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The temperature dependence of AFMR in hematite (a - Fe20 3) is studied experimentally for the 
external magnetic field lines parallel or perpendicular to the axis of easy magnetization. The ex­
perimental conditions are H = 0- 200 kOe, T = 77-293°K and "-unf >::< 8 mm or 4 mm. As expected, 
with increase of temperature the resonance field strengths decrease, but considerably earlier than 
the Morin point TM >::< 260° K the resonance intensity at a frequency l.lr = 37.7 GHz unexpectedly 
drops to zero. This "fremature" disappearance of resonances occurs at T~ >::< 205° K in a perpen­
dicular field and at T D >::< 240° K in a parallel field. No such pronounced effect is observed at a 
frequency vr = 72 GHz. 

A phenomenological calculation of the dynamics of the hematite magnetic system is performed by 
taking into account the ''second anisotropy'' constant for the antiferromagnetic vector I. Introduc­
tion of this constant leads to duality of the wres( H) dependences near those values of H for which 
transition from a phase with lz "' 0 to a phase with lz = 0 occurs and, as a consequence, to the 
formation of "gaps" in the dependences. The calculated temperature dependence of the gaps can 
explain the "premature" disappearance of resonances (for both magnetic field orientations) ob­
served at vr = 37.7 GHz and also the absence of a similar anomaly for vr = 72 GHz. It follows 
from the calculation, moreover, that the strength of the parallel "spin-flop" field in hematite H~1 
is not equal to wo/Y (wo is the AFMR frequency in zero field) as observed in ordinary antiferro­
magnets with a small second anisotropy constant. Satisfactory agreement with the experimental 
data is obtained for the following values of the effective field strengths: 2HE = 8960 kOe; H D 
= 22.7 kOe; HA4(77°K) = 0.382 kOe; HA2 (77°K) = 0.222 kOe. It is concluded that at 77°K the 
phase transition in hematite in a perpendicular field Hi = 130 kOe and at higher temperatures is 
a first-order transition; however, the discontinuity of the magnetic moment ( ~m(i7 o K) 

~ 0"(300°K)/8) and the gap in the AFMR spectrum (w(hoK)/y >::< 6 kOe) are relatively small. 

1. INTRODUCTION 

INVESTIGATIONS of the static and dynamic properties 
of hematite (a - Fe203, rhombohedral structure), per­
formed during the last 3-4 years in a large number of 
laboratories[1-15 l on artificial single crystals, have 
greatly advanced our understanding of the features of 
the behavior of this most popular among all antiferro­
magnets (AF). Particularly interesting details were 
observed in the investigation of the low temperature 
( T < TM = 262° K[ 11l) phase of the hematitie, in which 
it is an AF with "easy axis" (EA) anisotropy. It has 
turned out that, besides the known "flipping of the 
sublattices" in the parallel field, a magnetic phase 
transition is possible also in a magnetic field of defi­
nite magnitude perpendicular to the EA. This transi­
tion is accompanied by a change in the character of the 
magnetization curve m1( H1) (from a dependence in 
the form m1 = x<1>H 1 at H1 << H~ to a dependence in 
the form m1 = o-~2> + x cz>Hl at Ift ) and the appearance 

1 1 
of resonance absorption at relatively low frequen­
cies[9,13l. It was observed that with increasing tem­
perature, the sharpness of this transition, as deter­
mined from the m1( H1) curve, increases with increas­
ing temperature from that of liquid nitrogen to the 
Morin point TM: at T = 77° K, a jump of the deriva­
tive dm1/dHl is observed in the transition field Hi, 
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whereas near TM, a quasidiscontinuous increase of 
the magnetic moment m1 itself takes place in a field 
H~ (T ). 

In the first approximation, the picture of the phase 
transition in a perpendicular magnetic field, especially 
at low temperatures, can be well described by the 
phenomenological theory that takes into account only 
three interactions-- exchange with parameter B, 
anisotropy parameter a, and Dzyaloshinski1 interaction 
with parameter /3[9, 16 ' 171 : with increasing field, rota­
tion of the antiferromagnetic axis (AF axis) occurs 
from the EA, which is parallel to the C3 axis of the 
crystal, to the basal plane, and in the critical field Hl 
the AF axis falls in the basal plane. An experimental 
study of the resonance predicted by this theory, how­
ever, leads to a value !3 (77°K) = 30 k0e[9l, whereas 
from the measurements of m1 ( H1) at practically the 
same temperature it follows that !3 ( 110° K) 
= 22.7 k0e[12 l, which coincides with the value !3 (293°K) 
= 22 kOe obtained from resonance[2 l and static[ll ex­
periments in the high temperature (easy-plane) phase 
of the hematite ( T > TM). In addition, the simplest 
theory does not predict any change in the qualitative 
characteristics of the aforementioned transition in a 
perpendicular field with increasing temperature. 

Cinader, Flanders, and Shtrikman[11 l, in a study of 
the phase transition induced by a perpendicular field 
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in the immediate vicinity of the Morin point ( T::; TM), 
have shown by numerical calculation that the break is 
observed in the m1 ( H1) plot for a field H1 = Hi when 
account is taken of fourth-order anisotropy for the AF 
vector. It also follows from the calculation that with 
decreasing temperature the magnitude of the jump de­
creases. Levitin and Shchurovr12 l measured in detail 
the m1 (Hl, T) curves for the region H1 = 0-150 kOe 
and T = 120-291 o K, and attempted to describe ana­
lytically the change observed by them in the character 
of the transition with changing temperature, likewise 
by introducing a second anisotropy constant (lBJ ll. 

