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An expansion of a single-particle helicity state is obtained in terms of states which transform ac
cording to an irreducible unitary representation of the homogeneous Lorentz group. An analogous 
expansion is carried out for a two-particle helicity state in the center-of-inertia system. A rela
tivistically invariant expansion of the helicity scattering amplitude is given. The threshold behavior 
of the partial helicity amplitude is determined. 

1. As is known, the expansion of a single-particle heli
city state Ips A) in terms of states I EJMs A) which trans
form according to an irreducible representation of the 
rotation group is given by the Jacob-Wick formula t 1 J 

IpsA.) = L; NJ-'hiE!Mst..) D.;;J.(<p, a,- <p), 
J,M 

(1) 

where 

NJ = 4n/ (2! + 1), dQ = sin adadqJ. 

The problem consists in obtaining an expansion of these 
states in terms of the states I pmJMs) which transform 
according to an irreducible representation of the Lorentz 
group. 12' 3 J In the Lorentz group there are two group 
invariants, or Casimir operators: 

F = M2 - N2 = 1 + ( p2 - m2) I 4, G = MN = mp I 4; 

M and N are infinitesimal operators of the group. 
Therefore, the representations of this group are char
acterized by the two numbers (p, m). In the unitary 
representation p takes arbitrary real values and m takes 
integer values. The representations (p, m) and (-p, -m) 
are equivalent, and we shall therefore consider repre
sentations in which p takes positive values. 

In order to solve our problem, we use the definition 
of the helicity state I KPS A) with nonvanishing mass K: t 1J 

I xpsA.) = R~. a. -~PI xsA.), (2) 

i.e., the state I KPS A.) is obtained from the state at rest 
I KS A) by a Lorentz transformation Zp along the z axis 
and a rotation Rep,(), -cp. Under the Lorentz trans
formation L(g), this state transforms in the following 
way: 

L (g) I xpsf.) = L; Di~l [r(g, p)JI xgpsA.'). (3) 
~· 

The relation (2) defines the state I KPS A.) as a function 
f(g) on the group g. As is known, r2 ' 3 J the expansion of 
the unitary regular representation 

(4) 

into irreducible components is realized by expanding 
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f(g) in terms of the matrix elements of the representa
tion of the group g. Hence, the relativistic generaliza
tion of the expansion (1) can be obtained by expanding 
the single -particle helicity state in terms of the com
plete orthogonal system of functions 

~ D (J) (p,m) ( I PI ) 
.LJ M>. (<p, a,- <p)<l>J,>.,s ~ , 
" . 

( 5) 

where <I> J(p~) ( lp I/ E) are the unitary matrix elements 
'1\, s 

of the representation of the Lorentz group. [4-BJ The 
orthogonality condition for these functions is 

~. ,. 
(6) 

and, hence, 

~ f'q:, •C~'. m~ (l~L) q:,CP, m) ( ~) P2 dp = Npm {) ,{) ( _ ') 
.LJ .) J, ~. s E J, >., s \ E E Js mm P P 
). 0 

follows from the expansion of the representation (3) into 
irreducible components and from the existence of the 
analog of the Plancherel formula. This expansion has 
been considered first by Shapiro [sJ and Dolginov uoJ for 
the case of particles with spin zero. The generalization 
to the case of particles with arbitrary spin was obtained 
by Chou Kuang-chao and Zastavenko tuJ and by Popov. tl2J 

Let us now turn to the calculation of the normaliza
tion factor Nj:· It is seen from the orthogonality con-

dition (6) that we must separate a O(p - p ')-like singu
larity from the integral 

00 r o(p•,mry (p, m) 
.\ <l>J, >.,, (a)<l>J, >., ,(a)sh2 ada, (7) 

where tanh= lpi/E. To this end we use the explicit ex
pression for the function <I>j' ~ s(a), obtained by 

