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It is shown that an isomorphic phase transition can be realized in metals. Possible T-P diagrams 
for such a transition are obtained. The critical temperatures and pressure are estimated. 

THE change of the topology of the electron Fermi 
surface under the influence of pressure leads, as indi
cated by I. Lifshitz[1l, to a second-order phase transi
tion without a change of symmetry. It was noted in[1J 
that at lower pressures an instability of the lattice can 
arise, leading to a first-order phase transition. 

We show in this paper that the change of the Fermi 
surfaces under pressure (with allowance for the defor
mation potential) can lead also to a first-order phase 
transition. As an application, we consider the isomor
phic phase transition in cerium. 

This problem was considered theoretically by 
Aptekar and Ponyatovskii [2l. It was assumed that the 
atoms of metallic cerium are described by discrete 
levels, and that the two highest levels (4f and 5d) 
intersect at very low pressure. This is indeed the 
cause of the phase transition. The theory of[2l is in 
qualitative agreement with all known experimental 
facts but one - the large metallic conductivity of cer
ium. We therefore deem it useful to examine the prob
lem of the isomorphic phase transition from the point 
of view of the band theory of metals. 

We consider a two-band model. We assume that one 
of the bands is narrow and the other broad (conduction 
band). We describe both bands in the free-electron ap
proximation with effective masses m1 and m2 ( m1 
» m2 ). The conditions for the validity of this approxi
mation will be discussed later. 

We introduce into the model one more simplifying 
assumption: the bottom of the narrow band is assumed 
to be fixed. This assumption is not as arbitrary as 
appears at first glance. An isolated narrow band with 
electrons in it should be thermodynamically stable. 
Consequently, the motion of the center of gravity of the 
band should be so correlated with the change of the 
width, that when the crystal is compressed the chemi
cal potential merely increases. The simplest model of 
this type is a model with a fixed bottom of the band and 
an effective mass m1 independent of the cell volume v. 
The motion of the bottom of the conduction band will be 
described by the deformation potential. 

For a phase transition it is necessary that dp./dv 
be positive in a certain small region of the change of 
the cell volume. Let us see what happens if the bottom 
of the conduction band drops when the lattice is com
pressed. Two effects compete in the change of the 
chemical potential: an increase proportional to v-2/3 

and a decrease connected with the lowering of the 
bottom of the broad band. This is schematically il
lustrated in Fig. 1. At sufficiently large v (region a 
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FIG. I. Qualitative behavior of the 
chemical potential under hydrostatic com
pression. E1 -bottom of narrow band, 
E2 - bottom of conduction band, p. -
chemical potential. 

on Fig. 1) all the electrons are in the narrow band. 
Consequently, the chemical potential will increase when 
the lattice is compressed, owing to the decrease of the 
density of states in the narrow band. In region b, i.f the 
bottom of the conduction band moves sufficiently rapidly, 
p. can decrease. Finally, in region c the chemical 
potential will again increase as a result of the strong 
decrease of the density of the states in the bands. 

Actually region a corresponds to large values of 
v, which can be obtained by stretching the metal (this 
follows from the subsequent reasoning). Therefore the 
metal is in region b already at P = 0, corresponding 
to the band arrangement picture of Fig. 2. 

FIG. 2. Arrangement of the bands at 
P = 0. A 1 -narrow band, A2 - conduc
tion band. 

It is easy to verify that if the rate of change of the 
bottom of the conduction band is dEddv >> 1/m2v5 13 

(we put ti = 1 throughout), then the region of ll.v where 
dp./dv > 0 will be of the order of v. This instability 
will be counteracted by the lattice, which tends to be
come realigned with chan)ie of symmetry. On the other 
nand, if dE2/dv ~ 1/mlv5 3 , then dp./dv < 0 for all v. 
Consequently, at a certain intermediate value of dEddv 
there will be a small region of ll.v in which dp./dv > 0. 

As is well known, the following conditions should be 
satisfied for a first-order phase transition: 

!'(VI, T) = J.t(V2, T), 

P(v~, T) = P(v2, T). 