In order to determine the connection between the 
temperature change of the character of the discussed 
transition and the resonance absorption near the 
critical point, and also to find the causes of the quan­
titative difference between the values of {3 (77°K) ob­
tained by simplest reduction of the resonance and 
static experiments, we have undertaken an investiga­
tion of the temperature dependence of the resonance 
absorption in the easy-axis hematite at the microwave 
wavelengths A = 8 and 4 mm. 

It was observed that at A = 8 mm and H 1 C3, an 
increase of temperature leads not only to the expected 
smooth decrease of the resonance field, but also to a 
sharp drop in the intensity of the resonance in a narrow 
temperature interval near T~ ~ 200°K, i.e., long before 
the Morin point TM = 262°K is reached21 . 

As shown by us below, this phenomenon ("prema­
ture" vanishing of the resonance) is closely connected 
with the temperature change of the character of the 
transition in hematite. In particular, this phenomenon 
is sufficiently well described quantitatively if account 
is taken of the "second anisotropy constant" in the 
calculation of the dynamics of the system. At the same 
time, it is possible to bring in agreement many of the 
previously determined experimental characteristics of 
the hematite, and furthermore predict the "premature" 
vanishing of the resonance in the frequently investi'­
gated case when the external magnetic field is parallel 
to the EA. This effect was also observed experimentally. 

2. PHENOMENOLOGICAL THEORY 

1. We consider first in as general a form as possi­
ble the influence of the energy terms of order higher 
than the second on the static and dynamic properties 
of hematite in the easy-axis state (i.e., when T < TM ), 
placed in a magnetic field perpendicular to EA C3 
(C3 II z; H II x). We shall adhere here to the calcula­
tion sequence used inr131 , and write down the magnetic 
energy of the crystal, followingr 191 and being interested 
only in effects that are isotropic in the basal plane, in 
the form 0 = 2M0 JC: 

1 1 It should be noted that the need for taking into account this cons­
tant in the description of the behavior of low-temperature hematite (in 
a parallel field) was also pointed out by Bessez, Mozzish, and Searle [10]. 

2 lThis phenomenon was observed independently and simultaneously 
by Rudashevskii and Miznov, using a spectrometer with a constant mag­
netic field (Hmax = 110 kOe), see [15 ]. 

C D a2 + 4m' + zm'l,'- Tl,'- fl, 2 (mxly- mylx) 

G e + 2m'(mxly- mylx)+ 2 (mxly- mylx)'- mH. (1) 

Here 2Mo is the saturation magnetization of the crystal; 
m and l are ferromagnetic and antiferromagnetic 
vectors (seer131 ); B and C are the exchange-interac­
tion constants; a1, b, and {3 are the second-order 
relativistic-interaction constants; D and G are the 
constants of the mixed interaction (exchange-relativ­
istic interaction); a2, f, and e are the fourth-order 
relativistic-interaction constants. In accordance with 
the chosen form for writing down the energy (which 
differs somewhat from that used by usr 13 l), all these 
constants are the effective fields of the corresponding 
interactions and therefore, like the external magnetic 
field H, are measured in Oersteds (Gausses). The 
fourth-order terms with coefficients C, G, and e will 
henceforth be neglected, since they contain the small 
quantity m raised to a sufficiently high power. 

As before[9' 13 l we are interested in the temperature 
region T < TM << TN, and we therefore assume the 
sublattices to be magnetized to saturation; assuming 
an isotropic g factor, this leads to 

m' + 12 = 1; (ml) = 0. 

2. From the equations of motion for m (t) and 
l (t) (seer131 ) it follows that when H = ( H, 0, 0) the 
equilibrium values of the components my, mz, and 
lx vanish, and their small deviations oscillate at a 
frequency w21 in the first phase ( lz "" 0) and w22 in 
the second phase (lz = 0 ), see below. 

For the other three components we can easily de-
rive 

(2) 

where 

inx = -l7F, 
iv = l,(<D- H), 

i, = mxF -ly(<D- H), 

(3a) 
(3b) 
(3c) 

F(mx, lv) == a.'JC' I aly == :Je{; <D(mx, lv)- H == a:JC' I amx == :Jem'; 

, a, B + D + a, a1 + a2 
)ff (mx, ly) =- 4 + --'-2-- - mx2 + --2-Zy2 - (~ 

D+az 2D+a, az + /) mxly - ---mx2ly2 - mx'• - -ly4 
2 4 4 

+ fmxly (mx2 + ly2 ) - m,H. (4) 

(This is obtained from (1) by making the subsututions 
my = mz = lx = 0 and l~ = 1 - mi - ly) Equation (3c) 
owing to condition (2), follows from (3a) and (3b). 

Examination of small deviations ( mx - .mx + llx; 
ly- ly + Ay; lz- lz + Az; llx• Ay, Az- elwt) from 
the equilibrmm positions in the first and second phases 
leads to the following system of homogeneous equa­
tions31 for J.l.x, >..y, and Az with the following coeffi­
cients: 

3 >Here and throughout (with the exception of fhe figures) we write 
for brevity w in lieu of w/'y, where 'Y is the magnetomechanical ratio. In 
the numerical calculations for hematite we use a value of 2 for the g­
factor [6 ]. 
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the expression for :tt.[1• In view of this, with practically 
no sacrifice in accuracy, we have henceforth put 
throughout, for simplicity, C = D = f = 0, and undertook 
in this approximation a detailed calculation of the dy­
namics of the system under consideration. 

