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Photon emission by a relativistic particle in an external field is considered. The analysis is per­
formed for fields in which the contribution to the radiation in a given direction is made by the whole 
particle trajectory. A generalization of the operator quasiclassical method previously proposed by the 
authors is employed. Emission by particles with spin 0 or 1/ 2 in a Coulomb field is investigated in de­
tail. Closed expressions are obtained which are valid for arbitrary values of Za. General formulas 
are also derived for the photon emission cross sections in the cases when a) the fields decrease more 
rapidly than a Coulomb field and b) only a small part of the trajectory contributes to the emission in a 
given direction. 

}. IT is well known that relativistic particles radiate 
into an angle "'1/y ( y = E/m). For this reason in the 
problem of radiation by a relativistic particle in an 
external field the relation between the total deflection 
angle of the particle in the external field and the angle 
1/y turns out to be important. There are two charac­
teristic cases. 

I. The total deflection angle is large in comparison 
with 1/y. Then in a given direction the particle radi­
ates from the small portion of its trajectory in which 
the direction of the particle velocity changes by an angle 
"'1/y. This situation occurs in magnetic bremsstrah­
lung (synchrotron radiation). 

II. The total deflection angle of the particle in the 
field is ~ 1/y. Then all the radiation of the particle oc­
curs into a narrow cone with angle "'1/y and is deter­
mined by the entire trajectory of the particle. This sit­
uation exists in the case of bremsstrahlung in a Cou­
lomb field. 

This situation is preserved also in quantum electro­
dynamics. This is due to the fact that in the radiation of 
relativistic particles in external fields the main contri­
bution is from states with large orbital angular momen­
ta, for which the motion has a quasiclassical nature and 
is quite adequately described in terms of a trajectory. 

In our previous papers[1 ' 23 we have suggested an op­
erator quasiclassical method of considering the radia­
tion process in an external field. The method is based 
on the fact that there are two types of quantum effects 
in the motion of a relativistic particle in an external 
field. The first of these is associated with the quantum 
nature of the particle's motion itself. The associated 
noncommutativity of the dynamic variables is of order 
1/l (where til is the orbital angular momentum) and 
decreases with increasing particle energy. The second 
type of quantum effect is associated with the particle's 
recoil during radiation and is of order hw/E, where w 
is the frequency of the radiated photon. Since at high 
energies the effects of the first type are extremely 
small in comparison with effects of the second type, we 
can neglect the noncommutativity of the dynamic varia­
bles of the particle and consequently can discuss the 
motion of the particle along a trajectOf'y. On this basis 
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we take into account in the method only the commuta­
tors of the dynamic variables of the particle with the 
field of the radiated photon ( "'nw/E), which corresponds 
to considering the recoil during radiation. 

Our earlier papers[1 ' 23 discussed the quantum phe­
nomena in motion of charged particles in a magnetic 
field (synchrotron radiation, pair production by a pho­
ton in a magnetic field, and so forth), i.e., we discussed 
case I. 

In the present paper the proposed method is extended 
to the case of bremsstrahlung in a Coulomb field (case 
II). It turns out that in its essential part the method can 
be used directly in this case also. Here, however, 
there are extremely important specific properties, 
namely that in calculation of the matrix element for 
minimum momentum transfer q "' qmin• where the 
phenomenon of quantum-mechanical diffraction is im­
portant, it is necessary to perform a summation over 
the classical trajectories. 

Since large orbital angular momenta are important, 
we can neglect the contributions of terms of the spin­
field interaction type (with an accuracy to terms of or­
der 1/l ). For this reason the discussion is carried on 
in the same way for particles with any spin, and the 
calculation of all spin effects, which are determined by 
the structure of the current, is identical in form with 
the calculation for free particles. 

2. The matrix element for radiation of a photon by a 
charged particle in an external field has the standard 
form 

(1) 

where Fis(r) is the solution of the wave equation in the 
given field with energy Ei and a spin state s, E 11 is the 
photon polarization vector, j 11 is the current operator. 
We will use the metric (ab) = aobo- a • b, and the sys­
tem of units :ti = c = 1. 

