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The method for solving the problem of scattering of electrons by a point paramagnetic impurity is ex
tended to the case of a finite size impurity. It is shown that the previously obtained formulas for the 
amplitude of scattering by a point center can be applied to the partial amplitudes fi(E), each of which 
has its own characteristic "Kondo" temperature T1. As a rule in real conditions the Kondo effect 
should be taken into account only for the wave with the maximal value of T1. The conductivity, thermo
electric power, thermal conductivity, and specific heat are then calculated. Simple limiting formulas 
are obtained, which are valid for low and high temperatures. In the case of "antiferromagnetic" inter
action at T ~ Tz the thermoelectric power possesses either a maximum or minimum, depending on the 
sign of the non-exchange part of the interaction: the specific heat possesses a maximum. At T- 0 the 
conductivity is maximum and its magnitude is determined by the unitary limit of the cross section for 
the l-th partial wave. For any sign of the exchange interaction at T- 0 the thermoelectric power is 
proportional to (lnTt3 , i.e., the contribution of impurities to these quantities is anomalously large. 
The equivalence of the formulas for the amplitude obtained in previous papers is demonstrated in the 
final part of the present paper. 

1. INTRODUCTION 

THE problem of scattering of electrons by a pointlike 
paramagnetic impurity was solved by Suhl and Wong[IJ 
and by the authors of the present article [2-4 J with the 
aid of a method based on the use of the analytic proper
ties of the scattering amplitude and the unitarity condi
tions. The results obtained in this manner agree quali
tatively well with a number of experiments [s,sJ and ap
parently are the most satisfactory from the theoretical 
point of view, since the expressions for the amplitude, 
obtained by other methods, clearly do not satisfy the 
unitarity condition (see, for example/7 ' 8J and[9l). At 
the same time, the notion of a pointlike impurity cannot 
be justified theoretically and, furthermore, it contra
dicts recent experiments by Daybell and Steyert[IoJ. In 
the present paper, the results obtained in[3' 4 J are ex
tended to include the case of an impurity of finite rad
ius, and the contribution made by the impurities to the 
conductivity, thermal emf, thermal conductivity, and 
specific heat is calculated. 

In the last part of the article we compare the expres
sions obtained in[1' 3 ' 4 J for the amplitude and show that 
they are equivalent. It is shown incidentally that the 
scattering amplitude as a function of the exchange part 
of the interaction V 2 has an essential singularity at 
V2 = 0; the fact that the amplitude is an even function of 
the energy is deduced and an expression, simpler than 
in [IJ, is derived for the amplitude; this expression may 
be useful for practical applications. 

2. SCATTERING AMPLITUDE FOR A POTENTIAL OF 
FINITE RADIUS 

We now generalize the method used in u, 4 J to include 
an impurity of finite radius. It turns out here that the 
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problem can be formulated for each partial wave fz(E) 
with a specified value of the orbital angular momentum 
l in practically the same manner as it was formulated in 
the case of a pointlike center. Therefore the expression 
for each partial wave will have the same form as for a 
pointlike center. 

To perform this program, we must obtain the unitar
ity conditions for the partial amplitudes fz(E) and clarify 
their analytic properties. We shall assume that the en
ergy of interaction between the electrons and the impur
ity is given by 

V(r) = V1 (r) + V,(r)Sa, (1) 

where S is the impurity spin, Yaa the electron spin, and 
V 1,2(r) differ from zero at r ~ ro. 

We shall also assume that to calculate the scattering 
amplitude we can use perturbation theory everywhere 
except in a narrow region of energy near the Fermi 
surface, due to the Kondo effect. The scattering ampli
tude can evidently be represented in the form 

F(t},E) =A (tt,E)+ B(t},E)Sa = ~ (2l + 1)P1(cos tt)/l(E), 

fz(E) = A1(E) + B1(E)Sa. (2) 

The unitarity conditions for F(.,, E), even in the case of 
simple potential scattering, are quite cumbersome and 
inconvenient (see [HJ). At the same time, for the partial 
waves they have the simple form 

Im fz = k lid'. (3) 

We shall also use the unitarity conditions for iz. In 
our case they have precisely the same form as the Suhl 
unitarity conditions for a pointlike center[I,sJ 