In addition, since in hematite, owing to the relation 
a1 « {3 « B, the phenomena of interest to us take 
place at values m :S a1/f3 « 1, all the subsequent cal­
culations were made under the assumption that l~ = 1 
- m~ - l 2 ~ 1 - z;. It was frequently convenient (es­
pecially lor the case H 1 C3) to express all quantities 
as functions of l1 = l I (H), rather than H (l§ is the y 
component of the AFyvector in the first phase). 

4. Hematite at T < TM, H 1 C3. Only the terms 
with B, {3, a1, a2, and b, and the condition (10), were 
taken into account; we introduced the parameter K ( T) 

HVa2B, where H~ = a1B - {32 • 

Phase with lz ..,. 0: 

m1 = (~l, +H) I B, ~H = a~lt(1 + x -1,2 ), 

(w 11.L) 2 = a~(i-112 ) (1 + x- 3112 ), 

(w21.L )2 = a.B(1 + x- lt') + H2 = H(H + ~ /1,). 

Phase with lz = 0 
mx = (~ +H) I B, ly ~ 1, 

(w12.L) 2 = ~H- Ho2, 

(w22.L )2 = H(H + ~). 
We express the energy difference of these two 

phases as functions of l1: 
:Jf1 - :Je2 = tf.a2(1-lt) 2 [3lt2 + 211 - (2x + 1)]. 

(12a) 
(12b) 
(12c) 

(13a) 
(13b) 
(13c) 

The unexpected simplicity of this expression makes it 
possible to obtain the subsequent results in explicit 
form. 

A transition from the first phase ( lz ..,. 0) to the 
second (lz = 0) will occur when :JC1 - :Jf2 = 0, i.e., 
either when l 1 = 1 if K > 2, or else when 

(14) 

if K =s 2, for at this value of K the quantity l~ < 1 (we 
recall that l1 = ly( H) cannot be larger than unity). 

The relations described by formulas (12) and (13) 
are shown in Fig. 2 (the construction was made for the 
values of B, {3, a1 and a2 determined below from a 
comparison with experiment at T = 77°K, where 
K = 1.46 < 2, and at T = 215°K, where K = 0.5 ). The 
most characteristic parameters of the phase transition 
(in this case-of first order!) are determined by the 
following formulas, which are valid when K =s 2: 

H.Lt = a~[9x + 4 + (2 + 3x)l'4+ 6x) /27~, (15a) 

(w 11J. 1 ) 2 = 2a2B[(2 + 3x) 2 - (9x-2)l'4 +6x] /27, (15b) 

(w12H ) 2 = a.B[ (2 + 3x)l'4 + 6x- (18x- 4)] /27, (15c) 

./1.m == m2t- m1t = ~(4- )f4 + 6x) /3B, (15d) 
H.L<1l = 2a2B(x + 1)'!. /3'1·~, H.L<2l = H02 / ~, (15e) 

wuiH_j_~o = wo ==[(at+ az)B- ~2)'1• == [a.B(x + 1)]'1•, (16) 

(see also Fig. 1). 
If the relative magnitude of the different interactions 

were such that K > 2, then the transition from the 
first phase to the second would occur without jumps in 

wfr, kOe b wfy, kOe 
tOO ,··~~~~,4--T--I?v-~,...._.,zo 

FIG. 2. AFMR spectrum in a perpendicular field for an easy-axis AF 
with Dzyaloshinskii interaction and with allowance for the second aniso­
tropy constant. The plotting was in accordance with formulas (12) and 
(13) for hematite. The parameter values B = 8960 kOe and (3 = 22.7 kOe 
were obtained by reducing the results of static measurements of Vos­
kanyan, Levitin,. and Shchurov [12), while the parameters a1 (T) and 
a2 (T) were obtained by reducing the experimental resonance data (see 
Figs. 4 and 6 below). The first and second subscripts of w denote the 
number of the branch and the number of the phase, respectively. Curve 
I - w 111, 2- W 211, 3- w 111, 4- w 121, 5- w 111, 6- w 1i, 7- W211, 
8- w 2i, For curves I and 4, a1 = 0.382 kOe, a2 = 0.222 kOe, and T = 
77°K; for curves 5-8, a1 = 0.173 kOe, a2 = 0.234 kOe, T = 215°K. 

the quantities mx and ly (i.e., by means of a second­
order phase transition), with 

1yt ~ 1; 

H.L t = H.L<1l = H.L<2> = Ho2 ! ~; 
Ol!I.L t = Olt2.L t = 0 (17) 

In this case there can exist a temperature T* such 
that K ( T*) = 2 (at this temperature a change takes 
place in the order of the phase transition); then, for 
temperatures T > T* but close to T* (such that 
2- K(T) « 1), the relations (15b, c, d) can be 
readily expanded in series: 

wu.L t ~ 2w,o.Ln ~ 
~ (a2B)'"(2-x) /2, 

!1.m ~ ~(2-x) /4B. 

(18a) 

(18b) 

Thus, when the temperature rises from 0° K, a change 
in the order of the phase transition induced by a per­
pendicular magnetic field can take place in the AF type 
hematite. As soon as such a change takes place (the 
transition becomes of the first order), a gap wf~ ap­
pears in the dependence of the AFMR frequency on the 
field and increases with temperature, first slowly (see 
formula (18a)) and then more and more rapidly 
(formula (15c)). 

