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An extremal-type wave function is constructed for anN-fermion system. This function leads to a 
reduced s-order density matrix having a maximal occupation number. When the rank is unlimited, 
this number is close to (~), where n = N/a, p = s/a, and a is an even number equal to the num
ber of fermions in the minimal "aggregate" that experiences nondiagonallong-range correlations. 
At large N and at a= 2, this occupation number tends to the limit indicated by Yang, namely 
N312/ ( s - 1) I !. It is shown that the mechanism leading to the appearance of these maximal charac
teristic numbers of the density matrix is connected with the increasingly more symmetrical inclu
sion of the individual aggregates into the total wave function of the system. 

1. In 1962, Yang advanced the hypothesis that the for
mation of the condensed state in a multi-particle sys
tem is connected with the presence of a "nondiagonal 
long range order" (NLRO). Speaking more concretely, 
this means that if all the coordinates Xi in the coordi
nate representation of the reduced density matrix 
(RDM) of s-th order Ps(xl ... x8 lx~ ... x~) are 
microscopically close to x0 , and all the xj are close 
to x~, then P8 remains finite also when xo and x~ are 
macroscopically distant from each other. In this case 
the condensation is characterized by the fact that the 
macroscopic number of "aggregates" of s particles 
falls in one a-particle natural state. Thus, individual 
bosons are responsible for the superfluid state (the 
NLRO appears in P 1 ), and Cooper pairs of fermions 
are responsible for the superconducting state (the 
NLRO appears in P2 ). 

It was shown later that the model wave functions 
describing the superconducting state satisfy the Yang 
criterion[2,sJ. To the contrary, the absence of super
conductivity in the one-dimensional model agrees with 
the fact that this criterion is not satisfied [4 J. 

From the formal point of view, the presence of 
NLRO is characterized by the fact that the matrix P8 
has a "large" ( ~N) eigenvalue (natural occupation 
number NOC). Yang proposed that in the limiting case 
the NOC for a system of fermions should be of the 
order of {38~12 (for even s and N- 00 ) and {38N<S-l>/2 
(for s odd), where {3 8 does not depend on N[1J. He 
noted that in the presence of NLRO in a certain RDM 
this property should be possessed also by all RDM of 
higher orders. 

Later Sasaki[sJ and Coleman[eJ have shown that 
actually the upper limits of the NOC P8 as N - oo 

are not higher than N812 (s- 1)!!/s!! when sis even 
and N<S-ll/2s!!/(s- 1 )!! when s is odd. But the ques
tion of the possible approach to these boundaries, with 
the exception of the case s = 2, remained open. 

In this article we construct wave functions (of the 
extremal type) for a system of fermions, on which the 
NOC can approach the limits indicated by Yang. We 
shall find the constants {3 8 and indicate that these 
limits correspond to the presence of NLRO in P2. On 
the other hand, if NLRO appears at higher s =a, then 

the largest NOC of the higher-order RDM approach 
a 8N8;a. In a fermion system, the "condensing aggre
gate" must contain an even number of particles, i.e., 
the NLRO can appear first in RDM of second, fourth, 
sixth, etc. orders. It will be shown that the mechanism 
of increase of the NOC is connected with the increas
ingly symmetrical entry of the individual aggregates 
in the total wave function of the system. 

2. We make the following construction. Assume 
that we are considering an RDM of s-th order for a 
system of N fermions with wave function of rank r. 
Let a (the dimension of the aggregate) be a common 
divisor of s, N, and r: s/a = p, N/a = n, and r/a = l. 
We break up the basis orbits 

iJlt{j)2 • • • (j)aiJla+t • • • (j)2a • • • iJl(l-t)a+t • • • iJlr 

into l aggregates of a pieces each, which are subse
quently not intermixed. An aggregate will be charac
terized by its own number i. The wave function of the 
system is written in the form 

'l'w!(x, xz ... xN) = 2; c; ,,, ... in detN [it iz ... in), (1) 
{i}n 

where detN [ i1i2 ... in] is constructed of the orbits of 
it, i2, ... , in aggregates. The sum is taken over all 
(~) aggregates of the possible choices of n numbers 
from the sequence 1, 2, ... ,l. We shall henceforth 
assume that a is even. As will be shown below, the 
function (1) can have an NLRO only under this limita
tion. Therefore detN [ i1i2 ... in] will not change when 
the symbols i 1i2 ... in are interchanged, and it can be 
assumed that the indices of the coefficient Ci1i2 ... in 

are arranged in increasing order. The normalization 
condition yields 

~/c;,;, ... ;nj2=1. 
w. 