Im Az = k[ IA,j 2 + IBzi'S(S + 1) ], 

Im E, = k[AzBz' + Az'Bz- 1Bzl 2 (1- 2n)] (4) 
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or (if we introduce, in analogy withr2 ' 3 J, the amplitudes 
at = A1 + sB1 and a;-> = Az - (s + 1)B1) 

Im a~+)= k [I a\+) I'+ 2SIBzl' n], 

Im a~-)= k[lai-) I'- 2(S + 1) 1Bzl 2n], ( 5) 

where n is the Fermi distribution function. These form
ulas can be obtained by direct calculation, starting from 
the unitarity condition obtained in Appendix I ofr3 J (the 
unitarity condition contained there has been written out 
for a pointlike center, but can be directly extended to 
the general case). The validity of ( 4) can also be veri
fied without calculations, if it is recalled that the entire 
difference between the unitarity condition in our case 
and the case of simple potential scattering is connected 
with spins, and therefore the imaginary part of each 
partial amplitude should be expressed in terms of the 
same amplitude in the same manner as in the case of a 
pointlike center 1 ). 

We now proceed to determine the analytic properties 
of the amplitudes fz(E) as functions of the energy. We 
shall use throughout the retarded amplitudes introduced 
in ra, 12 J, since they are the only ones that have simple 
analytic properties and are of direct physical interest. 

Although the analytic properties of fz(E) could be 
formulated directly, we shall first illustrate them with 
the aid of the first two terms of the perturbation-theory 
series. For simplicity we confine ourselves to the case 
T = 0, which is perfectly immaterial for what follows. 
In the second order of perturbation theory we can easily 
obtain for the scattering amplitude the formula 

1 (' Va~~(k'- p) V~a(P- k) 
-4nFwa(1'r,E)= Vwa(q)+ (Zn)' J dp Ep-E-i{) 

p>kF 

1 ) V~a(k-p)Va,~(p-k') +-- dp • 
(2n)' Ep- E- io 

p<kF 

(6) 

Here k and k' are the electron momenta before and after 
scattering, a and a' are the corresponding electron 
spin projections, q = k - k', and V(q) are the Fourier 
components of the potential (1). We use a system of 
units in which the electron mass is m = 1/2. 

The dependence on the energy E in {6) occurs in two 
ways. First, the denominators in the second-order 
terms depend on the energy, and second, the Fourier 
components of the potential depend on the energy, since 
they contain the momenta k and k' which are related to 
E by the equation k2 = k'2 = E. The dependence on the 
energy of the denominators is the same as in the case 
of a pointlike center, and leads to a cut along the posi
tive part of the real axis in the E plane (Fig. 1). It is 
obvious that this cut will occur also for the amplitudes 
fz(E). 

Let us determine now which singularities of fz(E) 
are due to the dependence of the Fourier components of 
the potential on E. We consider first the first term V(q) 
and clarify the resultant situation using as an example 
a screened Coulomb interaction (Yukawa-type potential). 
Let V(r) = V or- 1e- ar, and then V(q) = 81rV o(q2 + a 2 t\ 
and we have 

!)In expressions (4) and (5) we neglect the contributions made to 
Imfl by the many-particle intermediate states, just as done previously 
in [ -3]. The validity of this procedure will be demonstrated elsewhere. 

1 1 8nV0 r dxP1(x) 
V1(E) =- J dQP,(cos1'r)---= 4nVo J 

4n q'+a' _1 2E(1-x)+a' 
(7) 

The integral in the right side of this equation defines a 
function of the complex variable E; this function is regu
lar on the plane with a cut along the real axis from the 
point Eo = -a2/4 to - 00 (see Fig. i; the cut exists for 
those values of E at which the denominator of the 
integrand vanishes at any value of x from the integra
tion region). 

It can be shown (see, for exampler13 J) that the second
order terms in (6) lead to a cut along the negative axis 
of the real axis, starting at the point E 1 = - a2 , and the 
terms of higher order lead to more remote cuts. Poten
tials of another type also lead to cuts when E ::; 0, 
although apparently there exists at present no general 
proof of this fact. A detailed analysis of the properties 
of the functions Fz(E) for E < 0 is not needed, however, 
since all the singularities in this region lie far from 
the point E = EF and do not play any role whatever in 
our problem. 

Taking all the foregoing into account, it can be stated 
that fz(E) is regular on the entire plane of the complex 
variable E with cuts along the real axis from zero to 
infinity and from a certain Eo ::; 0 to - 00 (left-hand cut); 
in addition, fz(E) can have, when E < 0, poles corre
sponding to real bound states, designated by crosses in 
Fig. 1. 