For the states with large orbital angular momentum 
l of interest to us we can use the approximate repre­
sentation 



808 V. N. BAlER and V. M. KATKOV 

(2) 

where \.lls(P) is the operator form of the wave function 
of the particle in a spin state s in the given field. This 
form was obtained from the free wave functions by re­
placement of the variables by operators, p- P, E -:1e 
= )P2 + m2. In Eq. (2) we have neglected spin-field in­
teraction terms (for example, for particles with spin 
lj2 we have discarded terms of the type 0' • H and a· E). 

Converting to Heisenberg operators, we write the 
matrix element Ufi in the form[1J 

uji = e (t 1. ~ dte 1'"1M(t) I i) (3) 
(2:rt) ·;, y2w 

where 

(4) 

here j 11 (t) and r(t) are respectively the current opera­
tors and particle coordinates, and the curly brackets 
{} indicate the symmetrized product of the operators. 
The order of writing the operators occurring in IJts(P) 
is unimportant (with an accuracy to terms of order 
1/l ). For example, for a particle with spin zero 

1 . 1 
Ms = -=-(eP)e-'kc-==-, (5) 

i-'!ff i3f 

and for a particle with spin 1'2 

M,= ,)_ u,,+(P)(ote)e-"'u,(P) )-, 
r :Je r .'11: 

(6) 

where 

I Jl i- m 
a~. -~~ aP · 

r-.~( <p(~(f)) ) 

}! ~ :Jt + "' 'P (6 (t)) ' 

(7) 

here 1p{1;(t)) is a two-component spinor describing the 
spin state of the electron at time t. 

The probability of the radiation process, summed 
over all final states of the particle, has the form [LJ 

(8) 

where e2/4rr = a '= lj137• This expression is very con­
venient for discussion of the radiation of a relativistic 
particle in any external field. 

The further calculation is begun by performing a 
number of operations with the operators occurring in 
Eq. (8). We will take outthe operator exp (-ik·r(tt) 
in M(tt) to the left, and the operator exp (ik• r(t2) in 
M*(h) to the right, for which we will use the relation 

I (P) e-'" -- e-"' I (P- k), (9) 

which is a consequence of the fact that exp ( -ik • r) is 
a displacement operator in momentum space. The var­
iation of the function f(P) in (9) on commutation with 
exp (-ik·r) corresponds to inclusion of the recoil dur­
ing radiation. After extraction of the operator 
exp (-ik·r) from M only commutating operators 
(with an accuracy to terms of order 1/l) remain in the 
matrix element and the subsequent problem reduces to 
discussion of the combination exp (ik• r(t2)) 
x exp (-ik· r(t1)) which appears. The noncommutativity 
of the operators entering into this combination is essen-

tial, so that, generally speaking, we cannot limit our­
selves to expansion of this combination in the lowest 
commutators. One of the central points of the present 
approach is the unfolding of this combination. 

The unfolding of the operator product exp (ik · r(t2)) 
x exp (ik· r(t1)) for case I (synchrotron radiation) was 
carried out in our previous papers. [l, 2J It was based on 
the fact that the radiation in a given direction receives 
contributions from only a small portion of the trajec­
tory, so that I vI (t2- t1) ~ 1/y; taking this into account, 
we performed an expansion in powers of I vI (t2- t1). In 
case II the radiation receives contributions from the en­
tire trajectory, and this approach is inapplicable. How­
ever, we can make use of the fact that far from the 
source the field of a particle trajectory is close to rec­
tilinear and the dynamic variables of the particle almost 
do not change (see Appendix A). We note also that, as in 
our previous work, [lJ the discussion is carried out for 
fields for which the inhomogeneity index 

n = I iJ In V I 8 In r I 

satisfies the inequality 

n/v~ 1 

(for a Coulomb field n = 1). 

