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An expansion of a single-particle helicity state is obtained in terms of states which transform ac­
cording to an irreducible unitary representation of the homogeneous Lorentz group. An analogous 
expansion is carried out for a two-particle helicity state in the center-of-inertia system. A rela­
tivistically invariant expansion of the helicity scattering amplitude is given. The threshold behavior 
of the partial helicity amplitude is determined. 

1. As is known, the expansion of a single-particle heli­
city state Ips A) in terms of states I EJMs A) which trans­
form according to an irreducible representation of the 
rotation group is given by the Jacob-Wick formula t 1 J 

IpsA.) = L; NJ-'hiE!Mst..) D.;;J.(<p, a,- <p), 
J,M 

(1) 

where 

NJ = 4n/ (2! + 1), dQ = sin adadqJ. 

The problem consists in obtaining an expansion of these 
states in terms of the states I pmJMs) which transform 
according to an irreducible representation of the Lorentz 
group. 12' 3 J In the Lorentz group there are two group 
invariants, or Casimir operators: 

F = M2 - N2 = 1 + ( p2 - m2) I 4, G = MN = mp I 4; 

M and N are infinitesimal operators of the group. 
Therefore, the representations of this group are char­
acterized by the two numbers (p, m). In the unitary 
representation p takes arbitrary real values and m takes 
integer values. The representations (p, m) and (-p, -m) 
are equivalent, and we shall therefore consider repre­
sentations in which p takes positive values. 

In order to solve our problem, we use the definition 
of the helicity state I KPS A) with nonvanishing mass K: t 1J 

I xpsA.) = R~. a. -~PI xsA.), (2) 

i.e., the state I KPS A.) is obtained from the state at rest 
I KS A) by a Lorentz transformation Zp along the z axis 
and a rotation Rep,(), -cp. Under the Lorentz trans­
formation L(g), this state transforms in the following 
way: 

L (g) I xpsf.) = L; Di~l [r(g, p)JI xgpsA.'). (3) 
~· 

The relation (2) defines the state I KPS A.) as a function 
f(g) on the group g. As is known, r2 ' 3 J the expansion of 
the unitary regular representation 

(4) 

into irreducible components is realized by expanding 
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f(g) in terms of the matrix elements of the representa­
tion of the group g. Hence, the relativistic generaliza­
tion of the expansion (1) can be obtained by expanding 
the single -particle helicity state in terms of the com­
plete orthogonal system of functions 

~ D (J) (p,m) ( I PI ) 
.LJ M>. (<p, a,- <p)<l>J,>.,s ~ , 
" . 

( 5) 

where <I> J(p~) ( lp I/ E) are the unitary matrix elements 
'1\, s 

of the representation of the Lorentz group. [4-BJ The 
orthogonality condition for these functions is 

~. ,. 
(6) 

and, hence, 

~ f'q:, •C~'. m~ (l~L) q:,CP, m) ( ~) P2 dp = Npm {) ,{) ( _ ') 
.LJ .) J, ~. s E J, >., s \ E E Js mm P P 
). 0 

follows from the expansion of the representation (3) into 
irreducible components and from the existence of the 
analog of the Plancherel formula. This expansion has 
been considered first by Shapiro [sJ and Dolginov uoJ for 
the case of particles with spin zero. The generalization 
to the case of particles with arbitrary spin was obtained 
by Chou Kuang-chao and Zastavenko tuJ and by Popov. tl2J 

Let us now turn to the calculation of the normaliza­
tion factor Nj:· It is seen from the orthogonality con-

dition (6) that we must separate a O(p - p ')-like singu­
larity from the integral 

00 r o(p•,mry (p, m) 
.\ <l>J, >.,, (a)<l>J, >., ,(a)sh2 ada, (7) 

where tanh= lpi/E. To this end we use the explicit ex­
pression for the function <I>j' ~ s(a), obtained by 