The ambiguity of the dependence of the AFMR fre­
quency on the field in the segment from Hf' to Ht' 
(at K < 2) is evidence of the presence of metastable 
states separated by an energy barrier, as is typical 

FIG. 3. AFMR spectrum in a 
parallel field, plotted under the same 
conditions as in Fig. 2. Curve I -
w 11 11, 2- w 1211, 3- w 21 11, 4- w 2211, 
5 - w11 11, 6- W 1211, 7- w21 11, 8 -
w22 11. For curves I - 4, a1 = 0.382 
kOe, a2 = 0.222 kOe, T = 77°K; for 
5 - 8, a1 = 0.173 kOe, a2 = 0.234 
kOe, T = 2!5°K. 

wfr kOe J 
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where 
I 823(' 

3Cmm""' -8 2 = B +D + ~- (D + ~)ly2 - 3(W + D-2)mx2 + 6/mxly, 
mx 

I 823(' 
3Cu ""'{ii2 =at+ a,- (D + a,)mx2 + 6fmxly- 3D-21y2, (6) 

v 
I 823(' 

3Cm~""' 8mx81v = -[(p+J) +2(D+az)mxlv-3f(mi+lv')]. 

The equilibrium values mx = mt( H) and Zy = l d H) 
for the first phase ( lz ;.o 0) are given, as follows from 
(3a) and (3b), by the equations 

F(m~, It)= 0, .P(mt, It) =H. 

The energy in the equilibrium state is determined in 
this case by the expression 

D-2 B+D+az a1 +a2 3 
.'Yet= -4-----2--mt'+--2-lt'+'4 (2D 

az D+az , 
+ D-2) mt•- 411• + --2- mt2lt2 - 2jm1311• 

For the lower AFMR frequency branch in the first 
phase (lz ;.o 0; :Hz= ae~ = 0) we obtain from (5) 

(7) 

(Sa) 

where 

The first index of w denotes the branch number and 
the second the phase number. 

(8b) 

Differentiating the system (7) with respect to H, we 
obtain expressions that also contain the function 
fl (m1, ll): 

dmt :Jfu'(mt, lt) dl1 .o/t;,.1(mt, It) 
dH =~~; dH =- A(m1,l~-)-

The second phase ( lz = 0; ly ~ - mxF = lyH) is 
characterized by the relations 

1-2m2 
(B-at)mx-P x H, ly=l'1-mx2; 

)'1- mx2 

:Jfz=~- B-a1 mi- Pmx3 

2 2 y1-mx" 

oo122 = (flmx-atlu) [(B-at)l~+flm}- 2mx'). 
1'1- mx2ij 

As expected, by starting from the form of :Je (see (1)), 
allowance for the fourth-order terms does not affect 
the characteristics of the second phase when H << B 
(with just this purpose in view, we chose to write down 
the fourth-order terms in a form different from that 
used by Levitin and Shchurov in[18l ). 

3. We now analyze the change of the quantities m1, 
l1, and w~1 with increasing external magnetic field and 
the relative contribution made to this change by differ­
ent fourth-order terms (with the coefficients C, D, a2, 
and f). We shall take into account here the fact that 
we know the exact expressions when C = D = a2 = f = 0 
(these are given in [9 ' 131 ). 

By regarding l1 formally as an independent variable, 
we know that with increasing l 1 the quantity w~1 can 
vanish as a result of the vanishing of either lz or fl. 
If Zz = 0 initially with increasing l1, then a continuous 
transition to the second phase takes place, since the 
latter is in fact characterized by the condition lz = 0. 

FIG. I. Illustration of the dependence of the frequency of the fu-st 
AFMR branch on the magnitude of the perpendicular field in im easy­
axis AF with the Dzyaloshinskil interaction and with account of the 
fourth-order interactions. The curves were plotted for a concrete case 
(hematite, T = 2!5°K), but they reflect the general type of the regular­
ities discussed in Sec. 2, Item 3. 

On the other hand, if at first fl = 0, then with further 
increase of l1 the quantity w~1 becomes smaller than 
zero, thus evidencing absolute instability of the solu­
tions of the system (7), and a jumplike transition to the 
second phase must take place. A general idea of the 
dependence of wL on l1 and H1 is given by the curves 
in Fig. 1, although they have been plotted for the con­
crete case of hematite (see below). 

The quantity fl is determined by expressions (8b) 
and (6). When H = 0 we have mx = ly = 0 and 

AIH=O = oou2 IH=o = (at+ az) (B + D + az)- (fl + /) 2• (9) 

This quantity is larger than zero, since we are con­
sidering a stable easy-axis temperature phase of the 
hematite ( T < TM), but decreases with increasing 
temperature (mainly as a result of the decrease of a 1 ). 
If we assume, for example, that D > 0, a2 > 0, and 
f < 0, then a situation is possible wherein fl vanishes 
with increasing H, by virtue of the simultaneous in­
crease of mx and ly (see formulas (6)!) at smaller 
values of mx and ly than those at which l z = ( 1 - m~ 
- ly )112 vanishes. This situation occurs all the sooner 
for hematite, the larger C, D, a2, and f, or the smaller 
fljH=O, i.e., the higher T. 

