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Using a quasilinear approximation with collisions taken into account we have obtained a kinetic equa­
tion that describes the "slow" distribution function in a magnetoactive plasma. This equation is 
suitable for the analysis of interactions between particles and various kinds of high-frequency elec­
tromagnetic waves in a plasma. Using this equation for the case of Cerenkov resonance we have com­
puted the energy and momentum balance equations for the individual plasma components in the case 
for which the distribution function for the components is Maxwellian with a temperature anisotropy 
and a directed velocity. For the stationary state we have determined the electron heating and the 
electron currents due to the nonlinear effect of various kinds of high-frequency waves. It is shown 
within the framework of the quasilinear approximation, in which the wave energy is small, that for 
wave propagation along the magnetic field transverse waves do not produce a directed velocity or 
heating of the electrons. On the other hand, longitudinal waves lead to the production of a current 
along the wave vector, a temperature anisotropy for the electrons (the longitudinal component of the 
electron pressure is greater than the transverse pressure), and heating of the electrons with respect 
to the ions. In the case of wave propagation in the plane perpendicular to the magnetic field the trans­
verse waves can produce a significantly larger nonlinear current than the longitudinal waves that 
propagate along the magnetic field; longitudinal waves that propagate perpendicularly to the magnetic 
field generally do not produce an electron current or electron heating in this approximation. For the 
case of oblique wave propagation (with respect to the magnetic field) the contribution of the transverse 
component of the waves to the nonlinear current along the magnetic field can also exceed significantly 
the corresponding contribution due to the longitudinal waves. Finally, making use of a model collision 
integral which takes account of the temperature anisotropy of the electrons, we find the longitudinal 
(with respect to the magnetic field) component of the electron distribution function. 

1. INTRODUCTION 

KLIMONTOVICH[ 11 has obtained an equation for the 
quasilinear approximation that takes account of both the 
self-consistent rapidly varying field in a plasma as well 
as the correlation phenomena associated with dissipa­
tive effects for a plasma in the absence of a magnetic 
field. A feature of these equations, in contrast with the 
usual equations for quasilinear theory, is the fact that 
the particle collisions are taken into account in the 
equation for the "slow" distribution function not only 
by means of the collision integral, but also directly by 
an effective collision frequency va; this simulates the 
rapidly varying part of the collision integral and ap­
pears in the quasilinear term, which describes the ef­
fect of plasma waves on the slow distribution function. 

These equations have been used[ 21 for the analysis of 
the stationary state of a plasma in the presence of high­
frequency plasma waves. In the present work we con­
sider similar problems for the case of a magnetoactive 
plasma. 

In Sec. 2 we derive an equation for the slow distribu­
tion function fa in the quasilinear approximation for a 
spatially uniform magnetoactive plasma in which we do 
not make use of the assumption that the function fa is 
independent of the polar angle cp in velocity space (the 
z -axis is taken along the external magnetic field llo). In 
particular, this procedure allows us to determine the 
current in the xy plane that arises as a result of the 
nonlinear entrainment of particles by waves. 

In Sec. 3 we analyze the momentum and energy bal­
ance equations for a plasma in the stationary state in 
the case in which the interaction between particles and 
waves occurs under the condition of Cerenkov resonance 
(for particle with velocities Vz ~ w /kz). In this case 
the function fa is assumed to be a Maxwellian with an­
isotropies in the directed velocity and the temperatures 
of the components. We determine the currents and heat­
ing of the electrons as a result of the interaction with 
various waves. 

In Sec. 4, making use of a model collision integral 
Se for the anisotropy in the electron temperature we 
find the electron distribution function fe subject to the 
limitation that it be represented by an expression of the 
form fe = f~(vz)fJ"(vD. 

Various problems that arise in the quasilinear theory 
of a magnetoactive plasma (primarily the determination 
of wave damping) have been investigated by many auth­
ors, starting with the well-known work by Vedenov, Vel­
ikhov, and Sagdeev (cf. for example [3 1 ). A general fea­
ture of all this work is the fact that the slow function fa 
has been assumed to be independent of cp and collisions 
were either neglected or taken into account only by 
means of a collision integral which was not completely 
consistent, especially in the investigation of steady­
state conditions. These limitations do not appear in the 
present work. In particular, taking account of the de­
pendence of fa on cp allows us to make a more detailed 
determination of the contribution due to terms that cor­
respond to various kinds of wave -particle interactions 
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(Cerenkov resonance and cyclotron resonance). 