(10) 

(11) 

As a result of the unfolding (see Appendix B) we ob-
tain (12) 

exp {-ikx(tz)} exp {ikx(lt)} = exp {-i~[kx(tz)- kx(t1)J}. 
3f-w 

This expression coincides exactly with the result of the 
unfolding for the synchrotron-radiation case[1' 2J and is 
universal for the problem of radiation in any external 
field, since itin essence takes into account only the re­
coil during radiation, and the recoil, naturally, does not 
depend on the field. 

The combination exp(ik·r(t2)) exp(-ik·r(t1)) com­
mutes with .7t and P with an accuracy to terms of or­
der 1/y. This follows directly from the representation 
of kx(t) in the form (A. 7) and from the fact that in this 
representation only kxo does not commute with :Yc and P. 

Thus, all operators in expression (8) within our ac­
curacy turn out to be commutative and therefore, after 
carrying out the unfolding operation, all of them which 
are in the brackets of the initial state can be replaced 
by their classical values (c-numbers). Now we can 
write the square of the matrix element in the form[1J 

(i/M'(tz)M(tt) /0 
E (13) 

= exp {iw(tz- t!)+ --i[kx(t1)- kx(tz)l}R' (t2)R(t1), 
E-w 

where 
eR(tj = 1Jf,,+(p') 1/z(e[j(p) +i(p')])'¥.(p); (14) 

here p' = p- k and E' = E(p') = )(p- k)2 + m2 already 
are not operators but c-numbers. 

In the unfolding operation the spin characteristics of 
the particle contained in the function R(t) are com­
pletely uninvolved, which is due to the fact that in our 
approximation the interaction of the spin with the exter­
nal field is neglected (terms of order 1/Z). The function 
R(t) which describes them has the form of a transition 
matrix element for free particles with inclusion of the 
conservation laws. This permits discussion of the prob-



QUASIC LASSICAL THEORY OF BREMSSTRAHLUNG BY RELATIVISTIC PARTICLES 809 

lem in a single way for any spin. 
3. For definiteness we will carry out the further cal­

culation for the case of motion of a particle with spin 
zero in a Coulomb field, then discuss an electron in a 
Coulomb field, and present a number of formulas for 
radiation in an arbitrary external field. 

After carrying out the unfolding we must perform the 
integration over time in formula (8), substituting in it 
expression (13). In case I it was convenient to integrate 
the square of the matrix element over time, converting 
to relative time ta- t1• [lJ In case II it turns out to be 
convenient to integrate the matrix element directly over 
time, since the whole trajectory contributes to the radi­
ation. The latter is discussed with the necessary accu­
racy in Appendix A. 

The matrix element for a scalar particle (Eqs. (5), 
(13), and (14)) is 

.Jts= e ~ 1 exp{i-E-kx(t)}(ep)dt. (15) 
(2rc) '/, l'2w "fEE' E- w 

In a Coulomb field the function p(t) (A.1) with inclusion 
of conditions at t - ± oo has the form 

p(t)=pt-..!(t+ vt ). (16) 
2 "fp2 + v2tL 

Taking into account recoil during radiation (14), we 
have 

p'(+oo) =p/=p,-k,..,P2; (17) 

on the other hand, on the basis of (16), (A.6) 

p(+oo) = P:' = Pt- q. (18) 

Combining these results we have 

E2 = E t - w, P2 = Pt - k- q. (19) 

Substituting (16) and kx(t) in the form of (A. 7) and 
(A.10) into formula (15), we obtain 

vft ( - __ z_·e __ y....§_[~-~1 K 
s p)- (2rc)'I•Et 2Etro kvt kvt 1J TJ t(TJ), 

(20) 

where v = 1, 

(21) 

K1( 17) is the Macdonald function. Using (17) we can 
compute (kvf) with an accuracy to terms of order 1//: 

E2 
(kvt) = 2 (kp2). (22) 

