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An expansion of a single-particle helicity state is obtained in terms of states which transform ac-
cording to an irreducible unitary representation of the homogeneous Lorentz group. An analogous
expansion is carried out for a two-particle helicity state in the center-of-inertia system. A rela-
tivistically invariant expansion of the helicity scattering amplitude is given. The threshold behavior

of the partial helicity amplitude is determined.

1. As is known, the expansion of a single-particle heli-
city state |[psA) in terms of states |[EJMs)) which trans-
form according to an irreducible representation of the
rotation group is given by the Jacob-Wick formula"’

|pshy = ) N,~:|EIMs)) D3tk (¢, 8, — @),

M

(1)

|EIMs).) = N, ( [psi) Dax) (9,8, — ¢)dQ,

where

Ny=t4a/ (2] +1), dQ = sin0d0dy.

The problem consists in obtaining an expansion of these
states in terms of the states |pmJMs) which transform
according to an irreducible representation of the Lorentz
group.®3! In the Lorentz group there are two group
invariants, or Casimir operators:

F=M:—N2=1+ (p2—m?) /4 G=MN=nmp/4

M and N are infinitesimal operators of the group.
Therefore, the representations of this group are char-
acterized by the two numbers (p, m). In the unitary
representation p takes arbitrary real values and m takes
integer values. The representations (p, m) and (—p, —m)
are equivalent, and we shall therefore consider repre-
sentations in which p takes positive values.

In order to solve our problem, we use the definition

of the helicity state | kpsA) with nonvanishing mass k:'*

(2)

i.e., the state | kps)) is obtained from the state at rest
| ksA) by a Lorentz transformation Zp along the z axis
and a rotation Ry g _¢. Under the Lorentz trans-
formation L(g), this state transforms in the following
way:

[#psA) = Ro, 0, —oZp| 51D,

L(g) |»psh) = X DAAlr(g, p)]| »gpsr’). (3)

N

The relation (2) defines the state | kps)) as a function
f(g) on the group g. As is known, ®*! the expansion of
the unitary regular representation

Tg.f(g) = f(gog)
into irreducible components is realized by expanding

(4)

f(g) in terms of the matrix elements of the representa-
tion of the group g. Hence, the relativistic generaliza-
tion of the expansion (1) can be obtained by expanding
the single-particle helicity state in terms of the com-
plete orthogonal system of functions

(5)

ZAD"(‘Q (@0, — ) O™ (';;') .

where éffr){l)s (Ip|/E) are the unitary matrix elements

of the representation of the Lorentz group.*®' The
orthogonality condition for these functions is

o g0 my [ P] Y\ o ©m (1P| \dp
AEN S DME{’)((P. 6, — <P)¢'J('p. s (T >DM)-(<P, 6, — ‘P)(Dl.pm (T )?

(6)

= NN 631005 Dmmd (0 — 07),
and, hence,

3 *(p’, m 2 d|
S (osem (_lgL) oem/ 1Pl )P p
A0

J,A,s\ E E =Ng;n5mm'5(p—p')

follows from the expansion of the representation (3) into
irreducible components and from the existence of the
analog of the Plancherel formula. This expansion has
been considered first by Shapiro®’ and Dolginov ™’ for
the case of particles with spin zero. The generalization
to the case of particles with arbitrary spin was obtained
by Chou Kuang-chao and Zastavenko "*!! and by Popov. %’
Let us now turn to the calculation of the normaliza-
tion factor Nglsn It is seen from the orthogonality con-

dition (6) that we must separate a §(p —p’)-like singu-
larity from the integral
§ 0,87 () 091 (o) sh2 a da,
0

(7)

where tanh = |p|/E. To this end we use the explicit ex-
p,m

pression for the function &’ ;" (@), obtained by
’ b
Dao Wong-Duc and Nguyen Van Hieu
D5 (a)=

m , ” m / ” m
—cr ?‘:, (=)o (I 4s—d—a —E——h)!\d—}-d +x——f)!

x[d!d'l(f—x—d')l(s—x—d)s(s+21—d)!
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-1