2. DERIVATION OF THE EQUATIONS 

The point of departure will be the kinetic equations 
for the slow and fast distribution functions in a spatially 
uniform plasma located in a constant magnetic field H0: 

iJfa" ( at.• > < e. at.• > e. at." * -----+ e.E- + -[vH]- +-[vii0]--=Sa0, (1) at ' ap c ap c ap 
at.• at.• 1 1 ) at." ea at.• 
--+v-+eatE+--[vH] - --+-[vH0]--=Sa'· 
~ ~ \ c ~ c ~ 

(2) 

Here, E and H are the rapidly varying fields in the 
plasma while S~ and S~ are the slow and fast parts of 
the collision integral for species a; the angle brackets 
denote averages over the rapid variations. 

If we assume that 

(3) 

then the external magnetic field will not have an effect 
on the collisions. We also assume that dissipation ef­
fects are determined by the shortwave part of the cor­
relation spectrum in the plasma (the wavelengths of the 
oscillations are much larger than the Debye radius). 
Under these conditions, S~ for an electron ion plasma 
can be taken in the Landau form, that is to say, we need 
not consider polarization in the collision integral. 

In accordance with [ ll the quantity S~ is written 

(4) 

where /)a simulates the contribution of collisions in 
rapidly varying processes and consequently, in the di­
electric constant. 1 > 

We shall be interested in waves whose phase veloci­
ties are much higher than the electron thermal velocity. 
This means that in Eqs. (1) and (2) we can neglect terms 
containing H and need only consider the electric field 
associated with the waves.2 > 

The solution of Eq. (2) is found by means of the fa­
miliar method of characteristics (cf. for example, [ 11 ). 

Using the canonical equations of motion we find the re­
lation between the coordinates and momenta p and q 
at time t and their values Pa and Qa_ at time t': 

p = (P.h)h + [[hP.]h] cos Ra(t- t') + [P.h] sin~~.(t- t'), 

q= Ra +-1-(Pah)h(t- t')+-1-![hP.]h]sin Ra(t- t') 
ma maQa 

1 H0 ) 
+--[P.h](1-cosQ.(t-t')), h= IHol. (5 

maRa 

Solving (2) we write the Fourier transform of f~ taking 
account of (5): 

at 0 J [ 
fa'(w,k)=- )(e.E(w,k) a;) expl-'"'•-r+i wr:-k,v,-r 

p-.Pa 

- k.Lvl:...[sin(<p-a+Ra-r)-sin(<p-a)] ]}a-r. 
Q. (6) 

l)It can be shown that for high-frequency fields the quantity 
Ve coincides with the effective electron-ion collision frequency. 

2)for low-frequency (for example, magnetohydrodynamic) 
waves terms containing H must be retained. 

*[vH]::vXH. 

Equation (6) is now written in cylindrical coordinates 
with the z-axis along H0: 

Ux=VJ..COSfP, Vy=VJ..Sin<p, V,=Vz, 

kx = k.LCOS a, ky = k.Lsin a, k, = k,. 

Using the relation 
"" 

ei«Sln(~-6) = ~ Jn(a)ein(~-0), 
n=-oo 

where Jn(a) is the Bessel function and integrating with 
respect toT, we have3 > 

e. ~ ~ ( k.Lv.L ) 1 k.Lv.L \ . /.'(w,k)=- i- LJ LJ lm -.- ln' -- ;e'(m-n)(~-6). 
ma m~-oo n~-oo Qa \ Qa 

where 1/J is the angle between the x-axis and E1. 
Now, substituting Eq. (7) in Eq. (1) and averaging 

over the fast variable we obtain the following equation 
for the slow distribution function for a magnetoactive 
plasma in the quasilinear approximation (the subscript 
0 is omitted below): 

ilia - Rei~ ~ LJ I k.Lv .L) J I k.Lv .L) ei(m-n)(~-6). 
at 2ma2 m\ Q. n\ Q. 

