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It is shown that weakly damped acoustic plasma waves can propagate along thin films when the . 
transverse electron motion is quantized. In the case of a highly degenerate electron gas (to wh1ch 
the present analysis is limited} it is found that there are several such waves with phase velocities 
close to the Fermi velocity for electrons in the upper film levels. 

1. Weakly damped acoustic waves can propagate in any 
equilibrium plasma consisting of two or more species 
of charged particles. These waves correspond to oscil
lations in the density of particles of the different 
species with phase shifts that adjust themselves to pro
vide overall neutrality of the total oscillations. 

If particle collisions are neglected, the basic contri
bution to the damping of the acoustic wave is Landau 
damping. In a uniform infinite plasma that is not lo
cated in a magnetic field this damping can be small if 
all of the plasma particles can be effectively divided 
into two groups which exhibit significantly different 
Fermi (thermal} velocities in the direction of propaga
tion of the waveY-31 The presence of a quantizing mag
netic field leads to the separation of even a single
component plasma into particle classes with different 
discrete velocities along the magnetic field. In this 
case, as has been recently pointed out by Konstantinov 
and Perel [4 J there exist branches of the acoustic wave 
that propagate along the magnetic field with zero Lan
dau damping. 

A similar division into particle classes occurs in 
thin films. The transverse motion of the current 
carriers is quantized in the film. In this case the 
particle energy is determined by the quasi-momentum 
k which lies in the plane of the film and some discrete 
quantum number n, which characterizes the energy of 
the transverse motion. Consequently, the current 
carriers divide into groups characterized by different 
quantum numbers n and Fermi (thermal) velocities 
along the film. In a system of this kind, as we have 
indicated above, it is possible to support acoustic waves. 

In the present work we consider plasma waves that 
propagate along a film in which film quantization oc
curs.rsl In the analysis, for reasons of simplicity we 
shall assume that the. electron gas in the film is highly 
degenerate and that the electron collisions with all 
possible defects are so rare that they can be neglected. 
It is shown that in sufficiently thin films there exist 
several branches of weakly damped plasma waves that 
are characterized by an acoustic spectrum. The exist
ence of these waves requires that the criteria given in 
(4), (5), (8), and (12) be satisfied. These criteria can 
be satisfied in semiconductors and in semimetal films. 

2. We start with the dispersion equation given in[6 ' 71 
for an even E wave propagating along the plasma film. 
At phase velocities much smaller than the phase 
velocity of light this expression is 
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(1) 

where L is the film thickness; q is the wave vector for 
the plasmon which lies in the plane of the film; q3 
= 21Tv/L, v = 0, ± 1, ± 2 ... , w is the plasmon frequency; 
El is the longitudinal dielectric constant of the plasma 
and Eo is the dielectric constant of the medium sur
rounding the plasma layer. 

Equation (1) has been obtained for a uniform classi
cal plasma under the assumption of specular reflection 
of the plasma particles at the boundaries. A rigorous 
derivation of the dispersion relation for a bounded 
quantum plasma involves considerable difficulties, 
these difficulties being associated primarily with the 
inhomogeneity near the edge. If this inhomogeneity is 
neglected then, as shown in[7l, the dispersion relation 
in (1) still holds but the dielectric constant that ap
pears in it El ( q, q3 , w) is now given by the expression 

8ne2 r dJ.k /(en+•.k+q)- /(Bn,k) 
8'(q,qs,oo)=i-l- (q•+qa•)L ~ J (2:n:)•1ioo+en,k-Bn+v,k+q+ill 

(2) 

where En k = En + 1i2k2 /2mu is the electron energy in 
the film, 'En is the energy of the quantized transverse 
motion of the electrons [in order to make estimates 
we will take En = ( 1i2 /2ml) ( 1rn/L )2 ], n = ± 1, 
± 2 ... , mu ( m1) in the electron mass which corre
sponds to the longitudinal (transverse) motion in the 
film, f is the Fermi function, o - + 0, and particle 
collisions are neglected; this last procedure is valid 
if the wave frequency is much larger than the collision 
frequency. 

Equation (2) differs from the expression for the 
longitudinal dielectric constant in an inhomogeneous 
plasma in that the integration over the transverse 
momentum of the electron is replaced by a summation 
over the quantization number n. 

This form of the dispersion equation is to be ex
pected if one starts from qualitative considerations 
regarding the spectrum of an electron in the film. For 
this reason it is to be hoped that the results that follow 
from this equation will, at least qualitatively, remain 
valid if one takes account of the inhomogeneity of the 
equilibrium plasma near the edge of the film. We now 
write Eq. (1) in the form 

(3) 
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The first term in (3) describes transitions within a 
band, i.e., transitions between states with fixed quanti
zation number n; the second term describes transi
tions between different bands. 

In what follows we shall limit our analysis to long
wave plasmons with energies comparable with the 
energy spacing between bands, that is to say, we shall 
assume that the following inequalities are satisfied: 

qL~1, 

liro ~ 8n+1 - en. 

