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The theory of polarons is discussed for the case of many-valley cubic crystals. The case of weak 
coupling between electron and polarization vibrations of the crystal lattice and the case of a large­
radius polaron are considE!red. The energy of the polaron state and the polaron's anisotropic ef­
fective mass are calculated. The anisotropy of the latter decreases with increase of the coupling 
constant. The contribution of virtual inter-valley and interband transitions to the polaron effect is 
estimated. In the case of a large-radius polaron, this contribution turns out to be small and is 
neglected. 

BY weak interaction is to be understood the case when 
the electron-phonon coupling is small and can be con­
sidered in theory as a small perturbation. Historically 
the strong-coupling theory of polarons was developed 
first. [1- 81 Then the case of weak coupling was con­
sidered. [9-- 151 Mathematically the most difficult case is 
that of intermediate coupling for which, so far, there 
are no systematic approximation methods. For this 
case there have been a number of attempts to calculate 
the ground state energy of a conduction electron in an 
inertially polarizable medium by using direct varia­
tional methods. In this connection, certain approxima­
tions (see,.for example,r11 ' 12 l) go over into the well­
known, correct results in the limiting case of weak 
coupling whereas in the case of strong-coupling they 
are very far from the correct results. These approxi­
mations are applicable only for sufficiently weak coup­
ling. 

Other approximations[ 16- 20llead to the correct re­
sults both for the case of weak coupling and for the 
strong-coupling case. Therefore, one cannot exclude 
the possibility that among these approximations there 
may be one which yields a good interpolation even for 
the case of intermediate couplin~~· As usual, in using a 
direct variational method to calculate the energy one 
must prefer that approximation which yields the lowest 
value for the ground-state energy. In the intermediate­
coupling regime (for 0! ~ 5) this approximation is the 
one considered in[181• For calculation of the polaron 
mobility, the most successful approximation turns out 
to be the one mentioned in [17 ' 21 •22 1. 

In the articles mentioned above, it was assumed that 
the conduction-electron equal-energy surfaces in 
k-space are spheres, and the electron effective mass 
is isotropic. However, study of semiconductors in 
recent years has shown that even in the case of cubic 
crystals the conduction band often has a many-valley 
structure, and in each valley the electron effective 
mass is anisotropic. Therefore, a generalization of 
polaron theory to the case of many-valley cubic crys­
tals is of interest. 

In this article we consider the simpler case of weak 

coupling, 1 > and in a subsequent article we shall con­
sider the strong-coupling and intermediate-coupling 
cases. The effective-mass approximation for the elec­
tron will not be used at the beginning of this work, 
which enables us to estimate the role of inter-valley 
and interband electron transitions. Calculation of intra­
valley transitions will be carried out in an effective­
mass approximation. The conduction electron-the 
"spare" electron-will be treated in the one-electron 
approximation of band theory. 

The energy operator of the system has the form 

" 
where Ho( r ) is the energy operator for an electron in 
a periodic field (with the nuclei fixed at the lattice 
sites), the second term in (1) represents the energy 
operator for longitudinal, optical phonons in an ionic 
crystal, w denotes the phonon frequency (we neglect 
dispersion of their frequencies), K denotes the phonon 
wave vector, a;c and ~ are boson creation and an­
nihilation operators for the phonons. The third term 
in (1) represents the electron-phonon interaction oper­
ator, the VK are the coefficients of the electron-pho­
non coupling. In the continuum theory of polarons 

V" = _e 1 (2n1iw (_!_ _ _!_) 
· I xI V v n2 e ' (2) 

where e is the electron's charge, E is the dielectric 
constant, n is the index of refraction of light, v is the 
elementary volume over which periodic boundary con­
ditions are applied. 

The third term in (1) is regarded as a small per­
turbation. In the zero-order approximation, the energy 
and the states of the system have the following form: 

EmK ... n,. ... = Em(K) + liw .2; n,., 

'iJmKtll ... n,. .. o= I mK ... n,. ... ), 'iJmK (r) = /u U mK (r) eiKr. (3) 

llin this article the continuum theory of polarons possessing a 
sufficiently large radius in comparison with the lattice constant is 
considered. 
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Here l/J mK denotes the Bloch wave function of a band 
electron, m is the band index, K is the quasimomen­
tum of the electron, Em( K) is its energy, ~ ... nK ... 
is the wave function of the longitudinal, optical, lattice 
vibrations, the n,c are the oscillator quantum numbers. 