><(J+§—d;>!(h—%—i—d)!(k—;—}—d’)!]
Xexp{—<2d’+x—ig_+1_2_ip>a}
XE(1 4= g b @b a— 241, T2 1—e); (8)

here d, d’ run through the integers which leave all the
factors under the factorial sign nonnegative. The factor

Cg’ A, s contains factorials which are unimportant for

the further discussion. Using the following functional
relation for the hypergeometric function, )

ryriy—p—oa ,

I'(y—8)T(yv—a)

F(v)T'(a+8—vy)
T(a)T(B)

F(a,B,y;1—e?)= F(a, B, 1+ a+ B, e2a)

+ e Mo Fy—a,y—f1l—a—p+y;e),
(9)

we can show that for @ — «
—_ 7 ._ﬁ__l_ . / _L 7
exp{ <2d+/\, 5 zp)a} F\l—f—i 2p,d+d—l—)»

— 1, st 2 — o) »op{ —(20 45— T~ 0) a}

T(J+s+2)T(s—d—d —r+m/24ip/2)
T(s+1+ip/2)T(J+s+1—d—d —r+m/2)

—}-exp{—(s—d—}»—l—s-—d-{-%—}——;—p) a}

P+ s+2)T(d+d +r—m/2—s—ip/2)
TU+1—ip/2)T(@+d +r—m/2+1)

where s—d—-1=0,s—-d-m/2=0,d +x—-m/2 =0,
as follows from (8); we have also used F(a, 8, y; 0) = 1.

Thus, the limit of the function e ‘1P/2* V% (Jp ;“;)( @)
for @ — = is different from zero and tends to a’ constant
value only if A = m/2. Therefore the integral (7) has a
6(p —p’)-like singularity only if A = m/2. Thus (7) can
be written for p — p’

(10)

lim S(DJ & 7")( )(D?,)’A',";(a)shzada
p—>p’ 0
N
)[? lim — S cos(p — p’)ada.
p—>p’ T

= 20183, ms2| Do/ s (o0 (11)
The sum over A of the coefficients of this divergent
integral is the normalization factor N(f, m)

= antb(p 1}1) ()2
iently obtamed not from (8), but with the help of the re-
currency formula obtained in'®!. In the Appendix we
calculate the normalization factor (A.8) and find

=s)I2(J+ D)B(s+|m|/2)! (s —|m]/2)!
(J+s)1(T+14|m|/2) (T —|m|/2)1(] + 14 |m]|/2)12s!

A p? L\ | U(io/2+|m|/2) |2
x 1l (—+k2>lr(ip/2—|—./+1))

h=|m]/2+1 4

, S

. Its explicit form is most conven-

(v, m)

J\JS = 2n

(12)

Now, using the orthogonality condition (6), we write
the relativistic generalization of the expansion (1):

|xpshy = D) S Ny='te (N33 )= | wpmI Ms)

J,M,m0
o.m( |P )dp,

XDM 2 (9,0, — @)Dy, o\ g
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(xpmIMs)
= N~ (N3 )" D) S | %psh) - Dy h((Py9, _(p)q)-(p m)( IP{‘> dp_
N EJE
(13)
In this expansion, m/2 takes the values s, s — 1, ..., —s,

as follows from (11). The same selection rule for the
quantum number m was obtained in"*??. In the special
case when the spin of the particle s = 0, this formula
goes over into the formula for the expansion of the
state of a single spinless particle in terms of a system
of functions on a hyperboloid, which was obtained by
Vilenkin and Smorodinskil.!!®! Indeed, as was shown

in®®? the function DY) e, 0, —<p)<I>((Ip;\ ™)(a) goes over,

for s = 0, into the eigenfunction of the angular part of the
d’Alembert operator O, 9,0
’ I

With the help of the usual orthogonahty condltlon for
the single-particle states (A’sp’|psa) = E6(p —p’ 5)\)\
and formula (6), we can obtain from the expansion
(13) the orthogonality condition for the states |pmJMs):

(M T m/p’ | pmIMs) = S3gn0r855:8mme 8(p — p’). (14)

2. Let us now consider the two-particle helicity
states. They are defined as the product of two one-
particle states:

| %1p1sihnapasade) = |1p1siti) | opasods). (15)

As noted above, the one-particle states | kjpjsjri)

(i =1, 2) with nonvamshmg mass kj can be obtained !
from the state at rest by the Lorentz transformation
lei| along the z axis and a subsequent rotation

Res, 61,
of the momentum p; of the particle, i.e.,

—g; about the angles ¢, 6; defining the direction

(@)

[xipisiko = R"’i' 0, ~; Z](;.])i I Iuisﬁvﬂ. (163.)