Let us estimate the relative contribution of different 
fourth-order terms to the value of fl. We note here 
that we should assume apriori that a1 ~ {3 (since the 
nature of these second-order interactions is the same). 
For hematite, on the other hand, experiment yields 
{3 >> a1 (this circumstance apparently is worthy of a 
special analysis from the microscopic point of view). 
We therefore have 

(10) 

The relative contribution of the fourth-order terms 
can be estimated by taking for the first phase the 
values of mx and ly obtained by us[ 9 ' 13 l with allowance 
for only the second-order terms in the crystal energy: 

mx~atffl:and lv~ 1 for H.1.~H.1. 1- (11) 

Substituting (11) in (6) and (8b) and taking (10) into 
account, we can easily show that, from among all the 
fourth-order terms, the largest contribution to fl is 
made by the term a2l~/4, owing to the term 3a2Zy in 
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for first-order phase transitions. If the time of transi­
tion of the system through this barrier is small, then 
the AFMR, by virtue of the presence of the gap wfJ:, 
will be observed only at frequencies larger than a 
certain value. In addition, it can be easily shown that 
dw:bVciK < 0 when 2 <:::: K > -%, and therefore, since 
dK/dT < 0 in hematite (see below), wtl increases with 
temperature, and if the resonance is observed at con­
stant frequency, it should vanish when a definite tem­
perature is reached. This is precisely the effect which 
was observed experimentally (see[lSJ and Fig. 4). 

The quantities Hi_11 and Hf1 determine the field be-

yond which the corresponding phases are absolutely 
unstable. In the field interval between these two ex­
treme values {Hi_11 - Hf> ~ 2.2 kOe at T = 77°K), 

hysteresis is possible in the m1 ( H1) dependence, and 
also the conservation of one of the resonances. How­
ever, in the concrete case of hematite, the system 
overcomes the energy barrier apparently quite rapidly, 
and therefore under ordinary conditions (for example, 
pulsed fields with a growth rate smaller than 
50 kOe/msec), no such effects are observed. 

5. Hematite at T < TM, H II Cg. All the phenomena 
are considered by us for T <<TN, so that we assume 
for simplicity that a = x 11/X1 ~ 0 {this agrees quite 
well with the experimental data[l2J ). 

Phase with 
c l, ¥= 0: m = 0; lx = ly = 0; l, = 1, 

Clhtzt = wo=FH; 
wo ""' [(at+ a2}B- (32]'1• 

""' [aJl('X + 1} ]''•. (19) 

Phase with 
c l, = 0: my = lx = 0; mx 

~ ~I B; m, ~ HI (B +b); lu ~ 1, 

w12ll = 0; 002211 = (H2 - Ho2)'"· (20) 

The two phase energies (.7C~ and 3&~1 ) become equal 
when 

Hu 1 =[(a,+ 1!2a2)B- ~21'" 
""' [a2B(x + 112} ]''•. 

Plots of (19) and (20) are illustrated in Fig. 3. 
Since 

(21) 

wa111 = [a2B(x+ i)J"o- [a2B(x + 1/ 2)]''• 

' (22) 
it can be easily shown that dw ~F/ciK < 0, i.e., the gap 
in the w(H11) dependence exists at any temperature 
T < TM and increases with increasing temperature 
(if it is assumed that B, {3, and a2 do not depend on 
the temperature in first approximation, and dK/dT < 0, 
as is the case for hematite). 

6. The Morin point TM, i.e., the temperature of the 
spontaneous reorientation of the AF vector, is ob­
viously determined by the requirement Hi = Hr1 = 0. 

Expressions (15a) and (21) for Hi and H~1 then lead to 

the following equation for TM: (a1 + a2/2) B- {3 2 = O, 
i.e., K (TM) = -%, where it must be assumed that 
B, {3, a1, and a2 are known functions of the tempera­
ture. At the Morin point, the frequency gaps reach the 
following values (which obviously hold when H = 0): 

W11.L:I = Cilt&.L t = wu.Lt = Cil2illt = Cil2211t = (a,B/2) '1•""' toM; 

Wf211t = Cil22.L t = 0. 

• 0 

ru 
./rei 

f.(/~.--~~~"-..! 

.5 

TM 

FIG. 4. Temperature dependence of AFMR in hematite in a field 
perpendicular to the C3 axis (Hfi~.li - field of second absorption peak, 
Irel- relative intensity of this peak), "r = 37.7 GHz: e- H~i~s' sample 
No. l; 0- Hfi~s' sample No.2; •- Irel• sample No. l; 0 - 1rel sample 
No.2; Q, liiJ -corresponding data of Rudashevskii [14 ) for resonance in 
the easy-plane phase 

3. EXPERIMENT 

1. Apparatus. We studied the temperature depend­
ence of the AFMR in hematite in the temperature range 
from 77 to 300°K with the aid of a reflex radio spec­
trometer with a pulsed magnetic field, described in[9• 13 1. 
The required sample temperature was maintained con­
stant by directly regulating the current in a heater 
wound around the waveguide, and was measured with a 
chromel-copel thermocouple. The working junction of 
the thermocouple was glued to the outer wall of the 
waveguide as close as possible to the sample. The 
absence of an appreciable temperature difference be­
tween the working junction and the sample was verified 
with the aid of an analogous thermocouple, the junction 
of which was glued directly to the sample. The accuracy 
with which the temperature was maintained and meas­
ured was ± 1 o K. 

2. Samples. We used for the measurements samples 
meauring about 1 x 3 x 3 rom. These were cut from 
single crystals grown in different laboratories; sample 
No. 1-from a single crystal grown by V. M. Skovikov 
(Institute of General and Inorganic Chemistry); sample 
No. 2-single crystal grown by R. A. Voskonyan 
(Crystallography Institute), i.e., sample No. 2 was of 
the same origin as that used in [l2J for static measure­
ments. Each of the samples had a clearly pronounced 
natural face parallel to the basal plane of the crystal. 
Therefore the accuracy with which they were glued to 
the waveguide, which determines the accuracy of 
orientation of the external magnetic field relative to 
the principal directions of the crystal, is estimated to 
be ±1°. 