Dao Wong-Due and Nguyen Va~ Hieu [4 J 

q:,J:·{'~(a) = 

=c~;:: L; (-1)d+d'(J+s-d-d'-; -t..)!( d+d'+l.- ~)! 
d,d' 

x[ d!d'l(l-A.-d')l(s-1.-d)!( s+; -d) I 



936 I. A. VERDIEV 

X ( J + ; - d') ! ( A - ; + d) ! ( A- ; + d') ! r 
X exp {- ( 2d' + A- ~ + 1 - + p) a} 

xF(J+1-; p, d+d'+A-; +1, l+s+2; 1- e-2a); (8) 

here d, d' run through the integers which leave all the 
factors under the factorial sign nonnegative. The factor 
C~· ~ s contains factorials which are unimportant for 

' ' the further discussion. Using the following functional 
relation for the hypergeometric function, Cl3, 141 

, . f(y)f(y-~-a) 
F (a, ~,y; 1- e-2") = f(y _ ~)f(y -~)F(a, ~. 1 +a+~. e '") 

+e-2(v-a-(1)a f(y)f(a + ~- y) F(y- a y- R 1-- a- R + y· e-2a) 
f(a)f(~) ' "' " ' (~) 

we can show that for a- 00 

cxp{ -( 2d' +A-~-_i_P) a} .p( J + 1-~p, d+ d' +A 
\ 2 2 \ 2 

- ~ + 1, J + s + 2; 1 - e-2<>) ->- exp{ - ( 2d' +f.- ; - ~ p) a} 

f(J + s + 2)f(s- d- d'- A+ m/2 + ip/2) 
x -=r:-:(-s 'c-+---:1:--+.,--:-ip--,/,:.,2)~r~(7J -:-+_s_+:-:-1---d7 -_:_____,d,;-' _-----:~-. +:"-:..-m--';/:::::2)-

+ exp{ - ( s - d- A+ s- d + ; + ~ p) a} 

f(J + s+ 2)f(d+ d' +A- m/2- s- ip/2) 
X f(J+1-ip/2)f(d+d'+1.-m/2+1) ' 

(10) 

where s - d -,\ ~ 0, s - d - m/2 ~ 0, d' + ,\ - m/2 ~ 0, 
as follows from (8); we have also used F( a, {3, y; 0) = 1. 

Thus the limit of the function e 1 i P 1 2 • 1 l a <I> ( P' m)( a) 
' J,>..,s 

for a - 00 is different from zero and tends to a constant 
value only if ,\ = m/2. Therefore the integral (7) has a 
o(p - p ')-like singularity only if ,\ = m/2. Thus (7) can 
be written for p - p' 

"" I . (' ,.,. o(p', m') ( ) ,.,. (p, m) ( ) h' d 
liD j WJ,A,s a WJ,h,s US a 0: 

p--+p' 0 

The sum over ,\ of the coefficients of this divergent 
integral is the normalization factor N( P, m) 

( J,s 
= 21T/<I>Jp, ~2) (oo) /2 . Its explicit form is most conven-

,mf., s 
iently obtained, not from ( 8), but with the help of the re
currency formula obtained in CBJ. In the Appendix we 
calculate the normalization factor (A.8) and find 

i\f',mJ =Z:rt (J-s)![2(J+1)!)2(s+lml/2)!(s-lml/2)! 
(I+ s)! (J + 1 + lm//2)!(1 -lml/2)! (l + 1 + lml/2)!2s! 

X n (~+k')/ l'(ip/2+lml/2) I'. (12) 
k~lml/2+1 4 f(ip/2 +I+ 1) 

Now, using the orthogonality condition (6), we write 
the relativistic generalization of the expansion (1): 

lxpsA) = ~ 1 NJ-'!.(Ni','';)-'!.lxpmJMs) 
J,M,mO 

<J' <P· m> r I PI ) xDM, ,.(cp, e,- <p)<DJ, "·, \ -E- dp, 

[xpmJMs) 

= N -'I•(Npm )-'/, 'Y (' I xpsA). D •(J)(m e - m) <D •<•· m) ( jPi) dp 
J J, .~ .L..J .) M,;;.. 't'! ' T J, A, & E E 

' (13) 

In this expansion, m/2 takes the values s, s- 1, ... , -s, 
as follows from (11). The same selection rule for the 
quantum number m was obtained in (121 . In the special 
case when the spin of the particle s = 0, this formula 
goes over into the formula for the expansion of the 
state of a single spinless particle in terms of a system 
of functions on a hyperboloid, which was obtained by 
Vilenkin and Smorodinski'i. l 151 Indeed, as was shown 
in(S,B] the function D(J) (rn e -rn)q,(p, m)(a) goes over. 