We are interested here in the jump of the volume 
o v occurring during the phase transition, the change 

(1) 

(2) 

of the electric conductivity oa connected with the 
change of the number of the conduction electrons in 
this transition, and also in estimates of the critical 
temperature and pressure. We determine the pressure 
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with the aid of the thermodynamic relation 

(3) 

where N is the number of electrons and N0 the number 
of cells. 

Equation (3) can be rewritten in the form 

N v 1 a 
P(v,T)=P(v0, T)+-) -(~) dv. 

No v av T v, 

(4) 

In a first-order phase transition, there arises a region 
of metastability Av, in which dp./dv < 0. We define 
Vo by the equation d2 p./dv21 v=vo = 0. We expand 
p.( v, T) near v = v0 in powers of v - v0 • It is con
venient to introduce the symbol v =vox:. Then 

!'(x, T) = !'(1, T) + (x -1)1'' + 1/ 6 (x -1)3~-'"'• (5) 

where the prime denotes differentiation with respect 
to x at constant T and x = 1. 

Obviously, small A v /v correspond to p.' << I p."' 1. 
Using (4) we obtain 

P(x, T) = P(1, T)+~_!_{(x-1)1'' _ _!_ (x -1)2 I'' 
NoVo 2 

+ _!_ (x- 1)• I'"' )I 6 J• (6) 

From (1) and (2) we get 

Consequently, 

/lv ( I'' )''• llx=xt-X,.=-=2 -6- . 
Vo J.l'" 

(7) 

We consider first the case T = 0 and determine the 
chemical potential as a function of v. Using Fermi 
statistics for the two-band problem, we obtain p.(v, T ). 

We introduce the symbols Ei, gi, and mi for the 
energy of the bottom of the band, the degeneracy multi
plicity, and the effective mass. For the narrow band 
i = 1, and for the conduction band i = 2; l:i is the 
chemical potential reckoned from the bottom of the 
corresponding band. The position of the bottom of the 
conduction band is best reckoned from the bottom of 
the narrow band. We define cp ( v) by the equation 

E2 = E1 -<p(v). 

The law of electron-number conservation 

and the equation defining the motion of the bottom of 
the band 

1;z- ~. = qJ(!l), (9) 

enable us to find the chemical potential as a function 
of the volume. In the first approximation in m2/m1 we 
get 

~1 (x)=(6n2~)"' , 1 , [_!_-'l'"'(x)]'", 
No g, "2mtVo '' x 

(10) 

( N)''• 1 
~(x) = 6n2 No g2'•2m2vo't. 'IJl(x). (11) 

Here l/J ( x) is connected with cp ( v) by the formula 

and has a simple meaning, namely: 

x,p'l•(x) = N2 / N. 

(12) 

(13) 

The quantity cp ( v) is of the order of the usual elec
tron energy. Consequently, l/J ( x) - 1. This means that 
the transition occurs at N2 - N1, in accord with Fig. 2. 
Obviously, the jump of the volume cannot be large. 
Therefore, down to P = 0 the metal is not in the region 
of states a (Fig. 1) and does not experience a second
order phase transition. An increase of the pressure 
can lead in principle to such a transition (when all the 
electrons move to the conduction band). 

We shall regard the jump of the volume as a small 
quantity. Indeed, as stated above, realignments of the 
lattice with change of symmetry compete with large 
changes of the volume. A small value of the parameter 
Av/v =Ax denotes that near x = 1 the value of p. is 
proportional to (Ax)2 (see Eq. (7)). Putting approxi
mately p.' = 0, we obtain two equations that should be 
satisfied at the transition point: 

'I''= - 2/a'i'-'"(1), (14) 

(15) 

Equation (15) has no independent meaning. It simply 
determines the choice of v0 ( p." = 0). Equation (14) 
relates the rate of motion of the bottom of the conduc
tion band with the number of electrons in this band. It 
should be satisfied accurate to (A v /v )2. Such a situa
tion is accidental in the case of pure metals and ap
parently explains why isomorphic phase transitions 
have been observed so far only in cerium and in 
cesium. 