(2) 

We now proceed to calculate the RDM for the func
tion (1). Since the transition RDM of order s vanishes 
between two determinants that differ by more than s 
orbitals, it is obvious that when s < a 

P,(xjx')= (~) ~ 'l'cN>(xu)'l'c~>(x'u) (3) 
u 

= .:3 1.;.;, ... i ,det, [q:;, q;;, ... cp; ,)(x) det. *(cp;, q:;, ... q:;) (x'\ 
{j}s 
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This expression has the form of a natural expansion. 
The summation is over all possible ( ~) choices of the 
orbits <Pj 1 <Pj 2 ... <Pjs from the initial basis, regardless 

of the individual aggregates to which they belong. The 
NOC .X j ,j2 ... js is equal to the sum of the squares of 
the moduli of the coefficients Ci.1i2 ... in such, that if 

the indices jJ2 ... js include the numbers of orbits 
from ia ... iy aggregates, then ia ... iy must be 
present along the i1i2 ... in. By virtue of the normali
zation (2), all 

Thus, when s < a, there can be no NLRO in the 
system described by the function (1). 

(4) 

Let us calculate now the RDM for s = a. In this 
case the transition RDM differs from zero if the two 
determinants differ exactly by one aggregate (the index 
of which can be assumed to be in the first position): 

Pa {i~ ... in, k~ ... in]( X I x') = ( ~) ~ detN {i~ ... in]( xu) 

" XdetN• {k!2 .•. in](x'u) = O,,(x)Ok• (x'), (5) 

where Oi(x) is a determinant ol[ order a, made up 
entirely of the orbits of the i-th aggregate. Therefore 
in the diagonal part of the RDM for ..V(N) we also 
separate the terms containing determinants of the type 
Oi> which are fully connected with the individual ag
gregate. The remaining terms contain determinants 
of order a, made up of the "randomly" chosen orbits. 
As a result we obtain 

I 

Pa(xjx')= L; A;;Odx)O;'(x') 
i, i=i 

t 

L; la. = l. (9) 
<>=! 

The first assembly contains the aggregates with num
bers 1, 2, ... , l~> the second those with numbers l1 
+ 1, ... , l1 + 12, etc. We now assume that the coeffi
cients of expansion of ..V(N) in (1) depend only on how 
many aggregates from each separated assembly are 
present in the determinant, i.e., 

(10) 

where va is the number of indices from the a-th 
assembly among i1i2 ... in. In such a case the elements 
of the matrix A (7) and (8) depend only on the assembly 
to which its indices belong, but not on their number. 
Thus, A breaks down into blocks 

where the nondiagonal blocks have the structure 

(
11 ... 1) 

' 1 1 ... 1 
Aa~ = Xa~ . . . . la, 

'1 1 ... 1 

~~ 

and the diagonal ones are equal to 

. Xa x ••... x""\ .11 ... 1\) 
, !XaaXa .•. Xaa.) j11 ... 1) , 
Aaa=! ....... =Xaa\ .... Za+ftala. 

XaaXaa ••. Xa • ,11 ... 1, 

(11) 

(12) 

(12') 

The numbers Kaf3, Kaa, Ka, and J.J.a are determined 
+ "'A.· · · 0· · · (·~)0 • · (x') .LJ JtJz ... Ja JIJ2···3a" Jth···1a , (6) from (7) and (8): 

where OJ· J. J. is a determinant made up of the 
1 2 .. • a 

orbits <Ph<Ph ... <Pja• which do not all belong to one 

aggregate. The NOC .XJ· J. J·a are determined in ac-
1 2 ... 

cordance with the already mentioned rule, and all 
satisfy the inequality (4). Therefore "large" NOS. can 
appear only among the eigenvalues of the matrix A, 
pertaining to the nondiagonal part Pa ( x I x' ) . The 
elements of A are determined in accordance with 

xa~= ~ ,z,) ... (z.-1) ... (1~-1) ... 
v1+vz+···+"t=n \ V1 Va 'V(3- 1_ 

(~Jc(v1 ••• v. + 1 ... v~-1 ... v,)c'(v1 ... Va .•• vB ... v,), 

"' ( l,) (["- 2) (' l,) "'"" ~ .::J .. . 1 . .. J c (v 1 ••• Va ... v,) I', 
vd···J2+ ... +v,=n Vt Va- 'Vt 

Xa= ~ ( 1')···(l"- 1)···( 1')Jc(v, ... v .... v,)J', 
v1+v2+··•+vt=n Vt Va- 1 v, 

Ita= Xa.- Xaa· (13) 

The matrix (11) can be partially diagonalized by a 
Aki = ~ Ci 1i 2 ••. k ... 1nc;1i 2 •.• j.,,in' k ==/= j. 