{ 
ilfa E, m, n---oo 1 at a [ eil~--11) 

X . +--E.L . av, (t)- k,v,- nQ. + !'\Ia 2 av.L w- k,v, + Q.- nQa + '"• 
e-i(~-¢) J } a fa + ' . -Q.-=Sa, 

w- k,v,- Qa- nQa +IVa a<p (8) 
- iJ a E.L a 
L= E,-+ cos(<p-1!J)E.L-a -- sin(<p-1!J)-a-· fJv, V.L V.L !p 

Here, the quantities Ei(w, k) have the meaning of the 
corresponding projections of the electric field of the 
wave in the plasma while w and k are related by the 
dispersion equation of the linear theory. 

Equation (8) is most general for high-frequency 
waves and can serve as a point of departure for the so­
lution of a wide class of problems in the quasilinear ap­
proximation (various wave branches, longitudinal and 
transverse, oblique propagation; various wave plasma 
interactions-Cerenkov resonance and cyclotron reso­
nance). Below, as an example, we consider the case of 
the Cerenkov resonance in which the external magnetic 
field is so large that the condition 

(9) 

is satisfied, where V~ is the perpendicular component 
of the thermal velocity of species a with respect to the 
magnetic field. 

3, MOMENTUM AND ENERGY BALANCE 
EQUATIONS FOR CERENKOV RESONANCE 

In the summation over n we consider the terms cor­
responding to the Cerenkov resonance in the interaction 
of particles with the wave. For this purpose we need 

3lin Eq. (7) we have not taken account of the derivative of t:: 
with respect to .p because this term makes a small contribution in the 
balance equations. 
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only take n = 0, ± 1. Furthermore, evaluating the ex­
pansion of Jn(klVl/ila), in the light of (9) we find 

aj. _ __!!__£ 1 
iJt 2ma2 (Cil--- k,vz)2 + Va2 

x{[ v.-(ro-k,v,) k~.L sin(cp-e)JE.:~: 
f kj_V .L . Of a ) 8fa 

+-(ro-k,v,)~-sm("ljl-6)E.L- -ga-·8--=S •. (10) 
2 Q. avj_ cp 

We now consider the momentum and energy balance 
equations assuming that the distribution function fa is 
Maxwellian with anisotropic directed velocities and 
temperatures: 

na { (v.L--- u,.L(t) )2 (v,--- Ua'(t) ) 2) 
/a(t,v)= (:rr)'h(va.L)2va• exp --- (va.L)2 --(v;;yz-- f 

Vu.L = (2Ta.L(t) / ma) 'I•, Va' = (2Ta•(t) / ma) 't.. (11) 

We shall also assume that the directed velocities ua 
are much smaller than the thermal velocities Va so that 
the square of this ratio can be neglected compared with 
unity. 

We first consider the momentum balance equation 
for the species a. Multiplying Eq. (10) by ffia Vj (j = x, 
y, z) and integrating over velocity we have 

nama dua; + naea2 E; {E, ( ~~--- ~2_1_[ku.], )--- ~.-1-{kE],} 
dt 2ma g. g. 

+ namaga(Uaxlly;--- Uayllx;) = S mav;Sadv, (12) 

where 

. 2' l 
w(z)= e-•'{ 1 + l'~~ e''dtf.. 

The integrals that appear on the right side of Eq. (12) 
can be computed by the method used by Kogan/ 41 and 
are of the following form: 

(13) 

where T ~b is the relaxation time for the directed ve­
locities associated with collisions of particles of species 
a with particles of species b: 

3 mamb ( Ta.L Tb.L )( Ta• Tb• )''• ma 
Tab"=--=------+-- --+-

4)'2:rt (eaeb) 2nbA ma · mb m. mb ma + mb 

and where the dimensionless functions <Jij(a) character­
ize the anisotropy: 

I 
- - 3 S (1 +.z2)+a.z2(.z2-3) 

<I>,(a)-<l>y(a)-4 (1-a.z2)2 dx, 
0 

3 5~ 1+a.z2 
<I>,(a)=-(1---a) (1-x2) dx, 

2 0 (1--- ax2)2 

and the anisotropy parameter is given by 

(Va') 2 + (vb') 2--- (va.L) 2 -(vb.L) 2 
Q= 

(va•)2 + (vb•)2 

If the anisotropy is small (a - 0) 

a>,(a) = <I>u(a) ~ 1 + 1/5a, a>,(a) ~ 1--- 2/5a, 

and if a = 0, Eq. (13) coincides with the expression ob­
tained earlier for an isotropic plasma (cf. for example, 
[ 2] ). 