' M,>.. ""' ' "" J,>..,s · 
for s = 0, into the eigenfunction of the angular part of the 
d' Alembert operator Da e rn. 

' '.,-
With the help of the usual orthogonality condition for 

the single-particle states (>..'sp'lps>..) = Eo(p -p')oxx 
and formula (6), we can obtain from the expansion 
(13) the orthogonality condition for the states /pmJMs): 

(sM'J'm'p'lpmJMs) = DMM'/)JJ•Omm' o(p- p'). (14) 

2. Let us now consider the two-particle helicity 
states. They are defined as the product of two one
particle states: 

I XtPtStAtXzpzSzAz) = lx,p,s,1,,) I xzpzSzAz). (15) 

As noted above, the one-particle states I KiPi si >..i) 
(i = 1, 2) with nonvanishing mass Ki can be obtainedc1' 161 
from the state at rest by the Lorentz transformation 
Z IPil along the z axis and a subsequent rotation 

Rq;i> ei, -cpi about the angles CfJb ei defining the direction 

of the momentum Pi of the particle, i.e., 

(16a) 

We rewrite this equality in terms of the infinitesimal 
operators M and N: 

where tanh ai = IPii/Ei> cosh ai = Ei/Ki· 
Using this relation, we can write the two-particle 

states in the system of their center of inertia 
(p1 = -p2 = p) in the following form: 

lx~o x,, pStAtSz1.,) = exp {-icpM,- iOllfy 

+ icpM,- ia,N,} lA,,,,,_ '"" )'= R~. e, -~ZIPI/E• lA,,,,, ,,,), (17) 

where the angles cp, e determine the direction of the 
relative momentum p: M = M 11 l + M 12 l, N •= N 11 l + N 12 l. 

The states 1As1>.. 1, s2>._2) are states of the particles in a 

coordinate system where the first particle is at rest; 
they can be obtained by the following transformation 
from the state at rest of the two particles: 

JA,,,_,, ,,,,) = exp {i(a1 + a2)N~)- i:rtM~)} I x,s,1.,, xzszA,). 

It follows from this formula that the two-particle states 
in the system of their center of inertia can be described 
by the four-velocity u1 = (EdK1, PdK1) of particle 1. In 
the same way one can show that these states can be 
described by the four-velocity U2 = (E2/K2, -p/K2) of 
particle 2, and also by the four-velocity 
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U = ( h at + a2 _P_ h at + a2) 
\ c 2 I IPI s 2 I 

which is symmetric under exchange of particles 1 and 2. 
The two-particle states in the laboratory system are 

obtained from these states by the Lorentz transforma
tion L_v with the velocity v = (p1 + pa)/{E1 + Ea) of the 
center of inertia: t1eJ 

I x1p1s,A.11 x2p2s2A.2 ) = 
~ ~ ~ I = kJ D;.,. (l 1 p,) D; > (l 1 Po) LvR~. o,-~ Z 1 p 11 E, As>' '2).' ). 
(>.') I I 2 2 I I 2 

(18) 

Defining the final states IK3P3S3A3, K4P4S~4) in an 
analogous way, we write the helicity scattering ampli
tude (HA) in the following form: 

(A.,s,p,x,l A.asap3xsj T I x,p,s,A.ll x2p2s2A.2) = ~ D~!~ (l 1 p,) D;~:r, (l 1 p3) 

("A') 

x<Bs,).(s,>{ I ZJ~'//E, R';;~,O',-~·Z:::.~ TL_v R~. 6, ....,ZIPI/E.I A,,,,,,.,,> 
XD~Ydl, p,) D~~:>.,., (ll P•l~ (19) 

where the angles cp ', (}' determine the direction of the 
relative momentum p' of the final particles, and 

IB,,,.,,,,.,) = exp {i(aa + a,)N~l} exp {- inM~'} j xassA.a1 x,s,A.,). 