Dao Wong-Due and Nguyen Va~ Hieu [4 J 

q:,J:·{'~(a) = 

=c~;:: L; (-1)d+d'(J+s-d-d'-; -t..)!( d+d'+l.- ~)! 
d,d' 

x[ d!d'l(l-A.-d')l(s-1.-d)!( s+; -d) I 
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X ( J + ; - d') ! ( A - ; + d) ! ( A- ; + d') ! r 
X exp {- ( 2d' + A- ~ + 1 - + p) a} 

xF(J+1-; p, d+d'+A-; +1, l+s+2; 1- e-2a); (8) 

here d, d' run through the integers which leave all the 
factors under the factorial sign nonnegative. The factor 
C~· ~ s contains factorials which are unimportant for 

' ' the further discussion. Using the following functional 
relation for the hypergeometric function, Cl3, 141 

, . f(y)f(y-~-a) 
F (a, ~,y; 1- e-2") = f(y _ ~)f(y -~)F(a, ~. 1 +a+~. e '") 

+e-2(v-a-(1)a f(y)f(a + ~- y) F(y- a y- R 1-- a- R + y· e-2a) 
f(a)f(~) ' "' " ' (~) 

we can show that for a- 00 

cxp{ -( 2d' +A-~-_i_P) a} .p( J + 1-~p, d+ d' +A 
\ 2 2 \ 2 

- ~ + 1, J + s + 2; 1 - e-2<>) ->- exp{ - ( 2d' +f.- ; - ~ p) a} 

f(J + s + 2)f(s- d- d'- A+ m/2 + ip/2) 
x -=r:-:(-s 'c-+---:1:--+.,--:-ip--,/,:.,2)~r~(7J -:-+_s_+:-:-1---d7 -_:_____,d,;-' _-----:~-. +:"-:..-m--';/:::::2)-

+ exp{ - ( s - d- A+ s- d + ; + ~ p) a} 

f(J + s+ 2)f(d+ d' +A- m/2- s- ip/2) 
X f(J+1-ip/2)f(d+d'+1.-m/2+1) ' 

(10) 

where s - d -,\ ~ 0, s - d - m/2 ~ 0, d' + ,\ - m/2 ~ 0, 
as follows from (8); we have also used F( a, {3, y; 0) = 1. 

Thus the limit of the function e 1 i P 1 2 • 1 l a <I> ( P' m)( a) 
' J,>..,s 

for a - 00 is different from zero and tends to a constant 
value only if ,\ = m/2. Therefore the integral (7) has a 
o(p - p ')-like singularity only if ,\ = m/2. Thus (7) can 
be written for p - p' 

"" I . (' ,.,. o(p', m') ( ) ,.,. (p, m) ( ) h' d 
liD j WJ,A,s a WJ,h,s US a 0: 

p--+p' 0 

The sum over ,\ of the coefficients of this divergent 
integral is the normalization factor N( P, m) 

( J,s 
= 21T/<I>Jp, ~2) (oo) /2 . Its explicit form is most conven-

,mf., s 
iently obtained, not from ( 8), but with the help of the re­
currency formula obtained in CBJ. In the Appendix we 
calculate the normalization factor (A.8) and find 

i\f',mJ =Z:rt (J-s)![2(J+1)!)2(s+lml/2)!(s-lml/2)! 
(I+ s)! (J + 1 + lm//2)!(1 -lml/2)! (l + 1 + lml/2)!2s! 

X n (~+k')/ l'(ip/2+lml/2) I'. (12) 
k~lml/2+1 4 f(ip/2 +I+ 1) 

Now, using the orthogonality condition (6), we write 
the relativistic generalization of the expansion (1): 

lxpsA) = ~ 1 NJ-'!.(Ni','';)-'!.lxpmJMs) 
J,M,mO 

<J' <P· m> r I PI ) xDM, ,.(cp, e,- <p)<DJ, "·, \ -E- dp, 

[xpmJMs) 

= N -'I•(Npm )-'/, 'Y (' I xpsA). D •(J)(m e - m) <D •<•· m) ( jPi) dp 
J J, .~ .L..J .) M,;;.. 't'! ' T J, A, & E E 

' (13) 

In this expansion, m/2 takes the values s, s- 1, ... , -s, 
as follows from (11). The same selection rule for the 
quantum number m was obtained in (121 . In the special 
case when the spin of the particle s = 0, this formula 
goes over into the formula for the expansion of the 
state of a single spinless particle in terms of a system 
of functions on a hyperboloid, which was obtained by 
Vilenkin and Smorodinski'i. l 151 Indeed, as was shown 
in(S,B] the function D(J) (rn e -rn)q,(p, m)(a) goes over. 