Let Tn be the translation operator which translates 
a conduction electron and its polarization potential well 
in space by an integral lattice vector n. Then 

T0/(r, ... , a,.T, ... ,a,., ... )= f(r + n, ... , a,.Telxn, ... , a,.e-ixn, ... ), (4} 

The energy operator (1) is invariant under translations 
and commutes with Tn· Therefore we shall choose the 
eigenfunctions of (1) so that they are eigenfunctions of 
Tn: 

where k is the quasimomentum of the system. Only 
terms with 

enter into the expansion of +k in terms of 
l/JmK~· · · nK · · · · 

Let us assume that in a perturbed state all UK = 0 
(low temperatures). Then, for transitions out of this 
state only matrix elements of the perturbation of the 
form 

(m'J(- X ... 1,. ... 1 VI mK ... 0,. ... ) = v: lJ 'm'K-x U mK, 

V = ~ (V,.a,.eixr + V ,.'a,. T ,-ixr). (6} 

do not vanish. Here the bar denotes the average value 
in space. 

The first-order correction to the energy of the sys­
tem is equal to zero. In the second-order approxima­
tion, the correction to the energy is given by 

E<•> --~ IV,.I'IU;,..K-xUmKI'. (7) 
mK ... o,. ... - ;;. Em• (K-x)- E,.(K) + liw 

Let us assume that Em(K} has several equivalent 
minima located at the points K = Koj, where j is an 
index labelling the valley. Let us assume, furthermore, 
that the quasimomentum K of the perturbed state is 
sufficiently close to Ko1 so that Em( Kol) - Em( K) 
+ liw > 0. Then for all of the terms in (7), the denomi­
nator is positive (generation of phonons is impossible). 
First we carry out the summation over values of K 
corresponding only to intravalley transition, i.e., in 
the region of small values of IK 1. In this connection 
one can approximately set U~nK-K UmK = 1, 

E ... (K-x)-E,.(K) = !!._( x}_ +A) -n.•(q.tx.t+ quxu), 
2 fl.L flu fl.L flu 
q==K-Ko1• (8) 

Here it is assumed that for small values of q, the 
isoenergy surfaces in a valley are ellipsoids of revo­
lution, their axis of revolution being direct along Ko1; 
K 11 , K l and qll, ql denote the components of the vectors 
K and q along the direction Ko1 and lying in the plane 
perpendicular to Ko1; J.l.ll and "J.I.l denote the effective 
masses of a band electron in the corresponding direc­
tions. The band subscript m will be omitted whenever 
the question involves only transitions within the con­
duction band. Substituting (2) and (8) into (7), changing 

from a summation to integration over the vallue j = 1, 
we obtain 

E<•> = _.!!__(_!__ _ _.!._) \ ~ [1- ~ (q.Lx.L +qu xu) 
K ••• o... 4n2 n• 8 J x• w fl.L flu 

+~(x}_ +~)]-~. 
2w fl.L flu 

The region of values IK I ~ i<, where 

-; = [6w/n ( ~- + _!_ \1]·'" 
' \ f.ll. I'll' 

gives the basic contribution to this integral. For 
J.i.l = J.i.ll and equal to the free- electron mass and 

(9) 

(10) 

w = 1013 sec-\ one obtains K ~ 4 x 106 cm-1 which is 
much smaller than the reciprocal lattice constant. 
This justifies approximation (8) and allows us in (9) 
to extend the integration with respect to I K I to 00 • As 
a result of integration and quadratic expansion of the 
energy in powers of q one obtains 

EK ... o ... = R(K) + E\t.o ... + ... = E(Kot)- aliw<p0 ( ~:) 
n.• ( q• q' ) 

+y M~ +~ + ... , (11} 

where 

a=~V f.ll. (~-~). _1 =__!_[1-~'1'1.( ~)+···]• 
li 21iw n• 8 M1. f.ll. 6 f.ll. 

1 1 [ a ( I'll ) 1 
M-=- 1--6'1'11- + ... ; 

II I'll !t1. ; 
(12) 

11/_x_ 1+1'1-x 1/---;; --
'l'o(x)=~v--ln . = v--arctgyx-1, 

2 1 ;_X 1 -1'1 -X X- 1 
(13) 

3 x'J, [ yt-; 1 1 + -{1- x J 
'fl.(x)= -----ln---= = 

2 (1-x)'i• x 2 1-}1-x 

3 x'!, r - )'x- 1 J 
=- I arctO"yx-1---

2 (x- 1)'!. L " X ' (14) 

3l'x [ 1 1+)'1-x -, -] 
rril(x)=---- -ln----=-)1-x = 

(l-x)'!, 2 1-)'1-x 

3l'x -- __ 
= ,. [)'x -1- arctg yx- 1]. 