We note one more interesting consequence of (6). 
Retaining only the large logarithm in the second-order 
approximation of perturbation theory, we can represent 
the partial amplitude near the Fermi surface in the form 

' 1 . E- EF) (8) ,:::;; V11 (EF)+ V,,(E.,) ( 1 +~ V2l(EF)ki .. [n~ So. 

It follows from this formula that for each partial wave 
there exists its own characteristic "Kondo" energy: 

{9) 

near which there begin phenomena due to the Kondo 
effect. In exactly the same manner as for a pointlike 
center, the case of greatest interest is that of negative 
gz(V 2 z(EF) > 0, "antiferromagnetic" interaction). Since 
the argument of the exponential in (9) is large, even a 
small change of V2 z(EF) (on the order of 20-30%) can 
change q by one order of magnitude. On the other hand, 
the agreement, with a high degree of accuracy, of two 
different V2 z(EF) is not very probable. Therefore, the 
experimental situation should be such as if the Kondo 
effect were to take place for one partial wave. The in
teresting situation, when this is not the case, will be 
discussed briefly later. 

As already noted, the unitarity conditions and the 

FIG. I 
-E, 
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analytic properties of the partial amplitudes fz(E) prac
tically coincide with the corresponding properties of the 
amplitude for the pointlike center. We can therefore 
write immediately an expression for fz(E), using the 
previously obtained results rs, 4 J • 

For our purposes it is most convenient to use the ex
pression for the amplitude derived inl4 J. We now pres
ent the corresponding formulas, in which the approxi
mate equalities will hold only near the Fermi surface. 
Some more general formulas and a comparison of the 
expressions presented below with the results of other 
worksl1 ' 3 J are given at the end of the article. Thus, 

<±> = _1_·(.5'<±> -1) s<-> = s<+> w,- s- 1 
a, 2ik ' ' ' ' <D, + S ' 

1 (+) (-) 1 ( (+) «!>, \ 
A1 = 28 + 1 [(S+1)a, +Sa,]= Zik~s, <D,+S-1 1 , 

1 s,<+> 
B, = 2ik <Dz + S · 

(10) 

These formulas are exact. All the amplitudes are ex
pressed in terms of two functions it>z and Sz, for which 
we have 

i[ 1 J 1 \, <D, ~ -- --+!(\;) +--;-th-, 
n g1 2 2T 

00 

8dk'n(\,') nT (1 \,i) (1\ 
l(\,)=2k., -,-:-~ln--+Reljl -+2-T -t!J\--;;-1 

_ ... p \, - \, SEFy 2 11 ~ I 

1 \,2 + (nT) 2 r ( 1 e' ) \,t ( =-ln----+ J dte-t/21---- cos-, 11) 
2 16EF" 0 \ t e'- 1 2nT 

where l; = E - EF and it is assumed that I ?;I « EF· 
Further 

S <+> = (2i <+> + 2i'¥) K (<Dz) 
, exp vz 1 Ko(<Dz) , 

f[ 1/z(S + 1 + <Dz)] f[i/.(S + 1- <D,)] ( 
K(<D,) = r['/z(S + <Di)] f['/.(2 + S- <D1)] 12) 

Here vt> is the phase of scattering (with total spin 
J = S + 1/2) by potential (1) without the "Kondo effect." 
In the Born approximation exp(2ivt) ~ 1 + 2 ikFat>(EF), 
where at>(EF) is a corresponding Born scattering am
plitude, we have 

(0) (0) i 1 ( 
Ko(<Di) ~ K(<Dz ), <D, = -~+-:--· 13) 

ng, 2 

This formula is discussed later, in Sec. 4. Finally, 

k 7 dE' 'll+'2 
2i'¥z=~:ni ~ k'(E'-E-ib)'ln JK/ 2 ' 

(Im <D1)2 + (S + '/2 - n)2 
'll+l2 = (14) (Im <D1) 2 + (S + 1/.) 2 - n(1- n) 

Using (11) and (12), we can show that when I l; 1 » T 
we get I K/ 2 = 7J:z- Consequently, the function 'liz vanishes 
when T = 0. 