In the investigation of AFMR in a field perpendicular 
to Ca axis, the azimuthal orientation of the field in the 
basal plane was not determined by us. As shown by 
investigations of E. G. Rudashevskii and S. V. Mizonov 
(private communication), the temperatures of the 
"premature" vanishing of the resonance (see[ls]) may 
differ slightly (up to 10°) for different field directions 
in the basal plane {for example, along the U2 axis and 
at a right angle to it). It was not our purpose, however, 
to investigate these fine details. 
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FIG. 5. Temperature dependence of the resonance fields for the 
case H1C3 at a frequency vr = 72 GHz (resonance-field measurement 
error± 3 kOe). In the shaded region, the obtained resonance absorption 
does not lend itself to a simple and unambiguous reduction. The solid 
lines I and 2 are the result of calculation by formulas (12a) and (12b) 
for the low-field resonance (I) and by formula (13b) for the high-field 
resonance (2). 

3. Resonance in perpendicular field ( H 1 Ca ). Fig­
ure 4 shows the temperature dependence of the main 
characteristics of the AFMR (at the working frequency 
vr = 37.7 GHz ) in hematite in the case when the ex­
ternal magnetic field was perpendicular to the C3 axis 
of the crystal. At T = 77° K, two peaks are observed 
(in fields Hiies and Hl~es), which shift with increas­
ing temperature, as expected, towards lower field 
values. The width of each of the peaks, roughly meas­
ured at half the height, is estimated by us to be 4 kOe 
and does not depend very strongly on the temperature. 
The peaks are separated from one another slightly, 
and therefore in Fig. 4, for simplicity, we show the 
temperature dependence of the resonance field of only 
the second (strong-field) peak of the resonance absorp­
tion. Long before the Morin point is reached, the in­
tensity of both peaks decreases quite rapidly to zero: 
for sample No. 1 this "premature" vanishing of the 
resonance occurs st T~ = 210 ± 4° K, and for sample 
No. 2 at T~ = 202 ± 4 o K. The rate of vanishing of the 
resonance with changing temperature is also slightly 
different for the two samples, but by virtue of the very 
low accuracy with which we determined the intensities 
of the peaks (simply from their height at constant 
microwave power at the spectrometer input), this dif-

yrt //~es (1} 

'"a(77oK) 
t.o~--- ~---~ 

I 
I 

u~5~ 
I 

I I rei 

~~· 
{I JO !f!tO 150 Z.f. 7; 'K 

r: '"' 
FIG. 6. Temperature dependence AFMR in hematite in a field paral­

lel to the C3 axis (H\~~s- field in which a maximum of resonance 
absorption is observed; Ire!- relative intensity of this absorption): 
w0/~I/7°K = 67 ± 4 kOe, vr = 37.7 GHz, e- H\1~~ , sample No. I, 0 
- H\ires' ~am~le No. 2, • - Ire!, sample No. 1, D -ire!, sample No. 2; 
Wo[rl n K- 67 ± 4 kOe, Vr = 72 GHz, b.- H~~~S' sample No.2, Wohl 
77 K = 75 ± 5 kOe, vr = 70 GHz, .& = H\1~Js, data of [6 ]. 

ference cannot be described quantitatively. At tem­
peratures exceeding 250°K, absorption again appears, 
corresponding to the usual resonance in the easy-plane 
phaser14 l. 

The measurement of the temperature dependence of 
the positions of these peaks at double the frequency 
llr = 72 GHz reveals a qualitatively different picture 
(Fig. 5): no clear cut vanishing of the resonance with 
increasing temperature is observed. In the region 
200° < T < 240° K, the picture of the resonance ab­
sorption becomes more complicated. The number of 
peaks apparently becomes larger than two, and since 
their distances from one another begin to become 
comparable with their widths, it is difficult to obtain 
an unambiguous interpretation of the experimental 
data. In Fig. 5, this region is shown by the shaded 
section. With further increase of the temperature, the 
picture again becomes clearer: above 240°K there is 
observed one rather narrow ( ~H < 1 kOe) absorption 
peak, the position of which does not depend on the 
temperature and is in good agreement with the formula 
w = y..j H ( H + HD), which is characteristic in first 
approximation of AFMR in the easy-plane phase of the 
hematite[2 J. 

4. Resonance in parallel field ( H II Ca ). As a rule, 
the resonance of the easy-axis AF is investigated pre­
cisely at this orientation of the external field. Fonez 
and Williamson investigated the temperature depend­
ence of Hures in the low-temperature (easy-axis) 
hematite in the wavelength ranges Ar ~ 4 and 2 mm[6 l. 
We performed similar measurements in the ranges 
Ar ~ 4 and 8 mm (see Fig. 6). 

The agreement of the results at Ar ~ 4 mm is al­
most complete-if we compare the temperature depend­
ences of the resonance fields referred to 77°K. The 
difference in the absolute values ( Hures = 50 kOe in[eJ 
and H11res = 41 kOe in our case) is not surprising, 
since the magnitude of the anisotropy field (and con­
sequently also of the resonance field) in hematite can 
differ for samples of different origin, owing to its 
strong dependence on the impurities rs,10J. 

At Ar ~ 8 mm, the resonance absorption in a 
parallel field has a qualitative singularity similar to 
that described above for a perpendicular field: at a 
temperature T~ = 240 ± 2°K, its intensity drops 
rapidly to zero. Details of this effect, observed in both 
our samples, are given in the caption of Fig. 6. 