' M,>.. ""' ' "" J,>..,s · 
for s = 0, into the eigenfunction of the angular part of the 
d' Alembert operator Da e rn. 

' '.,-
With the help of the usual orthogonality condition for 

the single-particle states (>..'sp'lps>..) = Eo(p -p')oxx 
and formula (6), we can obtain from the expansion 
(13) the orthogonality condition for the states /pmJMs): 

(sM'J'm'p'lpmJMs) = DMM'/)JJ•Omm' o(p- p'). (14) 

2. Let us now consider the two-particle helicity 
states. They are defined as the product of two one­
particle states: 

I XtPtStAtXzpzSzAz) = lx,p,s,1,,) I xzpzSzAz). (15) 

As noted above, the one-particle states I KiPi si >..i) 
(i = 1, 2) with nonvanishing mass Ki can be obtainedc1' 161 
from the state at rest by the Lorentz transformation 
Z IPil along the z axis and a subsequent rotation 

Rq;i> ei, -cpi about the angles CfJb ei defining the direction 

of the momentum Pi of the particle, i.e., 

(16a) 

We rewrite this equality in terms of the infinitesimal 
operators M and N: 

where tanh ai = IPii/Ei> cosh ai = Ei/Ki· 
Using this relation, we can write the two-particle 

states in the system of their center of inertia 
(p1 = -p2 = p) in the following form: 

lx~o x,, pStAtSz1.,) = exp {-icpM,- iOllfy 

+ icpM,- ia,N,} lA,,,,,_ '"" )'= R~. e, -~ZIPI/E• lA,,,,, ,,,), (17) 

where the angles cp, e determine the direction of the 
relative momentum p: M = M 11 l + M 12 l, N •= N 11 l + N 12 l. 

The states 1As1>.. 1, s2>._2) are states of the particles in a 

coordinate system where the first particle is at rest; 
they can be obtained by the following transformation 
from the state at rest of the two particles: 

JA,,,_,, ,,,,) = exp {i(a1 + a2)N~)- i:rtM~)} I x,s,1.,, xzszA,). 

It follows from this formula that the two-particle states 
in the system of their center of inertia can be described 
by the four-velocity u1 = (EdK1, PdK1) of particle 1. In 
the same way one can show that these states can be 
described by the four-velocity U2 = (E2/K2, -p/K2) of 
particle 2, and also by the four-velocity 
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U = ( h at + a2 _P_ h at + a2) 
\ c 2 I IPI s 2 I 

which is symmetric under exchange of particles 1 and 2. 
The two-particle states in the laboratory system are 

obtained from these states by the Lorentz transforma­
tion L_v with the velocity v = (p1 + pa)/{E1 + Ea) of the 
center of inertia: t1eJ 

I x1p1s,A.11 x2p2s2A.2 ) = 
~ ~ ~ I = kJ D;.,. (l 1 p,) D; > (l 1 Po) LvR~. o,-~ Z 1 p 11 E, As>' '2).' ). 
(>.') I I 2 2 I I 2 

(18) 

Defining the final states IK3P3S3A3, K4P4S~4) in an 
analogous way, we write the helicity scattering ampli­
tude (HA) in the following form: 

(A.,s,p,x,l A.asap3xsj T I x,p,s,A.ll x2p2s2A.2) = ~ D~!~ (l 1 p,) D;~:r, (l 1 p3) 

("A') 

x<Bs,).(s,>{ I ZJ~'//E, R';;~,O',-~·Z:::.~ TL_v R~. 6, ....,ZIPI/E.I A,,,,,,.,,> 
XD~Ydl, p,) D~~:>.,., (ll P•l~ (19) 

where the angles cp ', (}' determine the direction of the 
relative momentum p' of the final particles, and 

IB,,,.,,,,.,) = exp {i(aa + a,)N~l} exp {- inM~'} j xassA.a1 x,s,A.,). 