E1 

Further discussion depends substantially on the val­
ue of the momentum transfer q. We can distinguish two 
characteristic regions of q values, depending on the ra­
tio of the quantities q and qmin• where 

9min = IPti-IP2i-lkJ ,;:;:: wm2 I 2E1E2; (23) 

in the first region q » qmin• and in the second q 
~ qmin· This division is associated with the phenome­
non of quantum-mechanical diffraction in the radiation 
process. The diffraction angle in this case is deter­
mined by the uncertainty of the momentum in the por­
tion of the trajectory which provides the main contribu­
tion to radiation of the photon. Since the electron veloc-

ity v "' 1, the length of this portion is vT "' T, where T 
is the time interval which is important in the integral 
(15), the main contribution to which comes from the re­
gion (EJEa)kx(T) "' 1. Hence we obtain 

(24) 

Thus, the phenomenon of quantum-mechanical diffrac­
tion becomes important for q "'qmin· We note that by 
definition the vector qmin is longitudinal and always 
I qu I ~ qmin• so that for q2 = qfl + q:1_ » q2min the 
transfer is mainly transverse. 

It turns out to be convenient to use the variable 

(25) 

the quantity 17 ((21) and (22)) being expressed in terms 
of y in the following way: 

1] = pqyY, (26) 

In the region q » qmin• y « 1 and then 17 « 1. In this 
case 77K1(71) = 1 + 0(77) and with this accuracy 

.Jts~·11s0 =--~ Y__l!!__(~-~~) (27) 
12n\'" 2Et(o) kpt E2 kp2 ' 

Taking into account that for q » qmin the momentum 
transfer is determined by the angle of scattering in the 
external field, we can write the cross section for radi­
ation of a photon in the form 

where 
da1 = da(q.L)dW1 (1J.L, k), 

dW, = I.Jts0 l2d3k. 

(28) 

(29) 

Actually, when q "'q.L, the value of q.L is determined 
only by the action of the external field (A.1) and is not 
associated with the radiation process. For this reason 
the scattering process does not depend on the radiation 
process. We note that Eq. (27) is obtained by integra­
tion of (15) with respect to time, if the trajectory is 
represented in the form of an "angle" (momentum P1 
in the interval -oo < t < 0 and momentum Pf in the in­
terval 0 < t < oo), Using the explicit form of da(q.L) in 
a Coulomb field, 

(30) 

we find that in the region of "classical" momentum 
transfers q » qmin the cross section for radiation of a 
photon (28) is identical to the cross section calculated 
in the Born approximationY 1 

Let us turn to the region q"' qmin· Because of the 
diffraction phenomenon, in this case the value of mo­
mentum transfer already is not determined by the scat­
tering angle of the particle. Therefore, to obtain the 
matrix element for radiation for a given momentum 
transfer it is necessary to perform a summation over 
the trajectories (over the partial amplitudes .J!t (p)). For 
this purpose we will use the impact-parameter method 
(see for example Glauber[41 ). Then the expression for 
the radiation cross section in the case of a Coulomb po­
tential can be written in the form 

(31) 
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where 

(32) 

here X = 2~ ln (p/a), ~ = Za, a is a convergence pa­
rameter in calcula.tion of the scattering phase in a Cou­
lomb potential; the cross section (31) does not depend 
on the quantity a, which we will assume is much larger 
than all of the characteristic dimensions; for scalar 
particles .Jt s(P) is given by Eq. (20). 