The right-hand side of (19) can be written, using the 
fact that T is a scalar operator, 

(B,,,,,,>., I ZJ~'//E,Ir;), 0', -~' L:~ T L...., R~. 0, -~Zip/fE, I A •••••••• ) 
= (B,,.,.,,,,, TZj;,~/IE, R;!, 6', -~' R~. 0, -~ Zlpi/EI I A,, •••••• > 

=<B.,, •••• IT L (G) I A •••••••• ), (20) 

G = z.-1 ('~n r;!, o·.-··r~. o, -~l• ( ~~). (20') 

In order to expand the HA in terms of the matrix ele

ments of the representation D~M~)JM{G) of the Lorentz 

group G, we must first go over from the states 
lAs A s A ) (IBs A s A )) to the states 1122 3344 
1As1 s2 aA> (1Bs3 s4 a'J..t)) which are defined by the total 

spin of the two particles and its projection on the direc
tion of the relative momentum of these particles. This 
is effected with the help of the Clebsch-Gordan coeffi
cients: 

IAs,l.,s,>,) = ~ jA,,s,aA) (StS2aA.JstAtS2- A.,), 
a 

jB,,,.,,,,.,) = ~ jB,,,,a·~) (sas•cr'~JsaA.as,-A.,)1 {21) 
a' 

where A = A1- Aa, J..t =As- A4. Thus we obtain the fol
lowing expansion for the HA: 

mtn(o, a? oo 

~ ~ a,T:f·m> (s)D~~~>[G(s,t)]dp, (22) 
m/2 =-min{ a, o') 0 

where the matrix elements of the representation of the 
Lorentz group have, according to (20), the form 

~ 

Da~,'::f(G(s, t)] = ~tDa~:,m> (-aa) aSf! {+8) t1>J,.;:> (at). (23) 

The angle (} in (23) is the angle between the relative mo
menta of the initial and final particles, i.e., the scatter
ing angle 

th a,= jpj I E,l th aa = Jp'J I Ea. 

Using the representation for the Lorentz group ele
ment G = r 2 lzr 1, the expression for the coordinate 
transformation matrices, and expression (20'), one can 
write the matrix elements 

in the form 

D~·~7'~>[G (s, t)] 

= ~ d~"J {n-,Pa)tD~:;;) (u) 
M 

xa<~ ('llt)l 

where the angles lj;3, a, lj;1 are expressed through 
as, (}, a 1 in the following way: 

(24) 

ch a = ch u1 ch aa - sh a, sh aa cos 81 sh a cos ¢1 = ch as sh .u, 
- sh aach at COS 81 

sh a cos ¢a = ch at sh aa - sh a, ch ua cos 8. (2 5) 

These relations give a simple geometrical meaning to 
the angles lj;3 , a, lj; 1, which is indicated in the kinematic 
graph of the reaction 1 + 2 - 3 + 4 (cf. the figure). c17 J 

Substituting (24) in (22), we find that the required 
expansion of the HA has the form 

mln(o, a? oo mln(o, a') 

a'JLTaA(s,t)= ~ ~ a•T~p,m) (s) ~ d~";J (n-,Pa) 
m(2 =-min( a, a') o M =-mlll(a, a') 

(26) 

Expressing the energies and momenta of the parti
cles through the invariant variables s and t, we obtain 
a manifestly invariant form for the angles lj;3, a, lf;1: 

cos¢1 = 

PtPa Xt2+xl-t 
cha=--= 1 

XtXa 2XtX3 
(s + Xt2- X22) {xt2 + Xa2- t) - 2xt2 (s + xs2- x,2) 

t,.'l•(s, Xt2, x,2)L'l.'!.(t1 Xt2, Xa2) 

(s + xa2 - x,2) {xt2 + xa2- t)- 2xa2{s + Xt2- X22) 
cos ¢• = ---"----'--------'-~c-'- c--::c-'-:-:-c--'c-'---c'----'-

L'l.'!. (s 1 'X821 x42) 1'!.'1• (t1 x12, xa2) 

where 

1'!. (a, b, c) = a2 + b2 + c2- 2ab- 2bc- 2ac. 