The right-hand side of (19) can be written, using the 
fact that T is a scalar operator, 

(B,,,,,,>., I ZJ~'//E,Ir;), 0', -~' L:~ T L...., R~. 0, -~Zip/fE, I A •••••••• ) 
= (B,,.,.,,,,, TZj;,~/IE, R;!, 6', -~' R~. 0, -~ Zlpi/EI I A,, •••••• > 

=<B.,, •••• IT L (G) I A •••••••• ), (20) 

G = z.-1 ('~n r;!, o·.-··r~. o, -~l• ( ~~). (20') 

In order to expand the HA in terms of the matrix ele­

ments of the representation D~M~)JM{G) of the Lorentz 

group G, we must first go over from the states 
lAs A s A ) (IBs A s A )) to the states 1122 3344 
1As1 s2 aA> (1Bs3 s4 a'J..t)) which are defined by the total 

spin of the two particles and its projection on the direc­
tion of the relative momentum of these particles. This 
is effected with the help of the Clebsch-Gordan coeffi­
cients: 

IAs,l.,s,>,) = ~ jA,,s,aA) (StS2aA.JstAtS2- A.,), 
a 

jB,,,.,,,,.,) = ~ jB,,,,a·~) (sas•cr'~JsaA.as,-A.,)1 {21) 
a' 

where A = A1- Aa, J..t =As- A4. Thus we obtain the fol­
lowing expansion for the HA: 

mtn(o, a? oo 

~ ~ a,T:f·m> (s)D~~~>[G(s,t)]dp, (22) 
m/2 =-min{ a, o') 0 

where the matrix elements of the representation of the 
Lorentz group have, according to (20), the form 

~ 

Da~,'::f(G(s, t)] = ~tDa~:,m> (-aa) aSf! {+8) t1>J,.;:> (at). (23) 

The angle (} in (23) is the angle between the relative mo­
menta of the initial and final particles, i.e., the scatter­
ing angle 

th a,= jpj I E,l th aa = Jp'J I Ea. 

Using the representation for the Lorentz group ele­
ment G = r 2 lzr 1, the expression for the coordinate 
transformation matrices, and expression (20'), one can 
write the matrix elements 

in the form 

D~·~7'~>[G (s, t)] 

= ~ d~"J {n-,Pa)tD~:;;) (u) 
M 

xa<~ ('llt)l 

where the angles lj;3, a, lj;1 are expressed through 
as, (}, a 1 in the following way: 

(24) 

ch a = ch u1 ch aa - sh a, sh aa cos 81 sh a cos ¢1 = ch as sh .u, 
- sh aach at COS 81 

sh a cos ¢a = ch at sh aa - sh a, ch ua cos 8. (2 5) 

These relations give a simple geometrical meaning to 
the angles lj;3 , a, lj; 1, which is indicated in the kinematic 
graph of the reaction 1 + 2 - 3 + 4 (cf. the figure). c17 J 

Substituting (24) in (22), we find that the required 
expansion of the HA has the form 

mln(o, a? oo mln(o, a') 

a'JLTaA(s,t)= ~ ~ a•T~p,m) (s) ~ d~";J (n-,Pa) 
m(2 =-min( a, a') o M =-mlll(a, a') 

(26) 

Expressing the energies and momenta of the parti­
cles through the invariant variables s and t, we obtain 
a manifestly invariant form for the angles lj;3, a, lf;1: 

cos¢1 = 

PtPa Xt2+xl-t 
cha=--= 1 

XtXa 2XtX3 
(s + Xt2- X22) {xt2 + Xa2- t) - 2xt2 (s + xs2- x,2) 

t,.'l•(s, Xt2, x,2)L'l.'!.(t1 Xt2, Xa2) 

(s + xa2 - x,2) {xt2 + xa2- t)- 2xa2{s + Xt2- X22) 
cos ¢• = ---"----'--------'-~c-'- c--::c-'-:-:-c--'c-'---c'----'-­

L'l.'!. (s 1 'X821 x42) 1'!.'1• (t1 x12, xa2) 

where 

1'!. (a, b, c) = a2 + b2 + c2- 2ab- 2bc- 2ac. 

