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Starting from the known expressions for the amplitudes of Ve scattering in the Ve sector of the Lee 
model or the three-particle model, it is shown that at negative energies these amplitudes have not 
only poles corresponding to discrete states, but also false poles. The properties of these poles and 
their differences from the false poles of the potential scattering theory are investigated, and a pro­
cedure is presented for revealing false poles in simple quantum-field models. 

IT is known from the theory of potential scattering 
(see, for example, lll) that at negative energies the par­
tial scattering amplitudes may have not only poles 
corresponding to bound states, but also the so-called 
false poles. 

In simple nonrelativistic models of quantum field 
theory, such as the NO sector of the Lee model l2 J, the 
model with bilinear interactionl3 J, or the model of con­
tact interaction l4 J, discrete energy levels of single­
particle and bound states are uniquely determined by the 
poles of the scattering amplitudes-there are no false 
poles. 

However, the example of the relatively recently 
solved models, namely the ve sector of the Lee model 
(for a review seel4 J) and the three-particle model rs,sJ 

(allowed transitions W ~ V + (), V ~ N + ()), shows that 
it is impossible to conclude on the basis of the simplest 
models that there are no false poles in field interaction. 
Indeed, the amplitude of elastic Ve scattering in the 
three -particle model contains only the s -wave and is 
given byl6 J 

T(ro)=j2 (ro) 1 [-'A2 1+h(ro)A(ro) +'A12 1+M(ro) J. 
2ro 1-h(ro)A(ro) h(ro) g(ro) 

Here ).. 1 and )..2 are the renormalized VNO- and wve­
interaction coupling constants, w is the energy of the 

(1) 

() particle (the total energy of the in-states is E = my 
+ w); f(w) is a real cutoff function, h-1(w) is the propa­
gator of the V particle (at w = E - mN), whose only 
pole determines the energy of the V -state if the V par­
ticle is stable, as is assumed henceforth, and g- 1(w) is 
theW-particle propagator, whose poles determine the 
energies of the single -particle W states, and whose only 
zero is determined by the equation 

1-h(w)A(w) =0. 

The function A(w) has no poles in the region w < JJ. 
(JJ. -mass of () particle). The poles of M(w) are found 
from (2) and from 

h(w) = 0. 

(2) 

(3) 

The explicit form of all the foregoing functions is given 
in l6 J. The amplitude of the VO scattering in the Lee 
model is obtained from (1) with A1 = 0. 

A direct solution of the Schrodinger equation shows 
that the energy of the only ve -bound state of the Lee 

model is determined by Eq. (2) r7 J , and that of the single­
particle W states by the Eq. l6 J 

g(ro) = 0. (4) 

From a comparison of (1), (2), and (4) we see that 
the ve -scattering amplitudes of both models contain 
false poles. Their position is determined by the condi­
tion (3) for the Lee model (here w = E -my) and by Eqs. 
(2) and (3) for the three-particle model (the factor 
[2w ]-1 has a kinematic origin). Without corresponding 
to any bound states, these poles, if they are close to the 
threshold energy w = J1., are capable, just as are the 
bound states, of causing an anomalously rapid growth of 
the scattering cross section near threshold. 

It should be noted that the false poles have no rela­
tion at all to the "ghost" statesl2 J, the possible appear­
ance of which was excluded beforehand by the conditions 
A2 <A~ and A~< A~c· 

The poles considered here differ from the false poles 
in potential theory. Thus, the analog of the potential in 
nonrelativistic models is the form factor f(w); in any 
case, the inverse problem of the scattering theory in 
such models is the reconstruction of the form factor raJ. 

By cutting off the potential at arbitrarily large distances 
it is possible to eliminate all the false poles, leaving the 
positions of the bound states almost unchangedl1 J. The 
false poles (2) and (3) cannot be eliminated by any 
change of the form factor, so long as the V -particle is 
stable. 

The reason for this non-removability is easy to 
understand. The false pole of the Lee model (3) is a re­
sult of the contribution of the simplest (Born) diagram, 
in which the energy of the internal N -line is fixed, and 
the difference T(w)- TB(w), where 

T8 (w) = -'A2f(w) [2ro]-1 [w- mv + mN]-1, (5) 

can now have only a pole corresponding to the ve -bound 
state. In the contact and in the bilinear models, there 
are no elastic-scattering diagrams with internal lines 
with fixed energy, therefore the poles of the scattering 
amplitude must correspond to the energy of the bound 
states. It should be noted that the false pole (3) is a 
sui generis shadow of the V -particle from t'le Ne sector 
on the ve sector. Its energy is shifted relative to the 
V -state energy by my- IDN· It always proceeds the 
VO -bound state (this follows from Eqs. (2) and (3) and 
from the properties of the functions h(w) and A(w) l6 l), 
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and exists even in the case of weak coupling, when there 
is no V9-bound state. 

In the three-particle model, the appearance of false 
poles is due to the summation of diagrams containing no 
internal lines of W particles corresponding to the first 
term in formula (1), and diagrams containing internal 
W -lines, in which at least one of the vertices with a free 
e line is a VN e vertex (these diagrams correspond to 
the term A~M(w)g-1(w) in the square brackets of formula 
(1), having a first-order pole under condition (2), inas­
much as the pole of the factor preceding the bracket 
cancels out with the zero of g- 1(w)). On the other hand, 
a correct method of determining the energy of the W 
states is to find the poles of the W -particle Green's 
function, i.e., to solve Eq. (4) l5' 61 • The Green's func­
tions of theW particle correspond to summation of dia­
grams with two wve vertices at the free e lines-the 
term A~-1(w) in the square brackets of formula (1). 
Since all the diagrams of the N9 scattering of the Lee 
model have input and output vertices of the type VN9, 
the pole of the Ne -scattering amplitude must coincide 
with the energy of the single-particle ve state, and 
there are no false single -particle states in this sector. 

It is possible to trace the occurrence of false poles 
in the direct solution of Schrodinger' s equation in the 
continuous -spectrum region la 1 • They result from those 
inhomogeneous terms of the integral equations for the 
wave functions, which are due to the continuation of the 
singularity of the type 

1 1 (6) 
--=P--+CII(w-wo}, C*O, wo>[t, 
w-wo w-wo 

corresponding to a plane wave, into the unphysical reg­
ion wo < JJ., where the discrete state is situated. 

If the scattering amplitude in models close to those 
considered is obtained not by solving Schrodinger' s 
equation but by other methods, say by the Lehmann­
Symanzik-Zimmerman method, by which the amplitude 
of the ve scattering in the Lee model was obtained for 

the first timel91 , then the number of bound states can be 
determined with the aid of the Levinson theorem, which 
was proved for such models in lBJ, and false poles can 
be separated only with the aid of additional analysis 
similar to that presented above. 

The considered examples demonstrate that in field 
theory, just as in potential scattering, there is the dan­
ger of the appearance of false poles when the energies 
of the discrete states are determined from the poles of 
the scattering amplitude, and these poles can be readily 
obtained and explicitly separated only in the case of 
simple models, as was indeed done for the ve sector of 
the Lee model and for the three-particle model. 

The authors are deeply grateful to A. R. Frenkin for 
useful discussions. 
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