJu,.1 0 2 z." iJu,.z iJu,.z· o (2) 

In order to obtain the experimentally observed quanti
ties, it is necessary to average (2) over all the phonons. 
It is easy to show (see, for example, [9J) that in this 
case 

(u,.z) = 0, 

4h 11 { hw.(k) 1 )-1 
(u,.zu,.z.) = llu·- ~ 'L" exp ~~-~ -1 

NM k,, \ kaT 

1 J sin2 (kR(0l /2) +-- --~--. 
2 w,(k) 

(3) 

Here k is the wave vector, s = 1, 2, 3 is the number 
of the oscillation branch6 w s (k) is the frequency of the 
phonon with given k, R ~ > is the distance between the 
undisplaced nuclei n and l, M = (M+ + M_)/2, M+ and 
M_ are the masses of the positive and negative ions, N 
is the total number of atoms in the crystal, and kB is 
Boltzmann's constant. 

The long-wave approximation used in [ 10 J to calculate 

the sum over k is suitable only at low temperatures. 
To obtain the temperature dependence of the HFC in a 
wider range, we shall use the Debye approximation. 
Then, replacing sin2 (k • R!0 >/2) by its mean value 1/2, 
we obtain 

OlD 

18/i r f( { liw } )-1 1 J (u,.l)=--J L exp ~ -1 +- wdw 
Mwv3 

0 kaT 2 

18fz2 \- 1 1 1 ) 
= Mk88 ~ \ e811T- 1 + 2 t dt. 

Here wD is the Debye frequency and G> is the Debye 
temperature of the crystal. If we put 

then the measured HFC are given by 

a,. (T) =a~~> +a~~) (unz2), 

Dnpq(T) = D~";,. + D~~. (u,.z2). 

(4) 

(5) 

(6) 

Since on the average the symmetry of the crystal is 
not changed by the oscillations, the ENDOR frequencies 
can be obtained in accordance with the usual rules. [ llJ 

For spheres having axial symmetry, the frequencies of 
the ENDOR transitions are given by 

hv(T) =gnuc~nucHo± 112[a(T) +b(T)(3cos2 a-1)], (7) 

where b(T) ~ 1/2D33(T) and a is the angle between the 
symmetry axis and the external magnetic field H0 (we 
shall henceforth omit the index n for simplicity). · 

Comparing the experimentally obtained a(T) and 
b(T) with (6), we can determine a< 0 > and b< 0 >-the HFC 
in the rigid lattice-and a< 2> and b<2 >...:.the sums of the 
second derivatives of the HFC with respect to the dif
ference of the displacements (owing to the existence of 
zero-point oscillations, the HFC in a rigid lattice does 
not coincide with the HFC at 0° K). To determine these 
parameters in KCl and LiF, we used the data of the 
present work and of [ 8 l at 20 and 300° K. The obtained 
parameters for different coordination spheres are 
listed in the table. The theoretical curves a(T) at 
these values of the parameters and the experimentally 
measured HFC are given in Figs. 2 and 3. 

To plot the theoretical b(T) curve for the first co
ordination sphere of KCl we used b<0 > = 0.92 and b<2 > 
= 0.46. For other spheres, the temperature dependence 
of b(T) is less sharply pronounced, and one can only 
state that b decreases in all spheres with increasing 
temperature. The fact that b always decreases with in
creasing temperature, while a can either increase or 
decrease, depending on the number of the coordination 
sphere, does not agree with the results of [ 10J, where a 
and b have a similar temperature dependence in any 
sphere. This conclusion is connected apparently with 

Values of parameters a< 0 > and a<2 >. 

atO), MHz 
a (2), MHzf A• 

1 I r II 1 III 1 IV r VI 1 VIII 

1
20,645 6,R441 0,4361 0,771 0,8611,387 
3,21 1,37 2,62 -12,72 0,693 -1,98 
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the assumption made that all the forces are short-range, 
an assumption which is hardly valid for the anisotropic 
hyperfine interaction. 

Calculation using the "detailed" wave function of the 
effective-mass method in the approximation of a simple 
band structure, but without assuming short-range 
forces, shows that a <a> and b(<l> have opposite signs at 
certain distances from the defect. The HFC can be ob
tained from the following expressions: 

a= 8n !11'nuci,P(R) 1•, 
3 SJ 

.. ) 3(r-R) 2 -!r-RI 2 
b = ~uc !'¢(r) !•----' . .. -- dr 

SI !r-R!' 
(8) 

(R-distance from the considered nucleus to the center 
of the vacancy). The detailed wave function is chosen in 
the form 

'ljl(r) = Uo(r)Y.UJr;ie-ar, (9) 

where U0(r) is the Bloch periodic factor. 
If in (8) the rapidly-oscillating function Uo(r) is 

taken outside at the average value, then only the inte
gral over the smooth wave function remains. It was cal
culated in [121 , and as a result we have 

a=~ 1'11nucu0• (H) aa e-•~n, 
3 SJ 

b = ~ucUoz r 1- e-"'n( 1 + 2aR + (2aR)2 + (2aR)a)] (10) 
SI R3 L 2 6 . 

In the adiabatic approximation it can be shown that the 
temperature dependence of the HFC is determined en
tirely by the dependence of the parameters of the 
smooth function on T. Differentiating (10) with respect 
to temperature, we obtain 

~ = ~ 1'!1nucu02(R) a2e->:«R(3- 2aR) :; , 
dT 3 SI 

db _S_~flnuc Uo2Ra''e-2a.R'!:!!__. (11) 
dT 3 SI dT 

It follows from (11) that b varies monotonically with 
temperature. Yet da/dT reverses sign at 2aR = 3. 
Estimating the value of 0! by eomparing II/! 12 in the co
ordination spheres I and III of KCl and LiF, we find that 
the derivatives da/dT and dB/dT have opposite signs 
already in coordination sphere I. This result agrees 
with experiment for close coordination spheres. 

In remote coordination spheres of LiF, as seen from 
experiment, da/dT sometimes reverses sign. This is 
apparently connected with the eomplicated structure of 
the conduction band. Let the minima of the conduction 
band in k-space be in the equivalent points ~j· Then 

'\jl(r) = ~ ljkOj (r)exp(iko;r)cp;(r), 
j 

(12) 

where cpj(r) is the smoothed wave function of the 

single-valley problem. If such a case is realized in the 
crystal, then both the wave function and its derivative 
with respect to the parameters can reverse sign, de
pending on r. This leads to different behaviors of a(T), 
depending on the number of the coordination sphere. 

A study of the temperature dependences of the HFC 
makes it possible to assess the magnitude of the thin
phonon interaction in crystals. Knowing a <a> and b< 2 > 
we can estimate, for example, the time of the spin
lattice relaxation of the F centers for two-phonon proc
esses. If we use the calculation of [ 131 , then we obtain 
for the relaxation times of the F centers in KCl a value 
which is larger by two orders of magnitude than that ob
served in experiment[ 141 • 

In conclusion we note that the deviation of the theo
retical curves from experiment at high temperatures 
exceeds experimental error and is probably connected 
with the fact that at high temperatures it is necessary 
to take into account the next higher terms in the expan
sions (2). 

The authors are deeply grateful to V. Ya. Zevin for 
useful advice, to M. A. Ruban for help with the experi
ment and a discussion of the results, and to V. V. Udod 
for preparing the samples. 
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