It is easy to show that when (5) is satisfied then 
El ( q 3 ""- 0) > 1 and consequently the second term in 

(4) 

(5) 

(3) is smaller than the quantity qL/6. Thus, we can 
neglect the effect of transitions between different bands 
on the formation of the longwave plasmons. Under 
these conditions the dispersion eQuation (3) assumes 
the simple form 

e.l(qs = 0) = -2eo/ qL. (3') 

We now wish to calculate the dielectric constant 
El ( q3 = 0 ). It will be assumed that the electron gas in 
the film is highly degenerate. Replacing the distribu
tion function for En,k :5 EF ( EF is the Fermi level for 
the current carriers in the film) by unity and integrat
ing Eq. (2) with respect to the longitudinal component 
of the electron momentum, which is perpendicular to 
the vector q, we have 

I -- --
4mue2 ~ r (l'1- z2 l'1- .x2) 

e1(qa = 0)= 1 + fiZ£ 3 ~kn J d.x, --->· ---- , (6) 
11 q n _ 1 X - P- X - P+ 

where we have introduced the notation p'f = s/vn 
'f q/2kn, s = w /q is the phase velocity of the plasma 
wave and vn ( Kn) is the Fermi velocity (Fermi wave 
vector) of an electron in the n-th band. 

Using the relation 

r 11-.x• __ 
J d.x .x-p =~("}''p•-1-p), 
-I 

we can write the expression for the longitudinal die
lectric constant in the form 

Here, N is the number of filled bands in the film, 
a = 112 /mue is the effective Bohr radius. 

(7) 

Analysis of Eq. (3') with the dielectric constant in 
(7) shows that in sufficiently thin films, in addition to 
the usual surface waves characterized by frequency 
w ::::; Wfilm...; qL/2€0 there can also be a new kind of 
plasma wave which is characterized by an acoustic 
dispersion relation. These waves are associated with 
the quantization of the transverse motion of the elec
tron and do not appear in thick films in which the film 
quantization in unimportant. 

In order to obtain the dispersion relation for the 
acoustic waves we shall assume that the following in
equality is satisfied in addition to those in (4) and (5): 

l .sz I q(s q) 
---1 >-.-+-. 
Vn2 kn ' Vn 4kn 

(8) 

In this case the dispersion equation is simplified con
siderably and assumes the form 

[ ( v '1-''• N- . ~ 1 - --! ) = 0. (9) 
n 

In the derivation of (9) we have made use of the condi
tion aq « 1 which is always satisfied for longwave 
oscillations. 

Equation (9) is actually the equation El = 0; conse
quently the effect of the surrounding dielectric medium 
on the acoustic wave spectrum is found to be unim
portant. Physically this result is associated with the 
fact that the electromagnetic field produced by the 
acoustic wave is small (this is the only mechanism that 
can have an effect on the surrounding medium). 

3. Assume that the phase velocity of the wave lies 
between the Fermi velocities of the m - 1 and m + 1 
layers, that is to say 

VN < VN-1 < ... <Vm+1 < S < Vm-1 < ... < Z:1. 

We divide s into real and imaginary parts s = s1 
- is2 and assume that s2 << s1. It will be shown below 
that the phase velocity s1 is close to the Fermi velocity 
vm and for this reason in all of the terms aside from 
the m-th term we can write s = Vm· This procedure is 
valid provided 

We can now write Eq. (9) in the form 

(a+ ib) [ 1- Vmz- 2i~J''• = 1, 
S12 S1 

where 

It then follows that 

ab 
[ a• - b2 1-'1• 

St = Vm 1 , Sz = s,----
(a•+ b2)z (az+ b2)2 

(8') 

(10) 

(11) 

It is evident from (11) that the damping of the acous
tic wave is small and that s1::::; Vm (as assumed above) 
provided 

max(a2, b2 ) 

(a• + bZ)2 ~ 1. (12) 

When a2 > b2 we have S1 > Vm and when a2 < b2 we 
have s1 < vm. 

Analysis of Eq. (11) shows that the most weakly 
damped wave is the one characterized by m = N. For 
this wave a= N> band s1 ~ vN(1 + 1/2N2), s2 
S sJN2. As the number m diminishes the wave damp
ing increases rapidly. However the phase velocity of 
the wave approaches the corresponding Fermi velocity 
( vm) and then becomes somewhat smaller. The ap
proximation used in the derivation of Eq. (11) is not 
satisfied for waves characterized by small values of 
m and the determination of the corresponding roots 
requires a more exact solution of Eq. (9). 

We can estimate the magnitude of phase velocity 
and the damping of the acoustic wave in a film for a 
particular case. Assume that the electron density in 
the conductivity band is ~1018 cm-3, L ~ 5 x 10-6 em, 
m ~ 0.01 me. Under these conditions five film levels 
will be filled ( N = 5 ) and the corresponding Fermi 
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velocities are (0.8, 2.1, 2.7, 3, 3.2) X 108 em/sec. In 
this case there exist at least three weakly damped 
acoustic waves with velocities s1 equal to 1.02 v5 ; 

1.01 v4 and 0.99 v3 • The damping of these waves is 
respectively 0.006 v5 ; 0.025 V4 and 0.03 V3. It follows 
from Eq. (8) that q « 2 x 104 cm-1 (the other criteria 
are less stringent) and consequently Wmax ~ 1012 sec-1. 
A suitable material for observing these waves might 
be a semiconductor or a semimetal with a small effec
tive carrier mass, for example InSb or Bi. 

The analysis given above refers to the case of a 
single component plasma with an isotropic electron 
dispersion in the film plane. The generalization to the 
case of an anisotropic dispersion relation and the 
existence of several energy minima should not repre
sent any particular difficulty. 
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