In calculation of the integral (32) it is necessary to 
take into account that for q ~ qmin all particles are 
traveling almost along a single straight line, so that 
kv1 p:; kvf. Then it is evident that the matrix element 

s(p) (20) is proportional to t(pl- p2) = tq1 and, using 
the relation between ql and p (A.1) in a Coulomb field, 
we obtain 

(33) 

where 

(34) 

Substituting expression (33) into (32) and integrating 
over angle, we obtain 

(35) 

We will take into account that in the region q ~ qmin 
we have (cf. (25)) y = q~in/q2, qmin = q11, so that 

q-L = q-yT=y. 
Calculating this integral (see ref. 5), we obtain 

1 •( 2 )2i£ ..lts(q-L) = (Dsq-L)-2 ~ 
q aq 

X(1-!- i;)fZ(1 j- i\',)F(-i\',, 1-!- i~; 2,1- y), 

(36) 

(37) 

where F is the hypergeometric function. In derivation 
of (37) we used the standard transformation of the hy­
pergeometric function from an argument 1 - 1/y to an 
argument l- y. Substituting this result into the ex­
pression for the cross section (31), we obtain 

V2(y)-l- ~2y2W2(y) 
dasv=dasvB<D(y), <D(y)=--------= (38) 

V2(0) 

where da~Y is the radiation cross section in the Born 
approximation, 

V(y) = F(i'g, -i~; 1,1- y), W(y)=-1- dV_i!J_)__ 
£2 dy (39) 

Here we used the relation 

(1-l-is)F(-is, t+is; 2, 1-y) = V(y) -J-isyW(y). (40) 

Formula (38) is valid in the region of momentum 
transfers qmin ::s q « m. When y « 1, the correction 
factor to the Born cross section <I>(y) - 1. Taking into 
account that formula (28) for q » qmin is the radiation 
cross section in the Born approximation, we find that 
formula (38) is applicable for all momentum transfers 
of interest to us: 

(41) 
To calculate the spectrum of radiated photons it is 

convenient to use the variables 

2E2 (kp2) 
1']=~-~-, 

w m2 

Summing over photon polarization and replacing the 
variables in Eq. (41), we obtain 

(42) 

das-v = ~~a'l!!__d"'__ ~ dy d1;,d1'] [_!_ -1- (1;, -- 1'))2 ]<D(y) (43) 
nm2 E 1 w 1;,1']s sin cp y 1;,21'] 2b2 ' 

where 
s sin cp = [2A1;,1'] (~ + '1 - 2)- (A\,1'))2- (1;,- '1)']'", 

J. = {,2 (_!_- ___!_ ), I)=~"'_'_"_= _W."!'_ (44) 
Y s'l · m 2E1E2. 

With the accepted degree of accuracy we can use the 
approximate expression 

A= b2(1-y) /y. (45) 

The integral in (43) over one of the variables (l;, n) is 
taken between zeroes of the function s sin rp, and the 
second integral is computed by elementary means. Per­
forming the integration, we obtain 

8Z2a3 E2 dw 1 1- y (46) 
dcrsv = ----~- ~ -- <D(y)dy. 

3m2 Et w 6, y 

Using the hypergeometric equation, we can easily show 
that 

r/ 1-y 1-y 1 
J -~<D (y) dy= -~[VW + V2- y(1- y)\',2W%•. (47) 
6' !! V2(0) 

Taking the well known asymptotic forms of the hyper­
geometric functions and retaining the principal terms 
of an expansion in o2, we obtain 

16Z2a 3 E2 dw [ 1 1 J 
dasv = --- - ln--~- fCs) 

3m2 E 1 w b 2 ' 
(48) 

where 

~ = 1 
/(';) = 2: (-1)"+' 1;,(2n + 1)~2n = s' L; n(n' + £2) 

n=1 n=i 

(49) 

For ~- 0, f(~)- 0 and we obtain the spectrum of ra­
diated photons in the Born approximation. For ~ >> 1, 
f(~) - ln ~ + C (C is the Euler constant). In this case 

dasv = 16Z2a~l!!._dUJ_ [In_!__- _1:_- c]. (50) 
3m' E, c., lis 2 

This result can be obtained on the basis of purely 
classical concepts of the collision process. Actually, in 
the classical theory there is a rigorous connection be­
tween the impact parameter p and the momentum trans­
fer, q1 = 2~/p (this is evident, for example, from ex­
pression (32), where for ~ » 1 the integrand contains a 
rapidly oscillating factor). Then <I>(y)- 4~ 2yK~(2~ry) 
and the integral in expression (46) receives its main 
contribution from the region y ~ 1/ 4~2 « 1, so that an 
exponential cutoff occurs of the region with minimum 
momentum transfer where the quantum effects are im­
portant. Substituting this expression for <I>(y) into (46), 
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we obtain Eq. (50). 
Note that for ~ » 1, formula (28) has the "classical" 

form: 