(27) 

Let us consider the special case where the spins of 
the particles are zero. Then a' = a= 0, J..t =A = M = 0, 
m = 0, the matrix elements of the Lorentz transforma
tion are 

~~>~:g.o(a) =sin (1/ 2pa)/ 1/2psha 

and expression (26) for the HA goes over into the integ
ral expansion of a single scalar amplitude with respect 
to the invariant variable t: 

r sin (pa) 
T(s,t) = J T(s1 p)-1--ap1 

0 1 •P sh a 
(28) 

which was first obtained by Dolginov and Toptygin. [10J 
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Substituting now (23) in (22) and performing first the 
integration over p and the summation over m, we obtain 
an expansion of the partial helicity scattering amplitude: 

mln(G,_O"') oo 

(A.~s.A.as8 jT.r(s) js1A.1s~)= ~ ~ }; (-A..s.A.s&slsss,O"I') 
m/2=-mln(a, a') ·o a, a' 

(29) 

Using (A.ll), we find that the partial HA behaves like 

IP'IJ-ss-s4 lpiJ-s1-s2 when lp'l and IPI tend to zero. 
3. Let us consider the symmetry properties of the 

scattering amplitude. To this end we write the expan
sion for the two-particle state, in the system of their 
center of inertia, in terms of states which transform 
according to an irreducible unitary representation of the 
Lorentz group, using (19): 

jps1A.1s~) =~I jpm/Ms1sao)(s1saoA.js1A.tB2-~ 
"' 0 

(J) (Pm) ( jpj ) 
XDM~ (q:,9,-q:)<l>.r,a,l. -Bt dp, 

j·pm/Ms1sao) = ~ ~ (N.r~::'N.r)-1 jps1A.ts~) (- A.asaA.tsdsisaoA.) 
(~) 

X D •(Jl ( 9 - )«<I o(pm) (J!i. )~ 
Ml. q;, ' CJl .r,a,l. Ei Ei. (30) 

Let us determine the action of the operators of re
flection P, of particle exchange P 12 , and time reversal 
T on the states I pmJMs1sa a). Using the definition of the 
helicity state with definite total angular momentum J, [1J 

we write formula (30) in the form .. 
jpm/Ms1sao) = (~~a)-1 ~ ~ jEIMs1A-ts2A.a) (- A.as2A.tsds1s2oA.) 

X<l> •(Pm) (j!'l_) p2dl!_ (31) 
J,a,A. E~ R.. . 

The effect of the action of the operators P, P 12, and T 
on the states IEJMs1A1SaAa) are defined byUl 

PjEIMstA.1saA.2) = 'llt1']2(-1)J-••-•'iEIMs,- A.1s2- A2), (32) 

where 111 and 112 are the intrinsic parities of particles 
1 and 2, respectively, 

With the help of (32) and (33) it is now easy to obtain 
from (31) 

Pjpm/Ms1s2o) = 1']1'1]2( -1).T-<Jj p- mlMs1s2o). (3 5) 

[here we have used (A.4)]; 

P12lpm/Ms1s2o) = (-t).r-•jp-m/Ms1s2o). (36) 

Hence, for identical particles, s1 = sa = s, (s1 + s 2 ) 2 

= s~ , the states with a definite symmetry with respect 
to particle exchange are defined in the following way: 

{1 + (-1) 28Pt2} jpm1Ms,2) = jpm1Ms!2) + (-1).7+2•-•"iP- m/Ms,2). 