We rewrite this equality in terms of the infinitesimal
operators M and N:
[wipisire) = exp {— ipiM O — 0. M,O + igpM — ia: N Y [rusne> (16b)
where tanh o; = |pj|/Ej, cosh e = Ej/kj.

Using this relation, we can write the two-particle
states in the system of their center of inertia

(p1 = —pz = p) in the following form:

| %1, %2, PSiMisahe) = exp {—ipM. — i0M,

4+ ioM; — (0N} | Aspy, 600 = R, 0, —Zp1/5: | Asiny, i)y (17)

where the angles ¢, 6 determine the direction of the
relative momentum p: M= M’ + M® N=N® + N®,
The states ]Aslh, S, >t2> are states of the particles in a

coordinate system where the first particle is at rest;
they can be obtained by the following transformation
from the state at rest of the two particles:

@ )
| 4sp,, sa,) = exp {i(ay + az)N(ZZ) — meJ) } | aSih, #aSahe).

It follows from this formula that the two-particle states
in the system of their center of inertia can be described
by the four-velocity U: = (E1/k1, p1/k1) of particle 1. In
the same way one can show that these states can be
described by the four-velocity Uz = (Ez/k2, —p/kz) of
particle 2, and also by the four-velocity
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m—f—az i -+ az
v=" ch ) sh )
\° Ipl 2 )

which is symmetric under exchange of particles 1 and 2.

The two-particle states in the laboratory system are
obtained from these states by the Lorentz transforma-
tion L_,, with the velocity v = (p1 + p2)/(E1 + E3) of the
center of inertia:™®?

[%1P181h1, %oPasSoha) =

= 02) DY (G B D (B LR 0o Z1 g1 1 A o) -

Defining the final states |kspsSsis, k4paSere) in an
analogous way, we write the helicity scattering ampli-
tude (HA) in the following form:

(18)

CNaSaPata, 7»333!’37‘31-7']%1!’131%, HoPaSahe) = E D;\.('si). ¢, pa) D;(sig ¢, ps)
)
x <Bsd,’ s3hg’ lZ[—p ],Ea R; 9 —’ L:v TL., Rw 0, —lepl/E,I Auﬂu'h’u’)
o, (s p0) D (L, pe), (19)

where the angles ¢’, 8’ determine the direction of the
relative momentum p’ of the final particles, and

|Bousaed = exp {i(as + i) NP } exp {— in} | asshs, #uside).

The right-hand side of (19) can be written, using the
fact that T is a scalar operator,

(Bupsin | Zigys Bt 07, —r Ly T Ly Ry 0, —o Zipys, | Asirisins
= Bspssi | TZigye, R o, —o Ro 0. —o Zipys, | Aspran, >
= (Bspgsi [ TLA(G) | Asisne D

G = lz—.1 (ll%) r;L 0, ~p 70, 8, —wlz (%p}) .

In order to expand the HA in terms of the matrix ele-

QMIP JM(G) of the Lorentz
group G, we must first go over from the states
1A517\152M> (iBSaxa 54A4>) to the states

|Ag, s, 00 (IBg,s,0/u)) Which are defined by the total

(20)
(207

ments of the representation D

spin of the two particles and its projection on the direc-
tion of the relative momentum of these particles. This
is effected with the help of the Clebsch-Gordan coeffi-
cients:

|Asnisngy = 2 | As 5,000 <S1820M]S1h152 — 2D,

a

[Bsﬂus.\?u) = 2 |BS3510'1L> <S3340',IJ4|337\/334 — 7\44>, (2 1)
o

where A = X1 —2Az2, 4 = A3 —As. Thus we obtain the fol-

lowing expansion for the HA:
(Bsasaﬁ’ul TL (G)
min(o, 09

= 2

P

]As,szﬂl) = a'uTox(S, t)
§ o™ (5)DEIIG (5,8)1dp, (22)

m/2 = — min(e, o’} 0

where the matrix elements of the representation of the

Lorentz group have, according to (20), the form

(23)

O G (s,t)] = Zcbc“’ " (—ag) dF (+0) s ().