(51) 

4. We will now consider the radiation problem for an 
electron in a Coulomb field. Integration of the matrix 
element with respect to time is performed in the same 
way as for scalar particles (20). In summary we obtain 

(52) 

where .At ~(p) is obtained by integration over the trajec­
tory in the form of an "angle" (cf. (27)): 

where 

A= (ep)(l/ E'+m + 1/ E+m), r E+m f E' +m 

1/ E'+m 1/E..j:ln 
B = V E + m [ep] + V E' + m [ep']. (55) 

In formula (54) it is taken into account that with our ac­
curacy ( ~ 1/y) for small angles of deflection in the ex­
ternal field we can neglect the time dependence of the 
spin states cp(~(t)) (7). 

As in the discussion of the radiation of a scalar par­
ticle it is necessary to discuss separately the regions 
q » qmin and q ~ qmin· In general, all of the discus­
sions relating to the division into regions and the behav­
ior of the cross sections in them do not depend on the 
spin of the particle. 

In the region q » qmin formula (28) is valid and, as 
in the case of a scalar particle, it gives a radiation 
cross section identical with that calculated in the Born 
approximation. Using formulas (28) and (52)-(54), we 
can easily write a general expression for the cross sec­
tion for radiation by polarized particles: 

(57) 

This cross section, after summing over the spin of the 
final particle and averaging over the spin of the initial 
particle, with our accuracy can be written in the form 

B Z2a3 1 Ez 
da.-,=-----­

n2 q' E, 

{I ep1 epzl 2 e'e k _ z}~dn 
X IE2 kp1 -E, kpz , + 4(kpi) (kpz)[ (Pt P2)] w "'· 

(58) 

In this formula the first term in the curly brackets is 
identical to the corresponding term in the cross sec­
tion for radiation by a scalar particle, and the second 
term is the addition due to spin. 

In the case q ~ qmin it is necessary to use formulas 
(31) and (32), in which .At(p) is now substituted in the 
form of Eq. (52). Here the statement that in this region 
the matrix element is proportional to q1 is still true 
(this can be seen specifically from formulas (54) and 
(55)), so that 

(59) 

The further calculations coincide with those performed 
in the case of a scalar particle, (35)-(38). We finally 
obtain 

(60) 

Thus, only the Born-approximation cross section, which 
enters into the cross-section formulas (38) and (60), 
depends on spin, including all spin and polarization ef­
fects, and the inclusion of higher orders of interaction 
with the external field (the function ci>(y)) in general 
does not depend on spin. 

Calculation of the spectrum of radiated photons is 
carried out in the same way as for a scalar particle 
(Eqs. (42)-(46)). The final result is 

4Z2a·1 Ez ( E1 E2 2 ) dw [ 1 1 l ( ) da,,v=--2 -- -+-- -- -- lu---;--/(s) . 61 
m E, E 2 E 1 0 w . o 2 .: 

Equation (60) for unpolarized electrons was obtained 
for the first time in the well known work of Bethe and 
Maximon [SJ in which the calculations were made with 
approximate ( l » 1) wave functions for the electron in 
a Coulomb field. Formula (61) was obtained subse­
quently by OlsenY1 Formulas (60) and (61) for elec­
trons were also obtained by Olsen and Maximon [s, 91 

with use of quasiclassical wave functions. The summa­
tion over impact parameters which occurs in such an 
approach is performed by a means similar to that used 
above. All of the results for scalar particles are ob­
tained here for the first time. 