The difference in the signs for Bose-Einstein and 
Fermi-Dirac statistics is taken into account by the 
factor (-1) 2s. 

Analogously, we have from (34) and (31) 

TjpmlMsiS20)= (-1).r-Mjpm/-Ms1s2o). (37) 

Thus we obtain the following symmetry property for 
the (p, m) amplitude from the parity conservation law 
p-1sp = S: 

(38) 

the properties of the S matrix with regard to time re
versal T-1ST = s-1 imply that the matrix TP, m is 
symmetric: 

(O"jTCP.ml(s) jo) = (ojTCP.ml(s) ja"). (39) 

It seems to us that the considerations of this paper 
are of some interest for the reason that, using the 
analytic properties of the ( p, m) amplitudes, one may 
attempt to determine the asymptotic value of the scat
tering amplitude for large values of the energy. 

In conclusion I regard it my duty to thank K. A. Ter
Martirosyan, I. S. Shapiro, V. S. Popov, Yu. A. Simonov, 
Ya. A. Smorodinski'l, L.A. Dadashev, and N. M. 
Atakishiev for a discussion of the results of this paper. 

APPENDIX 

Using the results of[8J, we calculate the asymptotic 
. a -ipa/2 (p m) ( 

form of the functiOn e e <I> J ~- A=m/2 a) for 
~(p m) ' ' 

a- 00 [<I> J 's· A=m/2(00)]. Introducing the new notation 
' ' J 1 = J, Ja = w, J = s, we rewrite the explicit expression 

for <1>~~-~~s(a) [cf. formula (12) of[8l] in the form 
' ' 

«DY,'~;"l.:,(a) = jJ-•(1- e-t•)J-• exp {- ( s + 1- ; - ~ p )a} 

XF (1 + 1- ~ p,/ + 1- ;. 21 + 2; 1-re-aa). (A.1) 

It follows from the definition of the generalized Legendre 
function of the second kind, [18l 

(J) f(l+1+!')f(l+1-v)( z-1 )-(Hi)( z+1 )(v+~).2 Qpv (z) = eiR(p-v) __ _ __ 

· 2f(21+2) · 2 z-1 

XF 1+1+v;l+1+!A;21+2;-2-) (A.2) 
1-z 

that the function <I>J(p, m) (a) is simply expressed 
, s; A =s 

through the functions Q(J) 12 . ~o2 (1-2/(1-e-za)). As 
. -m ,-1p,, 

is easily seen from formula (7) of[8J, the expression for 
the function <I>(p, m) (a) is obtained from (A.1) by 

J,s;.x=-s 
replacing m by -m. Let us rewrite also the recurrency 
formula (10): r8J 

(p, m) ( fJ imp ) (p, m) 
ya<I>.r,s,A-i(a)= 2sha A.a;+A.ctha- 4 <I>.r.s;l. (a) 

(A.3a) 

where 

ya = a~.c.rJa~·J= [(/+A.) (I- A+ 1) (s +A.) (s-A.+ 1)]''•. 

Replacing in this formula A by -.X, and using Y_x = y -.X+ 1, 
we obtain 
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(p,m) (a imp)..,.(p,m) yAtl>J, s;H.(a).= 2sha A. a;+ A.ctha+4 .,..J,s; -A( a) 

+ YAH Cl> J,',;"~A-1 (a) . (A.3b) 

This leads to the relation 

(A.4) 

The asymptotic form of the function ~(p, m) {a) for 
J s· A =s 

a- oo is simply found from (A.1): ' ' 

ct>f,~;"i..,(oo) = il-•exp {- (s + 1-;- ~ p )a} 
( i m \ 

XF 1 + 1---zp,l+ 1-z-;2/ +2;z = 1 (A.5) 

Substituting (A.1) in (A.3a) and going to the limit a- 00 , 

we now find 

11>}~,'~.-l(oo) = ~ (s- '!:)(_!_ p- s )exp {- (s -~-~- p) a} 
Y• 2 2 ' 2 2 .' 