J=0
The angle 6 in (23) is the angle between the relative mo-
menta of the initial and final particles, i.e., the scatter-
ing angle

tha; = |p|/E), thos= |p’|/Es.

9317

Using the representation for the Lorentz group ele-
ment G = rzl,r1, the expression for the coordinate
transformation matrices, and expression (20’), one can
write the matrix elements

DG (s,1)]
in the form
DETIG (s, 1)]

=D diat (v — p2) Oate (a)
M

X dith (1), (24)
where the angles s, @, y1 are expressed through
a3, 6, a; in the following way:
cha=chuachas—shaishascos®, shacos{p; = chassha
— sh asch o1 cos 6,
sh @cosps = ch a; sh as — sh a; ch as cos 0. (25)

These relations give a simple geometrical meaning to
the angles s, @, y1, which is indicated in the kinematic
graph of the reaction 1 +2 — 3 + 4 (cf. the figure).""?

Substituting (24) in (22), we find that the required
expansion of the HA has the form

min(o, 04 «© min{c, ¢’}
(2
wla)= 5 (o0 3 a4 @)
m/2 = —min(e, ¢’} 0 M = —min(o, 0')
D8 () AN (i) do. (26)

Expressing the energies and momenta of the parti-
cles through the invariant variables s and t, we obtain
a manifestly invariant form for the angles y¥s, @, ¥::

tham BB _ i AE
KiA3 9“1%3
cos Py = (s + i — n?) (> +us? —t) — — 212 (s 4 %5® — wad)
A (s, ,%22)A'/7(t 212, %3?) :
5 (s+%32_— i )(%12"’_7‘32_” '—2%32(3'['%12—%22)
cos Py = A (s, g, %a2) A= (£, 2, %) (27)
where

A(a, b, ¢)

Let us consider the special case where the spins of
the particles are zero. Then ¢’ =0=0, 4 =A =M= 0,
m = 0, the matrix elements of the Lorentz transforma-
tion are

= a% + b + ¢ — 2ab — 2bc — 2ac.

®F50(a) = sin (Y20a)/Yapsh a

and expression (26) for the HA goes over into the integ-
ral expansion of a single scalar amplitude with respect
to the invariant variable t:

T(s,t) = § 7(s,p) 220D 4, (28)

Yup
0
which was first obtained by Dolginov and Toptygin.

sha

{10]
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Substituting now (23) in (22) and performing first the
integration over p and the summation over m, we obtain
an expansion of the partial helicity scattering amplitude:

min(g,0%) o

Casihass| Ty (8) | sihasahed = > S Z (—AuSihass| Ss5a07 1>

mf2=-min(g, ¢') 0 ©,0

w o, — 12 )d)‘}’;:,(ﬂ)dp.

Eg \ Ei (29)

X o Tg (5){AOS281 | S1h1s2 —

Using (A.11), we find that the partial HA behaves like

Ip'lJ_Ss_S“IpIJ_'sl_Sz when |p’| and |p| tend to zero.

3. Let us consider the symmetry properties of the
scattering amplitude. To this end we write the expan-
sion for the two-particle state, in the system of their
center of inertia, in terms of states which transform
according to an irreducible unitary representation of the
Lorentz group, using (19):

©o

> S | omIMs15:6) {51520k | S1MS2 — A2d

m 0

| PSihasahe) =
XD (5,0, —e) 0L (2L ) ap,

§ S (N2 Ny | Bsahasahad (— hasshasy | s15200)
»

. . )
X Da (¢, 9, w)%,‘ﬂi"i( l;' )Fl: (30)

|’pm]M81320> =

Let us determine the action of the operators of re-
flection P, of particle exchange P, and time reversal
T on the states |pmdJMs;s.0). Using the definition of the
helicity state with definite total angular momentum J,"*’
we write formula (30) in the form

|omIMsyss0) = (N77a) =4 3} § | ETMsihassho) (— hasshass | s15200)