4. DISCUSSION OF RESULTS 

1) All these experimental facts can be described 
quite well within the framework of the calculation 
performed in Sec. 2. The quantitative reduction was 
performed by us as follows: 

a) The static data x.l> = 1.95 x 10-5 (± 5%) cm3/g and 
a< 2 > = 0.442 (± 5%) G- cm3/g ofr12 l.were used in con­
junction with the formulas x 12 > = 2M0/B and a <2 > 

= 2MoJ3/B to determine the parameters B = 8960 kOe 
(±%) and J3 = 22.7 kOe (± 10%). 

It was assumed that their magnitude does not change 
with temperature in the range 0-300°K, in good 
agreement with the data ofr1, 2 l. For the saturation 
magnetization we assumed the pure-spin value 2M0 

= 175 G- cm3/g. 
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FIG. 7. Temperature dependences of the first (at) and second (a2 ) 

anisotropy constants in the hematite, obtained by reducing the data of 
Figs. 4 and 6 by means of formulas (13b) and (19) -solid lines. Light 
circles- results of Levitin and Shchurov [18 ], obtained under the as­
sumption that the transition between the phases is realized in a field Hit> 
and not in If. (see Fig. 2). 

FIG. 8. Temperature dependences of the parameter"= (at - f32 /B)/a2 , 

and also of the y and z components of the AF vector in the transition 
field Hl (T) for hematite 

b) Using the formula (13b), we obtained from the 
curve Hi~es(T) (Fig. 4) the a1(T) dependence (Fig. 7), 
assuming H?ies(77°K) = 136 kOe (± 5%)[91. 

c) Using formula (19), we plotted from the H~ii!es( T) 

curve at vr = 37.7 GHz (Fig. 6) the temperature depend­
ence of (a1 + a2 ), assuming wa(77°K) = 70 kOe (± 5%). 
This quantity, for the purpose of greater generality of 
the subsequent results, was obta;.ned by simple averag­
ing of the experimental values given by various authors 
(naturally, for different hematite crystals): Fonez and 
Williamsonr6 l: 75 ± 5 kOe, Voronkov and Gromzin 
(private communication): 72 ± 5 kOe, Rudashevski1 and 
Mizonov (private communication): 66.3 ± 1 kOe, and 
the present investigation (Fig. 6): 67 ± 4 kOe. 

The a1( T) and a2( T) plots obtained in this manner 
are shown in Fig. 7, where they are also compared 
with the corresponding results of(ls] is given by a 1 
+ a2 - a and a2 - -b). The noticeable difference be­
tween the curves for a2( T ) is apparently connected 
with the fact that in [ls] it was assumed that the real 
transition between the phases with lz "' 0 and with 
lz = 0 occurs in hematite at perpendicular values 
H1 = H~1 > (see formula (15e)), and not H1 =Hi (see 
(15a)). 

2. Now, knowing the main parameters of the theory 
( B, {3, a1, and a2) and their temperature dependence, 
we can quantitatively calculate all the experimentally 
measured quantities. It is first useful to construct the 
temperature dependences of such an important parame­
ter as K = ( a1 - {32/B )/a2, and also the critical values 
of the y and z components of the AF vector ( l~ and ti ) , at which a jumplike transition to the seconi:l phase 
(where lz = 0 and ly ~ 1 ) take::; place with increasing 
field perpendicular to the C3 axis (see Fig. 8). 

After plotting, with the aid of expressions (15a) and 
(21) and of the data of Figs. 7 and 8, the temperature 
dependences of the phase-transition fields Hi (T) and 
and Hr1 ( T), we obtain curves that agree satisfactorily 
with the experimental data of Voskanyan, Levitan, and 
Shchuzovr121 (see Fig. 9). We note here once more that 
in the case considered by us the magnitude of the field 
H~l of "sublattice flipping" does not coincide with that 
value of the parallel field H[1

1> = Wo, at which one of the 

w.fr, kOe 
20 

10 lit 
w" 
w't 

fZ 
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FIG. 9. Comparison of the Hl (T) and H~ (T) dependences calculated 
from formulas (!Sa) and (21) (solid lines) with the experimental data of 
[12] (light circles) for hematite. The ordinate represents the magnetic 
field in kOe. 

FIG. 10. Temperature dependence of AFMR frequencies at the trans­
ition points between the phases, calculated from formulas (IS c) and (22): 
wH (T) - value of the AFMR frequency, first branch, second phase, at 
a field perpendicular to the c3 axis, in which the transition between the 
phases with lz * 0 and lz = 0 takes place at a temperature T. w~f (T) -
value of the AFMR frequencv, first branch, first phase, in a field paral-
lel to the C3 axis, in which a transition between the phases lz * 0 and 
lz = 0 takes place at the temperature T. The intersection of these curves 
with the horizontal line, corresponding to the working frequency, deter­
mines the temperature at which the vanishing of the corresponding reson­
ance should take place (compare with Figs. 4 and 6). The ordinate repre­
sents the magnetic field in kOe. 

frequencies of the ordinary AFMR tends to zero. For 
example, in hematite Hr1 ( 77° K) "" 63 kOe, whereas 
wa(77°K) ~ 70 kOe (see Fig. 3). The agreement be­
tween these two quantities takes place only in the ab­
sence of an appreciable contribution of the second 
anisotropy constant ( a2 << al). 