We note that equation (14) can be rewritten in the 
form 

1 dN1 N, 
Ndx= N (14') 

We now consider T ;.o 0. The equation for the chem
ical potential is then written in the form 

N 1 ~ 3 , 
6n2-- = LJ-g;(2m;) ''· 

No v i~t 2 

(16) 

At sufficiently small T ( T2 /l;~ (x, 0) « 1 ), as is well 
known [sl, it is possible to carry out an expansion in 
powers of T; this yields 

(17) 

Near x = 1 we can put 

~!(x, 0) = ~t(1, 0)[1 + a(x- 1) - 1/ 6C(x -1)3], 

where C- 1 and, as seen from (7), 0! ~ (Av/v)2 « 1. 
As is well known, the critical temperature Tc is 

determined from the equations 
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( ii~t(X, T)) = O, 
OX T 

( ii2~t(X, T)) = 0. 
iix2 T 

(18) 

From (17) and (18) we obtain Tc -1;!{m1a/m2)1/2 • 

Since (a~; 1/ax )T = a - {3T2 , the jump of the volume in 
the phase transition is ox- (a- {3T2 ) 112 • 

Let us consider the possible equilibrium phase dia
grams in the P-T plane. In principle, at T = 0 two 
situations are possible, shown in Figs. 3a and 3b. In 
the former case, when T = 0 and P 2:: 0 there is no 
phase transition. The transition corresponds formally 
to a negative pressure (see Fig. 4a). In the second 
case, the transition takes place at T = 0 and P > 0, 
and the phase diagram has the form shown in Fig. 4b. 

+T Lzl E_' --- : ~ -------: 
' I . 

I I I 
J_ 

G J!PC P,P 
a b 

FIG. 3 FIG. 4 

FIG. 3. P-v diagram at T = 0. 
FIG. 4. Possible P-T diagrams of isomorphic phase transition. 

Let us estimate the value of Pc. As is well known, 
the small correction to the thermodynamic potential 
<I> = N p. coincides with the correction to the free energy 
F, so that 

6F = F(x, T) - F(x, 0) = N(~1 (x, T) - ~~ (x, 0)). (19) 

The correction to 1; 1 is given by formula (17). We can 
now readily find the equation of state, which takes the 
form 

k T' m2 
P(x,T)=P(x,O)+-" ( O) 

Vo 1::!1 x, m1 
(20) 

where k is a factor on the order of unity. In the 
derivation of (20) we have put a « m2/m1. From (20) 
it is obvious that 

where Po - 1; a/vo is the characteristic electronic 
pressure. We note that Tc and Pc turn out to be 
small compared with the characteristic electronic 
quantities. 

This raises the question why the point x = 1 does 
not correspond to a very large pressure of the order 
of Po. The answer lies in the fact that at P = 0 the 
quantity 11 - x I is small. On the other hand, it is seen 
from (6) that the pressure difference is a small quan
tity of higher order than 11 - x 1. 

It is of interest to calculate the jump of the electric 
conductivity a. The electric conductivity is due to the 
electrons of the conduction band. The calculation is 
carried out with the aid of the elementary formula 

Using (13) and (14), we get from this formula 

i'Jcr = -ljl-'''(1)6x =- !!_6x. (21) 
cr N2 

The dependence of oa /a on T is determined by the 
temperature dependence of ox. 

The phase transition described above is possibly 
realized in cerium. Judging from the atomic spectra, 
a narrow 4f band and a broad 5d (6s) band should 
compete in metallic cerium. An isomorphic phase 
transition was observed in this metal [4 l, with a volume 
jump ox- 1~. The T-P diagram was obtainedrsJ as 
well as the volume jumps ox in some of its points. 
Interpolating ox to zero, Ponyatovski1[sJ found the 
critical point Tc - 600°K, Pc- 20 kbar. The experi
mental T-P diagram corresponds to Fig. 4a. The 
transition is accompanied by a jump of the electric 
conductivity oaja- 2~[6 l, which agrees well with 
formula (21). 

All the foregoing, strictly speaking, is justified in 
the case when the average number of electrons per 
atom in the narrow band is much smaller than unity. 
In the opposite case it is necessary to take into ac
count the localized states. Then the spectrum of the 
elementary excitations is determined essentially by 
the Hund energy (see, e.g.,r 7 l). Therefore the present 
calculation cannot claim to offer an explanation of the 
paramagnetic properties of the metal in the isomorphic 
transition. 

The authors are grateful toM. Ya. Azbel' and E. G. 
Ponyatovskii for a fruitful discussion. 
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