Ay ha O

xq)i(:’m)( I;l )r;’rjzi (31)

The effect of the action of the operators P, P;», and T

on the states |[EJMs;)\;sz)z) are defined by™
P|EIMsiMsoho) = nma(—1)7-55: | EIMsy — Myso — A),  (32)

where 7, and 7: are the intrinsic parities of particles

1 and 2, respectively,

Pio| EIMsysihs) = (—1)T—=m5| EIMshasi Ay, (33)

T|EIMsihsahs) = (—1)T-M|EJ — Msihss)s). (34)

With the help of (32) and (33) it is now easy to obtain
from (31)

P|lomIMsis:0) = nime(—1)7~°|p — mIMs;s20). (35)
[here we have used (A.4)];
Pyl pmiMsis90) = (—1)7~9|p — mIMs;s20). (36)

Hence, for identical particles, s, =sz=s, (s, + sz2)?
= siz, the states with a definite symmetry with respect
to particle exchange are defined in the following way:

{1+ (—1)2Pp} lpmIMsyp) = |pmIMsy) - (—1)I+25=s|p — mIMs,).

The difference in the signs for Bose-Einstein and
Fermi-Dirac statistics is taken into account by the
factor (—1)5,

A. VERDIEV

Analogously, we have from (34) and (31)

T|pmIMsi520) = (—1)7~™|pmJ — Ms;s:0). (37)

Thus we obtain the following symmetry property for
the (p, m) amplitude from the parity conservation law
P'SP=8:

(0’| TO.™(s) | o) = (—1)o-9 (o’ | T0:~m(s) o),  (38)

Nz
Nans
the properties of the S matrix with regard to time re-
versal T'ST = 87! imply that the matrix TR, M
symmetric:

(39)

It seems to us that the considerations of this paper
are of some interest for the reason that, using the
analytic properties of the (p, m) amplitudes, one may
attempt to determine the asymptotic value of the scat-
tering amplitude for large values of the energy.

In conclusion I regard it my duty to thank K. A. Ter-
Martirosyan, I. S. Shapiro, V. S. Popov, Yu. A. Simonov,
Ya. A. Smorodinskii, L. A. Dadashev, and N. M.
Atakishiev for a discussion of the results of this paper.

{o’| T m(s) |6) = (o] T m(s) |’

APPENDIX

we calculate the asymptotic

lpa/2 (p, m)
J 5; A=m,
Introducmg the new notation

Using the results of®?,

form of the function eZe
~(p, m) ®)].
J, 8;1=m/2
=J, J. = w, J = s, we rewrite the explicit expression

(P, (81
for <I>J, s;)\=s(a ) [ct. formula (12) of*®?] in the form

/2(3‘) for

a—>°°[

OL (@) = (1 — e e {— (s 41T~ o)a}
XF(J+1——§—p,J+1——§,2]+2;1—«e—2“>. (A.1)

It follows from the definition of the generalized Legendre
function of the second kind, tiel

P(]+1+H)F(]+1—V)( z—1 )—(Hi)( z4+1 )("‘r“)‘z
2127 4-2) 2 z—1
)
1—z

XF T4+ 14v;J4+44p; 2742
_ S(a) is simply expressed

,f? (2) = eiu-v)

(A.2)

that the function <I>(p» m)
Jd,s; A

. (J) _ _ a
th'rough the functions Q_ m/2, 1p/2(1 2/(1 —e™)), As

is easily seen from formula (7) ofm the expression for

the function q)pr’ m)z (a) is obtained from (A.1) by
-
replacing m by’—;n. Let us rewrite also the recurrency

formula (10):®’

a
ylibf'sf";f_‘(a):2sha<ha+hctha—-— 7 )CD,(Dsm)()

+ VAt O o244 (a), (A.3a)

where

@) )
YA = QO

=[0+1) T =2+ 1) (s+2)(s— A+ 1Tk

Replacing in this formula A by —, and using ¥) =v_) .,
we obtain
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© m)

a0y a(a) = 2sha (x -+ xctha+—)q>}‘j ™. ()