5. The approach which we have suggested can be ap­
plied to discussion of radiation processes in any exter­
nal field. We will discuss below fields falling off with 
distance no more slowly than a Coulomb field (case II). 

For q » qmin• formula (28) remains in force; here 
dWy(k) is obtained by integration over the trajectory in 

the form of an "angle" and does not depend on the field 
shape (the cross section dcr(q1) in (28) depends on field). 
Therefore we can use for dWy(k) the expressions ob­
tained in a Coulomb field. 

In the region q ~qmin formulas (31) and (32) remain 
valid, and we must substitute in them the scattering 
phase for the assumed field: 

00 

x=- ~ V(p,z)dz. (62) 

We will now calculate the matrix element .It (p) in a 
centrally symmetric field V(r), taking into account that 
in this region R(t) can be represented in the form (cf. 
(33) and (59)): 

R(t) = Dp(t}, (63) 

where D does not depend on time. Substituting into the 
expression for the matrix element 
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oo E 
.J(, = S exp{i_;kx( I }R(t)dt 

_ 00 • Ea 

and using the explicit forms of p(t) (A.1) and kx(t) 
(A. 7), we obtain with our accuracy 

• i Dp d s"" . --. 
.;ft (p)= ------ dt e•qm<•' V('y'p•+ t•). 

qmin P dp_00 

(64) 

(65) 

Substituting this expression and the phase (62) into for­
mula (32), we obtain 

.J(, (q.L) = .Jf,,A(q, y), (66) 

where 

1r - ar -A (q, y) =- J pdplt(qp'y'1- y)eix(p)_ J eiqm<•' V('y'p2 + t2)dt, 
q.L dp 

- (67) 

so that the radiation cross section is 

dcrv= i.J(,Bi 21PkiA(q, Y)i 2d'q. (68) 

In the region y « 1, 

IA(q, y) l'd2q-+dcr(q2), (69) 

which follows directly from the representation accord­
ing to Eq. (67). 

Since in the region q2 » q~in the formula 

is valid, and for q ~ qmin we have 

aw ....... , .J(,BI 21Pk, 

(70) 

(71) 

the general expression for the cross section for radia­
tion of a photon by a relativistic particle in an external 
field V(r) in case II can be represented in the form 

dcrv = dWv(k) jA(q, y) l2d2q, 
(72) 

where dWy is obtained by integration over the trajec­
tory in the form of an "angle" and is identical with the 
probability for radiation with a given momentum trans­
fer, calculated in the Born approximation. In a Coulomb 
field, all of the results obtained above follow from this 
formula. 

We can also write out general formulas of the type of 
(72) for case I. Since in this case only a small portion 
of the trajectory contributes, the calculation can be car­
ried out in general form as far as the explicit expres­
sion for the spectrum of radiated photons (see ref. 1): 

d it'., e'm' f' a [ r"" a• 1 2a )] 
---= -----1--- J K•1,(x)dx+ii.,--K'1,:- dt 

da 4 13 n' _·00 ( 1 + a) 3 Za./ax ' 1 + a \ 3x ' 

(73) 

where a= w/(E- w), x = lvly2 /m, i'ls = 0 for parti­
cles with spin zero and l'le = 1 for particles with spin 
%. In the classical limit this formula goes over to the 
well known expression given, for example, by Landau 
and Lifshitz. [101 

APPENDIX A 

THE TRAJECTORY OF A PARTICLE IN AN 
EXTERNAL FIELD IN THE APPROXIMATION 
OF SMALL ANGLES 

We will consider the trajectory of the particle in the 
approximation of small angles, which is important for 
the present work. In the case of a classical trajectory 
the dependence of momentum on time in an external 
field V in the first approximation for momentum trans­
fer is determined by the expression 

' av 
p(t)=Pt-q(t)=Pt+ S e-2pdt, (A.1) 

~ ap• 
where p is the impact parameter and P1 = p( -co). 