XF(/+1-~p,/+1- ;,21+2;z=1). (A.6) 

Repeating this procedure, we obtain the following asymp
totic form of the function ~ (p, m) {a) for a - oo (for posi-
tive A): J, s; A 

(p, m) rr' 1 ( m )I i ) { ( m i ) } ll>J,s;A(oo)= -\k-- \-p-k exp - "-+1----p a 
k==N+I Yk 2 2 2 2 

xF(l+1- ~ p,/+1- ;,21+2;z=1). (A.7) 

Indeed, we can see by substituting (A.7) in (A.3a) that 
the asymptotic expression for the function ~(p, m)(a) 

J, s; A 
satisfies the recurrence relation for a- 00 • Formula 
(A. 7) leads to the very important assertion that this 
asymptotic expression differs from zero only for m/2 
:SA. Finally, we find an expression for the normaliza
tion factor from (A.4) and (A. 7): 

NJ.'~"'b2nl~r.·;J._,.I2(oo)l 2 =2n[( s-1;1) lr 

Here we have used formula (9.34) of[141 : 

F(a, ~,y; z = 1).= f(y)f(y-a- p) 
f(y-a)f(y-M' 

where Re (y - 0! - {3) > 0. 
Let us now calculate the asymptotic form of the func

tion ~ ( P, m) (a) for a - 0. The asymptotic form of this 
J, s; A 

function for A = s is easily obtained from (A.1): 

(A.9) 

For A= s- 1, we find the asymptotic form by substitut
ing (A.1) in (A.3) and going to the limit a- 0: 

(A.10) 

Repeating this procedure, we obtain the following asymp
totic form of the function ~(p, m)(a) for a- 0: 

J,s; A 

"'(Jl, m,l( ) Y• Ya-t .. • '\'I-tt •(2!a J-s 
.,..J,a;A a== (l+s) ... (l+l"-l+1)(s-IA.I)! ) 

1 • 
II YA (2" )l-s 

(s-IA.I)' 1 +k za · . A=IAI+t 
(A.lla) 

The validity of this formula can again be proved by 
substituting (A.10) in (A.3a). We note that the coefficient 
in this asymptotic expression is different from zero only 
for J ~ s, and for J = s it is equal to unity. Small values 
of a correspond to small values of the momentum lpl: 
sinh a= lpi/K. Therefore formula (A.10) can be rewrit
ten in the form 

(Jl,m)(IPI) (2i)l-s ' YA (IPI)J-s 
ll>J,s;A /j" = (s-1'-l)! TI (/..j..k) ~ , fpj-+0. (A.llb) 

k~l).!+l 

It is of interest to consider the asymptotic form of 
the function ~(p,m)(a) for largep. For simplicity we 

J, s; A 
consider the case where s = 0. Then m and A are zero 
and J = z. The value of this function is easily obtained 
from (A.1). As is known, the asymptotic form of the 
hypergeometric function with respect to the parameter 
l[l3 ] is 

F(a, b,c; z) = e-'"" r~(~ a) (bz)-•[1 + O(lbzl-1)) 

+ f(c) eb•(bz)•-<[1+0(Ibzl-1))· (A.12) 
r(a) ' 

z, c, and a are fixed and -317/2 :S arg bz :S 17/2. In the 
case a = l + 1, b = l + 1 - ip/2, c = 21 + 2 we have 

F (t+ 1, Z+1-__i_p,21+2;z J 
' 2 ' 

r (2l + 2) ( i )-<1+1> - -2 pz {e-iil+f).• + e<1+Ho/2)z}, p--+ co. {A.13) 
f(l+ 1) 

Hence, for 

I F( l + 1,1 + 1--_i_ p,21 + 2· z)J2 = ( f(2l + 2) )'( pz \-2(1+1) 
. 2 , \ f(l + 1) 4 J 

X {1 + e2(1+1)z +(-1)1+1 e(!+tl•cos P; }. (A.14) 
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