3) The phenomena of "premature" vanishing of the 
resonance both for perpendicular and parallel orienta­
tions of the external magnetic field can also be analyzed 
quantitatively. Figure 10 shows the temperature de­
pendences of the "gaps" w ~t and w ~} in the AFMR 
spectra, calculated from formulas (15c) and (22) (see 
also Figs. 2 and 3). By drawing through these curves 
a horizontal line corresponding to the operating fre­
quency (in our case wl = 13.5 kOe ), we obtain the 
temperature values Tv= 190°K and T~ = 248°K, at 
which vanishing of the resonance absorption should 
take place in fields perpendicular and parallel to the 
EA. This is in satisfactory agreement with the ex­
perimental data (Figs. 4 and 6). 

By virtue of the fact that in plotting a 1( T) and 
a2( T) we started from the curves H1ies( T) and 
Hliies(T) at wr = 13.5 kOe (~r ~ 8 mm), which ex­
perience a break in the temperature region near 220° K 
(Figs. 4 and 6), the curves of Figs. 7-10 have a very 
low accuracy at 220° < T < TM· In particular, the 
value of w ~f ( TM) = w ~}( TM) = WM was obtained 
after extrapolating the function a2( T) to T = TM (see 
Fig. 7), which cannot be performed without ambiguity 
from our experimental data alone. However, it is ob­
vious that as the "gaps" wtJ and w~I in the AFMR 
spectrum increase with increasing temperature, they 
cannot exceed a certain value WM· In our case WM 
= 23 kOe, i.e., it is such that the "premature" vanish­
ing of the resonance should not take place already at 
~r ~ 4 mm. This agrees with experiment (see Figs. 5 
and 6). The reduction of the data ofruJ for Hi(T) and 
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Ht1(T) near TM gives for WM a somewhat larger 
value: a2(TM) ~ 0.45 kOe, which leads to wM ~ 45 kOe. 
Therefore it is possible that the region of zero intensity 
of AFMR at H l C3 and .\ r ~ 4 mm still exists, but 
obviously it is very small (not more than several 
degrees K). 

4) From an examination of Fig. 10 (and also of 
Fig. 2b) we draw one more conclusion. In hematite, 
the phase transition in a perpendicular field at 77o K, 
as well as in temperatures close to TM, is apparently 
a first-order transition (KhoK < 2-see Fig. 8), but 
the degree to which it is a first order transition, i.e., 
in particular, the magnitude of the magnetization jump 
in the transition field Hi, is small (see formulas (15d) 
and (18b)). Therefore it is experimentally difficult to 
determine the order of the transition at 77° K from the 
m1( H1) curve (all the more, since the sharpness of 
the jump can be greatly decreased by unaccounted for 
interactions), but this can be quite readily done with 
the aid of resonance measurements at low frequencies, 
for example, using the wiJ( T) plot of Fig. 10. 

5) Satisfactory agreement with the experimental 
data (both static and dynamic) is attained for T = 77°K 
at values {3 = 22.7 kOe, and a1 = 0.382 kOe, which 
differ from those obtained in(9J ([3' = 30 kOe, a' = 0.54 
kOe) on the basis of a reduction of the resonance data 
with the aid of the formulas of the simplest theory 
(without allowance for the second anisotropy constant). 
Nonetheless it turns out that the degree of quantitative 
agreement between theory and experiment on the angu­
lar dependence of the resonance field (Fig. 7 in r 13 1) 
remains practically unchanged. As already noted, 
expressing the fourth-order anisotropy energy in the 
form - (% )a2l~ does not change any of the formulas 
for the phase with lz = 0. This includes the validity of 
the formula (22) ofr13 J, which connects the z and x 
components of the magnetic field in which the second 
absorption peak is observed. Introduction of the second 
anisotropy constant decreases both {3 (77°K) and 
a( 77° K ). Therefore the coefficients of Eq. (22) of[13 l 
change so little, that the curve 2 of Fig. 7 in[131 fits the 
experimental points as well as before. 

As to the phase diagram in the ( HxHz) plane, the 
introduction of a term with a2 complicates the picture. 
It can be shown that for low temperatures ( ~77° K) the 
boundary between the phases with lz ;.o 0 and with lz 
= 0 in the ( HxHz ) plane begins to differ noticeably 
from the surrounding only for directions that are very 
close to the z II C3 axis. On the other hand, with in­
creasing temperature, the region of these directions 
increases. A complete quantitative analysis of the 
phase diagram, i.e., of the Hi( H~, T) dependence, can 
be performed in this case apparently only with the aid 
of numerical methods. 

5. CONCLUSION 

The frequency analysis method used in Sec. 2 to 
clarify the influence of high-order terms on the reso­
nance AF spectrum is of considerably general interest. 
In particular, it is possible to draw on its basis definite 
conclusions concerning the possibilities of experimen­
tally observing the resonance in a perpendicular field 
in a large number of easy-axis AF with a strong 
Dzyaloshinski'i interaction (for example, in CoF2-

seer 201 ). The fact that for hematite it is possible to 
derive explicit expressions by means of this analysis 
is connected with the unusual relation between the 
magnitudes of the main interactions in this substance 
( a1 « {3 « B). The quantitative agreement between 
our experimental data on the resonance and the calcu­
lated ones for the temperature range 77° K < T < 220° K 
makes it desirable to carry out an analogous investi­
gation (primarily at frequencies larger than 72 GHz) 
in the immediate vicinity of the Morin point, which 
makes it possible to refine the character of the func­
tions a1( T) and a2( T) near TM. 
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