With the same accuracy the deflection of the particle 
trajectory from a straight line in a field V(r) is 

' 1 ' 1 '' av 
xq(t)=- )-qdt= S-dt') e-2pdt'+const·t (A.2) 

0 E 0 E 0 ilp2 · 

By interchanging the order of integration this expres­
sion can be reduced to the form 

t ---

~ av (i p2 + v2y2) 
Xq(t)= dy(t-y)e 2p 

0 iJp2 
(A.3) 

= 2ep [• ~ iiV dy- V(r)] + const·t 
E o ilp• 2 . 

We will subsequently be interested in the quantity 
kx(t), which, in consideration of what we have said 
above, can be written in the form 

(A.4) 

where kx0 is a constant, and the factor E/2p2 is sep­
arated for convenience. The coefficients c1 and ca can 
be determined from the conditions at t = ± co. As 
t- -co, kx- (kv1)t, from which we can write 

(kvt) = c1- c2 S e ,0~ dy = c1- c2d; (A. 5) 
0 up 

as t - +co, kx- (kvf)t (Vf = v(t = +co)), and hence 

(A.6) 

Finally we obtain 

kx = 1f2(kv1 + kvt)t + 1/z(kvt- kvt)g(t) + kxo, (A. 7) 
E 

g(t)=-(pxq(t)). (A.8) 
2p'd 

It should be noted that the quantity 

( r iiV )-'[ s' iiV V(r) J g(t)=, J -.-. dy t -dy--- ' 
0 ilp' 0 iJp2 2 

(A.9) 

if we set v2 = 1 (with an accuracy to terms of order 
1/y2), does not depend on the dynamic variables of the 
particle, bl , ly on the form of the field and the im­
pact parameter p. 

In the case of a Coulomb field we have 
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(A.10) 

The last result is obtained, naturatly, from the ex­
act expression for the trajectory in a Coulomb field in 
the case of small deflection angles. 

APPENDIX B 

UNFOLDING OF THE COMBINATION 
exp ( -ikx(t2)) exp (ikx(t1)). 

We will represent exp ( -ikx(t2)) in the form 

(B.1) 

where L is an operator, the problem reducing to deter­
mination of this operator. Substituting for brevity 

a= -ikx(t1), b = i[kx(t1)- kx(t2)], (B.2) 

we have 

(B.3) 

where ~ is a parameter. The operator L(~) satisfies 
the equation 

(B.4) 

We will now determine 

e<abe-sa = ~ r_[a, [a ... [a, b] .. . ]]. (B. 5) 
n! 

n=O 

The commutator [a, b] can be calculated if we use the 
explicit form of a, b (see formula (A. 7)). The opera­
tors kv1 and kvf commute with each other. The func­
tion g(t) (as was noted in Appendix A) with an accuracy 
to terms of order 1/y2 is a c-number. For this reason, 
calculation of the commutator [a, b] reduces to calcu­
lation of [kx0, kv1], [kxo, kvf]. Using the relation 

(B.6) 

we obtain 

(B. 7) 

Hence with an accuracy to terms of order 1/y2 we ob-

tain 
[a, bj = 2wb I :Jf. (B.8) 

Note that the operators ::JC and b which enter into Eq. 
(B. 8) commute with each other. If we take into account 
that 

[a, :Je-1) = w I :;e•, (B.9) 

we obtain 

~ £" ( (!) )" b 
e'"be-'"=~7!(n+1)! ;:;e b=-(1-w£/3f)2. (B.10) 

n=O 

The solution of the differential equation (B.4) with 
the boundary condition L(O) = 1 has the form 

{ £b3t' } 
L(s) = exp .'Jf _ w£ , 

Then, considering (B.1) and (B.2), we obtain 

e-ikx(t,) eikx(t,) = L ( 1) 

= exp{- i~[kx(t2)- kx(t1)]}. :;e- (!) 

(B.11) 

(B.12) 
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