(x -- 1) '' 

(15) 

Now in the sum (7) let us consider the terms corre­
sponding to inter-valley transitions from valley 1 to 
valley 2. As a consequence of the equivalence of these 
valleys, to each point K' = K- K' of the first valley 
one can associate that point K" = K- K* at which the 
energy of a band electron has the same value: 
E(K- K") = E(K- K' ). Thus, to each term of the 
intravalley sum considered above with index K', there 
is associated a term of the inter-valley sum K", 
having the same denominator. The numerators of 
these terms differ substantially since I K' I in the 
present region is of the order of (10), that is, much 
smaller than the reciprocal lattice constant, but IK" I 
is of the order of the reciprocal lattice constant. 

Therefore 

I u~-x" UK I< I[!~_,.. UKI = 1, I v ... I'!IVx·l' = x'2/x"'~x'a2 ~ 1, 

where a is the lattice constant. 
(16) 

From here it follows that a term of the inter-valley 
sum is much smaller than the corresponding term of 
the intravalley sum, barring the region of large values 
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I' .l 

10 
9 
8 
7 
{i 

5 
4.~ 
4.1 
3,E 
3.( 
2 ' 

' I 
' 
I 

' 
I 
I 
; 

z:c 
1, ~ 
1,[ 
1,! .l 

t+>o(x) 

1. 3166 
1.3055 
1, 2930 
1. 2779 
1. 2600 
1. 2378 
1 '2245 
1,2087 
1 '1913 
1,1700 
1.1439 
1,1110 
1,0940 

I 
1,0762 
1.0552 

~ .l (x) 

I 
~II (x) 

1.6672 0,6152 
1.6406 o;B354 
1. 6105 0.6580 
1.5749 0,6839 
1. 5331 0, 7137 
1.4823 o:7487 
1.4524 o:7687 
1.4175 0. 7913 
1.3792 0,8155 
1.3335 0. 8431 
1:2787 0,8744 
1.2112 0, 9096 
1.1768 0,9285 
1.1427 o:9434 
1.1030 0,9599 

of I K' I, which does not give an appreciable contribution 
to the sum (7). Thus, in (7) we neglect the terms cor­
responding to inter-valley transitions. 

In order to estimate the term:s in (7) corresponding 
to interband transitions, to each term mK we associ­
ate a term m'K with the same K but m';e m. For 
these terms, the values of l VK j~' are identical. For 
large values of I K I on the order of the reciprocal 
lattice constant, the interband term is of the same 
order as the intraband term, and one can also neglect 
it. For small values of I K I on the order of (10), the 
interband terms Um'K-K and UmK are almost ortho­
gonal and 

I u';,.K-x,mK 1.~ 1, 
Ew(K-x)-Em(K)~Em(K-x)-Em(K)~ftw, m'=/=m. (17) 

Therefore, the interband term is much smaller than 
the intraband term, and one can neglect the interband 
terms in (7). 

Thus, under the approximations made above, the 
energy of the polaron state and the effective masses of 
the polaron are determined by formulae (11)-(15). 
The values of the functions cp 0 , <p 1, and 'PI I are given 
in the table. The minimum of the system's energy (to 
the approximation considered) remains at the point 
kmin = Ko1, independent of the value of a. The 
polaron-dependent effect changes in the ground state 
energy and in the effective masses do not depend on 
Ko1· As a result of the polaron effect the effective 
masses ill and 1111 of a band electron obtain positive 
corrections, where the smaller of the masses receives 
the larger correction. As a consequence, the difference 
between the effective masses deereases with increas­
ing strength of the electron-phonon coupling constant 
a. Correct to terms of first order in a 

Mn _ ftll { , a [ ( ftll ) ( f.lll )] } - - - 1 T - 'fll - --'fl. - +... . 
M1. f.l1. 6 f.l1. • f.l1. 

This formula together with the Table shows that the 
anisotropy of the polaron effective masses decrease 
with increase of a. 

(18) 

In a subsequent article devoted to the strong­
coupling and intermediate-coupling cases, the following 
questions will be clarified in a more general model and 

I X=~ll,~.ll cpo(X) • .l (x) I "II (x) 

1,2 1,0299 1.0531 0,9832 
1 ,o 1,0000 1:oooo 1,0000 
0,9 0,9824 0, 9584 1 :oo98 
0,8 0,9626 0.9326 1.0227 
0,7 0.9396 0,8945 1.0300 
0,6 0,9132 0.8500 1,0397 
0,5 0,8813 0, 7994 1,0451 
0,4 0.8419 0, 7392 1,0474 
0,3 0. 7922 0,6644 1,0477 
0,2 0, 722J o:5678 1,0304 
'I• 0.6907 0,5277 1,0167 
'f, 0.6647 0,4956 1.0037 
'/• 0.6426 0:4684 0. 9910 
'/• 0,6232 0,4457 0.9784 
0,1 0,6045 0.4250 0,9664 

with inter-valley transitions taken into consideration: 
Whether the ratio M11/M1 tends to unity with increas­
ing values of a, whether kmin tends to zero, or 
whether these quantities tend to other limits. 
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