In the derivation of the energy balance equation we 
take account of the anisotropy in the temperatures par­
allel to and transverse to the magnetic field. Multiply­
ing Eq. (10) by rna ~/2 and by rna vi /2 and integrating 
we obtain the following expressions for the longitudinal 
and transverse energies respectively: 

1 dT a' naea2 { • ( 1 ) 
na 2--;u--+ Zma E, E, ~~--- ~5 ga [ku.], 

1 } ~ mavi -- fls-[kE], = J --S.dv, 
Q. 2 

(14) 

where 
fl• = k,2~::.) 2 { y; [ (2xa + T)a)Im w(za) 

Xa2--- Ya2 + XaT)a R ( ) J 1} - ew Za - , 
Ya 

~5 = k 2~,) 2 {· 1---y;t[/Ya+~)Rew(za) 
z Va Xa 1 T]a 

+ (x. --- ____!!__) lm w (za) 1}. 
Xa + T)a · 

1 {-~6 = k, )'n[y. Re w(za) + (xa + T)a) Im w(za)]---1 
Uaz 

T)a=-. 
, Va% 

The expressions on the right sides of Eqs. (14) and 
(15) are given by 

ma(va') 2 (va.L) 2+(vb.L) 2 <I> } (16) 
+ Tab" (va') 2 +(vb')2 2 (a} ' 

r maVJ_2 { Ta.L- Tb.L m.(v • .L)• } 
) - 2-S.dv = -n.~ T <I>a(a)- " a>2 (a) , 

b Tab Tab (17) 

where T ~b is the relaxation time for the temperature 
associated with collisions between particles of species 
a and particles of species b: 

ma+mb 
't'abT = 'tabu____:::.....:...____:. 

2m a 

and the dimensionless functions: 

3 ~~ 1-.z2 3 ~x2(1-x2) 
<I>t(a)=--(1---a) ---dx, .cll2(a)=-a --~dx, 

2 0 1-ax2 2 0 (1-a.z2)2 

3 r 1+x2 
<I>a(a)=- J ---dx. 

4 1-ax2 
0 

If the anisotropy is small 

<I>1(a) ~ 1--- 4/sa, <I>z(a) ~ 1/sa, <I>a(a) ~ 1+ 2/sa. 

When a = 0 Eqs. (16) and (17) become the familiar 
expression for an isotropic plasma and when (a = b) 
(single-component system) these results coincide with 
those obtained by Kogan. [41 We also note that in the 
summation over a the conservation relations for mo­
mentum and energy for the entire plasma are satisfied, 
as they should be. These relations are satisfied auto­
matically for any degree of anisotropy. 
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We now consider the stationary state (d/dt = 0) as­
suming that the waves in the plasma are specified. We 
shall limit our analysis to the case of high-frequency 
fields in an electron -ion plasma, in which case I ze I 
>> 1. In this case the effect of the waves on the ions can 
be neglected (in particular, Ui =' 0). 

It has been shown in [21 that longitudinal high-fre­
quency waves cause an entrainment of the electrons in 
the direction of the wave vector and this causes the 
electron temperature to increase with respect to the 
ion temperature. In order to obtain the appropriate 
quantitative relations in a magnetoactive plasma it is 
convenient to consider the following particular cases 
individually. 

1) k.L = 0. In this case, as is well known, the waves 
in the plasma can be divided into a) pure longitudinal 
waves (E.L = 0) and b) ordinary and extraordinary trans­
verse waves (Ez = 0); 

2) ~ = 0. In this case we can distinguish (cf. for ex­
ample, 51 ) a) pure transverse linearly polarized waves 
for which E.L = O, b) transverse linear polarized waves 
in which the electric vector is perpendicular to the 
magnetic field, and c) longitudinal waves (for which the 
refractive index approaches oo ). 