{ i)n-1 (7) transformation with a quasidiagonal unitary matrix[ 7 J 

l - ') 
The sum is taken over all ( n _ 'i ) aggregates of 
n - 1 indices i1i2 ... in, taken from the numbers 
1, 2, ... , l (the two fixed indices: k and j should be 
excluded from this sequence): 

Akk = ~ Jci,i, ... k ... inl'. 
{ i)n.-t 

The sum here contains (1 - 11 ) terms. 
n-

3. We now ascertain how NOC, close in order of 

(8) 

magnitude to the number of the system particles, can 
appear among the eigenvalues of the matrix A can be 
partially effected under the following assumptions: 

We break down arbitrarily the aggregates into as
semblies of 11, l2, ... , lt each: 

' u, 

" (a) 
, Ua = ~)}la, 

Ia 

1 2ni(j-1)(k-1) 
= VTa exp la 

(a) 
U.k 

(14) 

This transformation retains the block structure of (11), 
but traneforms the blocks of (12) into 

Vlalil 0 ... 0 ') 
0 0 ... 0 

......... 
0 0 ... 0 (15) 
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Consequently, the eigenvalues of A will be IJ. 1 

(of multiplicity l1 - 1 ) , 1J.2 (of multiplicity l 2 - 1) ... 
and IJ.t (of multiplicity lt - 1), and to find the remain
ing NOC it is necessary to diagonalize a matrix of 
order t (t - number of assemblies) with elements 

• { Ylalp Xa~ a+~ 
x = , a, II= 1, 2, ... , t. 

x.,+(l.,-1)x.,.,, a=~ (16) 

The most important factor is that large NOC may 
again turn out to be only among the eigenvalues of the 
matrix K. In fact 

since 

(l.,-1) -(l.,-2) = (l.,-2). 
v.,-1 v.,-1 v11 -2 

And inasmuch as 

(la-2)<(l"). 
v.,-2 v,. 

it follows from the normalization condition 

that 

From (8) it follows that 
I 

(18) 

SpA= ~ ~ lct,;, ... ~ ... tnl1 = n ~ lct,;, ... 1 ~l1 =n. (19) 
i~=l {i }-1 fl}n n 

This ~eans that the more small NOC IJ.a are separated 
from A, the larger are the eigenvalues of the matrix 
K, i.e., the smaller the number of symmetrical assem
blies into which the aggregates are broken down, the 
sooner the condensation. 

The limiting case t = 1 leads to a function of ex
tremal type: 

in which one of the NOC of the matrix Pa( x I x' ) is 

(20) 

st<a> = x..+ (1-1)x..,. = n(l- n + 1) I l-+N I a as l-+oo. (21) 

All the remaining NOC are equal to one another: 

111 = n(n- 1) I l(l- 1) < 1. (22) 

Thus, for a function of the extremal type (20), made up 
of a-dimensional aggregates, the NLRO appears in 
P a ( x I x' ) , and all the aggregates are condensated in a 
state corresponding to ~ ia>: 

1 . 
Q(a)(x) =--=- ~ O;(x) (23) 

"'l i-1 

which itself is a function of the extremal type of the 
a-particles. 

4. It is now easy to prove that for a function of the 
extremal type the NLRO will be observed also in RDM 
of higher order. Let, for example, s = pa. We can 
verify that the extremal function of p aggregates 

Q<•> (x) = v\!) {~, det, [i1i1 •.. i,.] = ~(~) {~ O{t},. (x) (24) 

is a natural s-state for W(N) (20), belonging to 

Sl<•> = (; ) ( l -; + p ) I (: } (25) 

To this end we simply calculate 

61<•> = S Q<•>(x)P.(xlx')Q<;> (x'). 
""' 

Substituting w(N) (20) in the determinant Ps and taking 

Q(s) from (24), we get 

(26) 

4»{i} consists of "remnants" of those (l - P) deter-n-p 
minants W(N)• which contained the i-th set from the p 
aggregates i 1i2 ••• ip (we use here the term "set" in 
order not to confuse it with the ''assembly'' used in 
Sec. 3). More accurately speaking, this is the token 
with a coefficient ( h f 1 rsT;'Nf' of all the determinants 
made up of the ordered sets of n - p aggregates, and 
the aggregates entering in { i}p do not take part in 
their construction. The possibility of ordering the 
sequence of aggregates in the determinant is connected 
with the fact that a is even. How many identical de
terminants are present in the expansion of W( i) and 

w ( j) ? If the sets of aggregates { i }p and { j} P differ 
by m aggregates, then the identical determinants are 
those from the expansion 4»{ i} which do not contain 
the m remaining aggregates of the set { j }p. There 

will be (l - P- m) such determinants. Since upon 
n-p 

integration in Aij each of them yields a term ( N - s ) ! , 
it follows that 

A11 = ( l-: ~ ~ m) / C)· (27) 

Altogether there are ( ~) ( l ~ P ) assemblies, differing 

in m aggregates from {i}p. Therefore 

(28) 

as is obtained from (25). The fact that Q( s) will be 
an eigenstate for Ps can be seen from symmetry con
siderations. 