(27) 

Let us consider the special case where the spins of 
the particles are zero. Then a' = a= 0, J..t =A = M = 0, 
m = 0, the matrix elements of the Lorentz transforma­
tion are 

~~>~:g.o(a) =sin (1/ 2pa)/ 1/2psha 

and expression (26) for the HA goes over into the integ­
ral expansion of a single scalar amplitude with respect 
to the invariant variable t: 

r sin (pa) 
T(s,t) = J T(s1 p)-1--ap1 

0 1 •P sh a 
(28) 

which was first obtained by Dolginov and Toptygin. [10J 
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Substituting now (23) in (22) and performing first the 
integration over p and the summation over m, we obtain 
an expansion of the partial helicity scattering amplitude: 

mln(G,_O"') oo 

(A.~s.A.as8 jT.r(s) js1A.1s~)= ~ ~ }; (-A..s.A.s&slsss,O"I') 
m/2=-mln(a, a') ·o a, a' 

(29) 

Using (A.ll), we find that the partial HA behaves like 

IP'IJ-ss-s4 lpiJ-s1-s2 when lp'l and IPI tend to zero. 
3. Let us consider the symmetry properties of the 

scattering amplitude. To this end we write the expan­
sion for the two-particle state, in the system of their 
center of inertia, in terms of states which transform 
according to an irreducible unitary representation of the 
Lorentz group, using (19): 

jps1A.1s~) =~I jpm/Ms1sao)(s1saoA.js1A.tB2-~ 
"' 0 

(J) (Pm) ( jpj ) 
XDM~ (q:,9,-q:)<l>.r,a,l. -Bt dp, 

j·pm/Ms1sao) = ~ ~ (N.r~::'N.r)-1 jps1A.ts~) (- A.asaA.tsdsisaoA.) 
(~) 

X D •(Jl ( 9 - )«<I o(pm) (J!i. )~ 
Ml. q;, ' CJl .r,a,l. Ei Ei. (30) 

Let us determine the action of the operators of re­
flection P, of particle exchange P 12 , and time reversal 
T on the states I pmJMs1sa a). Using the definition of the 
helicity state with definite total angular momentum J, [1J 

we write formula (30) in the form .. 
jpm/Ms1sao) = (~~a)-1 ~ ~ jEIMs1A-ts2A.a) (- A.as2A.tsds1s2oA.) 

X<l> •(Pm) (j!'l_) p2dl!_ (31) 
J,a,A. E~ R.. . 

The effect of the action of the operators P, P 12, and T 
on the states IEJMs1A1SaAa) are defined byUl 

PjEIMstA.1saA.2) = 'llt1']2(-1)J-••-•'iEIMs,- A.1s2- A2), (32) 

where 111 and 112 are the intrinsic parities of particles 
1 and 2, respectively, 

With the help of (32) and (33) it is now easy to obtain 
from (31) 

Pjpm/Ms1s2o) = 1']1'1]2( -1).T-<Jj p- mlMs1s2o). (3 5) 

[here we have used (A.4)]; 

P12lpm/Ms1s2o) = (-t).r-•jp-m/Ms1s2o). (36) 

Hence, for identical particles, s1 = sa = s, (s1 + s 2 ) 2 

= s~ , the states with a definite symmetry with respect 
to particle exchange are defined in the following way: 

{1 + (-1) 28Pt2} jpm1Ms,2) = jpm1Ms!2) + (-1).7+2•-•"iP- m/Ms,2). 