We shall consider these cases in order. 
1) k.L = 0. Using the asymptotic expansion of w(ze) 

for I ze I» 1 for the case of a small anisotropy, we find 
that within the framework of the quasilinear approxima­
tion the transverse waves do not produce a directed ve­
locity and do not heat the electrons. On the other hand, 
for the longitudinal waves, from Eqs. (12)-(17) we find 
(the subscript e on the directed velocity will be omitted 
below) 

(18) 

T Z-TZ+ z • .,, 1 e2E 2v -r .T ( 4 )-1 
e- i ---- --a 

m,w2 5 

( 1 ) m· 1 ( 4 )-1 2 1+- __:]·L-a 1--a 12 m, e 5 ' 5 ' 
(19) 

( 1 ) m· 1 ( 2 )-1 T _]_ = T ._L + 1 + · - ___.!._ T,_j_- a 1 -t-- a · 
e t 1'2 mP 5 r\ 5 ' 

T;- T,_j_ 
T z . 

(20) 
a= 

When a = 0 the relation in (18) and (19) become the 
corresponding relations for an isotropic plasma. [ 21 

Assuming that the ions are isotropic (Tf = Tt = T i) and 
using Eqs. (19) and (20) we can find the relation between 
T~ and T~. Subtracting (20) from (19) and solving ap­
proximately the resulting quadratic equation we find the 
following expression for 

(21) 

that is to say, the longitudinal waves in the direction of 
the magnetic field cause an anisotropy in the electron 
temperature, this anisotropy being due to the transfer 
of energy to the electron primarily in the direction of 
the wave vector. However, this anisotropy is small 
since it is determined by the small parameter used in 
the quasilinear approximation e2E~/meTew 2 << 1, 
whereas ~'eT~i = 1. 

Now, substituting (21) in (20) we can find the relation 

between the electron and ion temperatures (compare 
this with [ 21 ): 

(22) 

that is to say, the anisotropy in the electron tempera­
ture is small compared with the difference between the 
eleetron and ion temperatures. 

2) kz = 0. It follows from Eqs. (12)-(17) that for the 
case of the pure transverse ordinary wave, in which the 
electric vector is parallel to the magnetic field, in the 
quasilinear approximation ux = uy = uz = 0. The tem­
peratures are given by the same expressions as for the 
longitudinal waves treated in 1). Thus the difference 
between the longitudinal waves and the transverse 
waves, for which E II H0, lies in the fact that the longi­
tudinal waves produce a constant nonlinear current in 
the plasma whereas the transverse waves do not. 

If Ez = 0 we find the following expressions for the 
currents and temperatures, where we have taken k.t = kx 
and ky = 0 for definiteness: 

kx e2Ey-r,,u Ex+ Ey(r,,uQ,) 
Ux = -----------

(J) 2m,Q, 1+(-r,,uQ,) 2 

kx e2Ey-r,,u E,- Ex(-r,,uQ,) 
Uy = w 2m,Q, 1 + (-r,,uQ,)Z' 

(23) 

(24) 

For the case of longitudinal waves, which can be dis­
tinguished if the refractive index approaches oo, we 
have Ey == 0 so that there are no currents in the plas­
ma. For the transverse waves (Ex = 0) the current 
along the x-axis is significantly greater than the cur­
rent along the y-axis since T~i ne >> 1: 

(25) 

The characteristic feature of this current is the fact 
that it is appreciably greater than the analogous nonlin­
ear current for different values of the amplitudes and 
wavelengths; this nonlinear current is produced by the 
longitudinal waves along the magnetic field [compare 
with (18)] since w2 » n~. The basis for this behavior 
lies in the fact that an active role is played by the mag­
netic field in the formation of this current and this leads 
to drift motion of the electrons along the x-axis. 

Similar considerations can be used to determine the 
corresponding expressions for the case of oblique wave 
propagations with respect to the magnetic field. In this 
case, as will be shown in Sec. 4, the current produced 
along the z-axis by the transverse component (with re­
spect to the wave vector) can be much greater than the 
corresponding current produced by the longitudinal 
waves. 

4. DISTRIBUTION FUNCTION 

In the general case the solution of the system of non­
linear integro -partial-differential equations for the 
function fa as given in (8) is extremely difficult if not 
impossible. For this reason we shall find it desirable 
to examine the qualitative features of the distribution 
function in the quasilinear approximation, being guided 
by the following considerations. 

1. The electron distribution function fe will be 
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sought in the stationary state and the ion distribution 
function fi will be assumed to be Maxwellian with an 
isotropic temperature Ti. 