With increasing rank ( l - 00 ) the largest NOC for 
Ps (25) tends to (~). Obviously, the maximum of this 

expression is reached at minimum a, i.e., at a= 2. 
Thus for even N and s, the largest NOC is as close 
to (N//2) as convenient. Using the Stirling formula, 

s 2 
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we find that when N - 00 the largest NOC can tend to 
(N/2 )S/ 2 (s/2 )! = NS/ 2/s!!. This differs from the al
ready mentioned rough upper estimate, given by Cole
man, in the absence of the factor ( s - 1) !!. In Yang's 
normalization we have for the constant f3s 

~,=s!/s!!. (29) 

The obtained upper bound of the NOC corresponds to 
the strongest nondiagonal long-range correlation, when 
the elements of the condensate are pairs of fermions. 
In the case of a weaker NLRO, when the condensing 
aggregate consists of a fermions, q5) tends to a lower 
limit as N- oo, namely Ns;a;as;a(s/a)!. 

It is possible that a wave function with such a con
densation of large aggregates turn out to be more 
suitable for the description of the nucleus than the 
ordinary function of superconductivity theory with pair 
condensation [aJ, particularly at a = 4, which corre
sponds to an a particle. 

In all the foregoing reasoning a very important fac
tor was that a is even. This has: made it possible to 
order the aggregates which enter in the determinants 
of the expansion of <I>{ i}. This reveals the principal 
difference between fermions, the number of which in 
the aggregate must be even, and bosons. If a were to 
be odd for fermions, then roughly half the terms in the 
calculation of Aij (26) would yield a negative contribu
tion, and the entire construction could not lead to large 
NOC. For bosons, on the other hand, the entire con
struction remains in force also when a is even (of 
course, the determinants should be replaced by sym
metrized products). Therefore for bosons the maxi
mum of (8) will occur not at a= 2 but at a= 1, i.e., 
the largest NOC approach to ( sN), in full agreement 
with the normalization of Ps to ( ~). For fermions 
it is impossible to approach this limit, since they must 
be grouped into pairs. 

From all the foregoing we can see how to carry out 
a similar construction for odd N and s in the case of 
fermions. It is necessary to "turn around" by one 
particle: we exclude temporarily one obit <flo from the 
basis and carry out the preceeding construction for 
even N - 1 and s - 1. At a = 2, the largest NOC ap-
proaches ( ~~::: ~ ~~~ ). After th:is, it remains to in-

clude <flo in each determinant that enters in >lr(N -1)' 

and in each determinant from Q( s _ 1 )· The Q( s) ob

tained in this manner will be the natural s-state for 
>If (N), and the occupation number, obviously, remains 

the same as before: ( rs = ~~;~ ). In the limit of large 

N this yields N<S-l>/2/(s- 1 )!! In accordance with the 
Yang hypothesis. 

5. In conclusion we call attention to the fact that we 
did not concern ourselves at all with questions of dy
namics, and did not investigate the type of system 
Hamiltonian necessary in order that functions close to 
extremal be its eigenfunctions. Now, however, we !1ave 
at our disposal sufficiently abundant material for its 
use in the variational principle. 

In particular, putting in (1) Ci 1i2 ••• in= Ci 1Ci2 ••• Cin 
(with a = 2 ) , we obtain the usual function of supercon
ductivity theory[3 ' 7 ' 9 l. We have, however, an even 
simpler possibility of forming a functions containing 
only one variational parameter, which can go over 
either into a function of the extremal type or into a 
Hartree-Fock determinant. To this end, as in Sec. 3, 
the aggregates must be divided into two sets (t = 2) 
and we must put c ( n, 0) = x, and c ( v1, n - v1) = y 
for any v1 < n, where the coefficients x and y are 
connected by the normalization 

The remaining parameter can be obtained from the 
variational principle, and it is possible to establish 
from (16) whether NLRO exists in the system. We 
propose to realize this program in the future. 
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