The difference in the signs for Bose-Einstein and 
Fermi-Dirac statistics is taken into account by the 
factor (-1) 2s. 

Analogously, we have from (34) and (31) 

TjpmlMsiS20)= (-1).r-Mjpm/-Ms1s2o). (37) 

Thus we obtain the following symmetry property for 
the (p, m) amplitude from the parity conservation law 
p-1sp = S: 

(38) 

the properties of the S matrix with regard to time re­
versal T-1ST = s-1 imply that the matrix TP, m is 
symmetric: 

(O"jTCP.ml(s) jo) = (ojTCP.ml(s) ja"). (39) 

It seems to us that the considerations of this paper 
are of some interest for the reason that, using the 
analytic properties of the ( p, m) amplitudes, one may 
attempt to determine the asymptotic value of the scat­
tering amplitude for large values of the energy. 

In conclusion I regard it my duty to thank K. A. Ter­
Martirosyan, I. S. Shapiro, V. S. Popov, Yu. A. Simonov, 
Ya. A. Smorodinski'l, L.A. Dadashev, and N. M. 
Atakishiev for a discussion of the results of this paper. 

APPENDIX 

Using the results of[8J, we calculate the asymptotic 
. a -ipa/2 (p m) ( 

form of the functiOn e e <I> J ~- A=m/2 a) for 
~(p m) ' ' 

a- 00 [<I> J 's· A=m/2(00)]. Introducing the new notation 
' ' J 1 = J, Ja = w, J = s, we rewrite the explicit expression 

for <1>~~-~~s(a) [cf. formula (12) of[8l] in the form 
' ' 

«DY,'~;"l.:,(a) = jJ-•(1- e-t•)J-• exp {- ( s + 1- ; - ~ p )a} 

XF (1 + 1- ~ p,/ + 1- ;. 21 + 2; 1-re-aa). (A.1) 

It follows from the definition of the generalized Legendre 
function of the second kind, [18l 

(J) f(l+1+!')f(l+1-v)( z-1 )-(Hi)( z+1 )(v+~).2 Qpv (z) = eiR(p-v) __ _ __ 

· 2f(21+2) · 2 z-1 

XF 1+1+v;l+1+!A;21+2;-2-) (A.2) 
1-z 

that the function <I>J(p, m) (a) is simply expressed 
, s; A =s 

through the functions Q(J) 12 . ~o2 (1-2/(1-e-za)). As 
. -m ,-1p,, 

is easily seen from formula (7) of[8J, the expression for 
the function <I>(p, m) (a) is obtained from (A.1) by 

J,s;.x=-s 
replacing m by -m. Let us rewrite also the recurrency 
formula (10): r8J 

(p, m) ( fJ imp ) (p, m) 
ya<I>.r,s,A-i(a)= 2sha A.a;+A.ctha- 4 <I>.r.s;l. (a) 

(A.3a) 

where 

ya = a~.c.rJa~·J= [(/+A.) (I- A+ 1) (s +A.) (s-A.+ 1)]''•. 

Replacing in this formula A by -.X, and using Y_x = y -.X+ 1, 
we obtain 
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(p,m) (a imp)..,.(p,m) yAtl>J, s;H.(a).= 2sha A. a;+ A.ctha+4 .,..J,s; -A( a) 

+ YAH Cl> J,',;"~A-1 (a) . (A.3b) 

This leads to the relation 

(A.4) 

The asymptotic form of the function ~(p, m) {a) for 
J s· A =s 

a- oo is simply found from (A.1): ' ' 

ct>f,~;"i..,(oo) = il-•exp {- (s + 1-;- ~ p )a} 
( i m \ 

XF 1 + 1---zp,l+ 1-z-;2/ +2;z = 1 (A.5) 

Substituting (A.1) in (A.3a) and going to the limit a- 00 , 

we now find 

11>}~,'~.-l(oo) = ~ (s- '!:)(_!_ p- s )exp {- (s -~-~- p) a} 
Y• 2 2 ' 2 2 .' 