2. The collision integral Se will be taken as a model 
collision integral, taking account of the anisotropy in 
the electron temperature T~ * T~. 

3. It will be assumed that the distribution function 
fe is independent of the angle q; (in so doing we elimi­
nate currents in the plane perpendicular to the ma~etic 
field); this function is written in the form fe(v) = fe(vz) 
x f~(vi) where f~ is a Maxwellian distribution function 
characterized by an effective temperature T~. This 
choice of the function fe is appropriate for the station­
ary problem in the sense that the plateau on the distri­
bution function, as will be evident from Eq. (8), can only 
be formed along the magnetic field (if the latter is large 
enough). 

The model collision integral is written in the Fokker­
Planck form: 

o { r.• of. } o { Ti of. 1 s.=S •• +Sei=v • ."~0 _ ~>-=-0 _+v;fe +vei-0 _ --0 _+v;f•[• 
v3 . me v3 v3 me v3 

\26) 

where the subscript k characterizes the anisotropy in 
the electron temperature and assumes the following val­
ues in the summation over j: when j = z, k = x = y = 1; 
when j = x, y, k = z and by definition 

,T." = ~ m.v,2fedv. 

The quantities ~~~e, ~~~e and !lei can be found by com­
parison with the exact values of the integrals that ap­
pear on the right sides of the balance equations (16) 
and (17): 

Vei=---
2 'teiT 

In the form given in (26) the integral Se satisfies 
energy conservation and vanishes if fe is a Maxwellian 
distribution function with T~ 1 = T~ = Ti. 

Substituting fe in (8), writing the model integral Se 
in cylindrical coordinates and integrating over v 1 , we 
obtain the following solution for f~ : 

- me~ { ( Vee.L) e2E.LE,k.Lsin(¢- e) (w- kzvz) } . 
lnfe'- -- v, 1 +-- - ,--. [( k )' '] Ti \lei 2meVei1:.Ge {t) - zVz + Ve 

(27) 

The subsequent computation of this integral does not 
represent any fundamental difficulties and it is not nee­
essary to present the final complicated expression. For 
purposes of illustration we shall consider certain par­
ticular cases. 

a) For longitudinal waves ( 1/J = 0) and when k1 = 0 or 
E1 = 0 the second term in the numerator of the inte­
grand vanishes and f~ is of the same form as in l 21 ex­
cept for the anisotropy in the electron temperature. 
When kz - 0, we find that f~ is Maxwellian with an ef­
fective temperature T~ that coincides with (19). 

b) When kz - 0, if there is a transverse wave com­
ponent in the plasma (with respect to the wave vector) 
and k1, E1, Ez * 0, using (27) we obtain the following 
directed velocity along the z -axis: 

(28) 

which, to within a numerical factor, coincides with the 
corresponding expression for uz from the balance equa­
tion (12). This determines the contribution of the trans­
verse wave components (with respect to k) to the cur­
rent along the magnetic field in a magnetoactive plasma. 
We note that when k1E1 ~ kzEz and sin ( 1/J- e) ~ 1, 
this current is w2 /vene times larger than the current 
produced by the longitudinal waves which propagate 
along the magnetic field [cf. (18)]. 

The expressions obtained in Sees. 3 and 4 indicate 
the possibility of a quasilinear approximation taking 
account of collisions in the determination of the nonlin­
ear current flow and electron heating in the stationary 
state for a specified (quasilinear) energy level for the 
electromagnetic waves in a plasma. The question of 
wave damping has not been considered in the present 
work; however, the calculation of the appropriate 
damping rates taking account of collisions does not 
present any fundamental difficulties. Collisions lead to 
a damping of the waves so that the maintenance of a 
stationary level of rapidly varying fields in a plasma is 
possible only in the presence of external sources 
(beams, external electric field and so on). If the exter­
nal sources are specified, the quasilinear approximation 
can be used to determine the wave amplitudes (cf. for 
example l 21 ). 

We also note that the method described here can be 
used to calculate nonlinear effects that arise in cyclo­
tron resonances and in the case of small phase veloci­
ties. 

In conclusion, the authors wish to express their 
gratitude to Yu. L. Klimontovich for guidance and in­
terest in the work. 
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