+ yi+1 @y, ;Z"-x—i(a) . (A.3b)
This leads to the relation

o8 (a) = 0L (a). (A.9)
The asymptotic form of the function Q(p’sfn) _ (a) for

a — « is simply found from (A.1): T

m] . m i
(DJ(:"s; s (00) = 7% exp {—- (s +1 —5 5 p)a}

XF(]+1—%p,I+1-—%—;2]—I—2;z=1\ (A.5)

Substituting (A.1) in (A.3a) and going to the limit a — «,
we now find

» 1 my/i m i
o5, 1(oo)__—Y (s—E)(—;p-—s)exp{—(s——é-——;-p) a}
E) i .

XF . _n = .
(J+1 S0, I+t — 2T 422 1). (A.6)
Repeating this procedure, we obtam the following asymp-
totic form of the function & (0, m )(a) for a — = (for posi-
tive A): »S; A

o=l (o2 o Jon( (15 b))

ikt YA

i m
><F(J+1—7p,l+1—7,21+2;z= 1). (A7)
Indeed, we can see by substituting (A.7) in (A.3a) that
the asymptotic expression for the function & P,an)(a)

2
satisfies the recurrence relation for a — . 1,7‘ormula
(A.7) leads to the very important assertion that this
asymptotic expression differs from zero only for m/2
=< ). Finally, we find an expression for the normaliza-

tion factor from (A.4) and (A.7):
[m] Y, T2
Sl

il (k2+p=/4>| I(27 4 )T (ip/2 +|m|/2)
T +1+ip/2)TT +1+4[m|/2) 1

N 20| DY Ma (00) |2 = 211[( s—

* (A.8)

X

h=}m]j2+1

Here we have used formula (9.34) of**1:

Ty—a—8)

Flapvie == = v =p "

where Re(y —a —8) > 0.
Let us now calculate the asymptotic form of the func-
tion &(p, m)(a.) for a — 0. The asymptotic form of this
5
function for A = s is easily obtained from (A.1):

(A.9)

For A= s — 1, we find the asymptotic form by substitut-
ing (A.1) in (A.3) and going to the limit a — 0:

Of_ () = (2ia) T

;05 (a) =

(A.10)

a—0.

T

Repeating this procedure, we obtain the following asymp-
totic form of the function & (0, m)(a) for a — 0:

» S5
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Vs YVs—=1+0:YOH

eom, s
®os M= Gy O D =it 2
1 8
2ia)I-s. A.11
S k=ll—£l+1]+ (e ( 2

The validity of this formula can again be proved by
substituting (A.10) in (A.3a). We note that the coefficient
in this asymptotic expression is different from zero only
for J = s, and for J = s it is equal to unity. Small values
of a correspond to small values of the momentum |p|:
sinh a = |p|/k. Therefore formula (A.10) can be rewrit-
ten in the form

3 P
A ( '—EJ- ) _

@) 7w
(s—2)! I THk
It is of interest to consider the asymptotic form of
the function &(p, m) (a) for large p. For simplicity we

)(“") , Ip|~0. (A.11b)

h=|Ml41

s
consider the case where s = 0. Then m and X are zero
and J = [. The value of this function is easily obtained
from (A.1). As is known, the asymptotic form of the
h[yl]é)ergeometric function with respect to the parameter
1" s

I(c)
I(c—

eb2(bz)ec[1 4 O(|bz|~1)];

F(a,b,

c;z)y=—e @ ——~
T(c)
I'(a)

z, ¢, and a are fixed and —371/2 < arg bz < 7/2. In the
casea=1+1,b=1+1—-ip/2, ¢ =21 +2 we have

(bz) o[1 4+ O(|bz]|~1)]

+29 (A.12)

F(z+1,z+1—%p,2l+2;z)

14 i —(+1)
:%<_iz‘“z> 7 e g eerovn), o oo (A13)
Hence, for
r@er+2) 2z \"HH)
]F(H1 : H—mp A >! = { 1‘((l—l—1) )(%)

x {1 et - (—1yras etrin s 22}, (A.19)
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