XF(/+1-~p,/+1- ;,21+2;z=1). (A.6) 

Repeating this procedure, we obtain the following asymp­
totic form of the function ~ (p, m) {a) for a - oo (for posi-
tive A): J, s; A 

(p, m) rr' 1 ( m )I i ) { ( m i ) } ll>J,s;A(oo)= -\k-- \-p-k exp - "-+1----p a 
k==N+I Yk 2 2 2 2 

xF(l+1- ~ p,/+1- ;,21+2;z=1). (A.7) 

Indeed, we can see by substituting (A.7) in (A.3a) that 
the asymptotic expression for the function ~(p, m)(a) 

J, s; A 
satisfies the recurrence relation for a- 00 • Formula 
(A. 7) leads to the very important assertion that this 
asymptotic expression differs from zero only for m/2 
:SA. Finally, we find an expression for the normaliza­
tion factor from (A.4) and (A. 7): 

NJ.'~"'b2nl~r.·;J._,.I2(oo)l 2 =2n[( s-1;1) lr 

Here we have used formula (9.34) of[141 : 

F(a, ~,y; z = 1).= f(y)f(y-a- p) 
f(y-a)f(y-M' 

where Re (y - 0! - {3) > 0. 
Let us now calculate the asymptotic form of the func­

tion ~ ( P, m) (a) for a - 0. The asymptotic form of this 
J, s; A 

function for A = s is easily obtained from (A.1): 

(A.9) 

For A= s- 1, we find the asymptotic form by substitut­
ing (A.1) in (A.3) and going to the limit a- 0: 

(A.10) 

Repeating this procedure, we obtain the following asymp­
totic form of the function ~(p, m)(a) for a- 0: 

J,s; A 

"'(Jl, m,l( ) Y• Ya-t .. • '\'I-tt •(2!a J-s 
.,..J,a;A a== (l+s) ... (l+l"-l+1)(s-IA.I)! ) 

1 • 
II YA (2" )l-s 

(s-IA.I)' 1 +k za · . A=IAI+t 
(A.lla) 

The validity of this formula can again be proved by 
substituting (A.10) in (A.3a). We note that the coefficient 
in this asymptotic expression is different from zero only 
for J ~ s, and for J = s it is equal to unity. Small values 
of a correspond to small values of the momentum lpl: 
sinh a= lpi/K. Therefore formula (A.10) can be rewrit­
ten in the form 

(Jl,m)(IPI) (2i)l-s ' YA (IPI)J-s 
ll>J,s;A /j" = (s-1'-l)! TI (/..j..k) ~ , fpj-+0. (A.llb) 

k~l).!+l 

It is of interest to consider the asymptotic form of 
the function ~(p,m)(a) for largep. For simplicity we 

J, s; A 
consider the case where s = 0. Then m and A are zero 
and J = z. The value of this function is easily obtained 
from (A.1). As is known, the asymptotic form of the 
hypergeometric function with respect to the parameter 
l[l3 ] is 

F(a, b,c; z) = e-'"" r~(~ a) (bz)-•[1 + O(lbzl-1)) 

+ f(c) eb•(bz)•-<[1+0(Ibzl-1))· (A.12) 
r(a) ' 

z, c, and a are fixed and -317/2 :S arg bz :S 17/2. In the 
case a = l + 1, b = l + 1 - ip/2, c = 21 + 2 we have 

F (t+ 1, Z+1-__i_p,21+2;z J 
' 2 ' 

r (2l + 2) ( i )-<1+1> - -2 pz {e-iil+f).• + e<1+Ho/2)z}, p--+ co. {A.13) 
f(l+ 1) 

Hence, for 

I F( l + 1,1 + 1--_i_ p,21 + 2· z)J2 = ( f(2l + 2) )'( pz \-2(1+1) 
. 2 , \ f(l + 1) 4 J 

X {1 + e2(1+1)z +(-1)1+1 e(!+tl•cos P; }. (A.14) 
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