3. ANALYSIS OF THE AMPLITUDE IN LIMITING 
CASES, AND CALCULATION OF THE CONDUCTIV
ITY, THERMAL EMF, THERMAL CONDUCTIVITY, 
AND SPECIFIC HEAT 

It is well known that the expression for the amplitude 
depends strongly on the sign of the interaction constant 

g1. If gz > 0, then /if> zl » 1, and since we assume that 
lgzl « 1, we also get lit>;o>l » 1. Therefore all the ex
pressions that enter in (10)-(14) can be expanded in 
powers of if> [ 1 and if> z0H. In the expansion of K(it> z), it is 
convenient to represent this quantity, using the well 
known properties of the r functions [14 ] ' in the form 

• _ f['/.(S+i+<Di)]r['h(-S+ <D,)] 1"_"_ <D·-S) ( ) 
li.(<D,)- f['h(S + <D,)] r('/z(- S + H-ll>,)] ~ 2 ( ' . 15 

The expansion of the first factor of this formula in 
powers of if> t can be readily obtained with the aid of the 
asymptotic expression for the r functions l 14 l, while 
tan [ (1f/2) (q, z - S)] = -i with exponential accuracy. 

Further, 2i'llz is of the order of if>t and can be 
neglected; as a result we get 

<+<l_ . . I S 1 S ( S + 1) ) 
S1 ~ (1 + 21kFa,) 1 + -cD~ + 2 cp12 .· , 

S(S + 1) 
A1 ~ a1 + 4ikFw,z ( 1 + 2ik1.a,), 

1 ( S(S' +1) )""""'-.-1~. B1 ~ -. -(1+2ikFa,) 1+-'-::--7'-:---'- ·-
21kF<D1 2C1>12 · 2lkF<Dl 

(16) 

Here az = aj+>(EF) - Sbz(EF) is the spin-independent 
part of the Born scattering amplitude. At negative gz in 
the temperature region T ~ Ez, the quantity lit>zl ;::;; 1 and 
the amplitude can be determined only with the aid of 
numerical integration. On the other hand, the expansion 
in powers of if> z1 is possible only when T >> Ez and when 
T << Ez or, more precisely, if the following condition is 
satisfied2> 

gl 1 
jgi(T)j~ 1 • g,(T)=1-g11n(T/EF) ln(T/T;)· 

(17) 

The corresponding expansion in the region of high 
temperatures (-gz(T) « 1) leads, just as in the case 
when gz > 0, to formulas (16), while at low tempera
tures (gz(T) « 1) we have 

<+> ( S 1 S(S+i)) 
S1 ~-(1+2ikFa,) 1+-;p;--+-z CD,z 

i S(S + 1) 
A 1 ~--a,- . (1+2ikFal), 

kF 41/cF(lJIZ 

1 
B1 ~--~. (18) 

2ikF(J)l 

The minus sign in the expression for sj:t> is the result 
of the fact that 

tg ~ (S- <D,) I tg ~ (S- <Di0>) r ~ -1. 

The non-exchange part of the amplitude Az is now close 
to the maximum possible value l/kF; this result was 
also noted many times earlferr2-4 J. 

It is easy to generalize the results to include the 
case when the potential V1(r) is large and the Born ap
proximation is not applicable to it, and V2(r) is small as 
before. It turns out here that in the limiting cases under 
consideration, when 1?;1 << EF, we have 

2>The numerical factor of the order of unity under the logarithm 
sign in ( 17) cannot be determined within the framework of the present 
theory, since we use the Born approximation outside the region of the 
Kondo effect. For a pointlike center, this follows from the formulas 
for g [2 •3 ). Therefore Tz and €z are also determined only in order of 
magnitude. Below, we should consider these quantities as well as UJ', 
as phenomenological parameters. 
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where;\.= 1 when gz > 0 and.\ = -1 when gz < 0, and the 
quantities az are connected with the amplitude At> of 
scattering by the potential V 1 by the equation At ~ az(1 - ikazt1. Here gz must depend on V 1 and 
must therefore be regarded as phenomenological 
parameters. We shall henceforth not use formula (19). 

We can now proceed to calculate the experimentally 
observed physical quantities. To this end we use the 
following formulas 115l: 

e2N 1 Lt 
~ =- nokF Lo, Q = -wz;· 
e2N ( L12 ) 1 an 1 

X=--- Lz-- , Ln= J d~~n---. 
nokFT Lo a~ crtr 

(20) 

Here E is the electric conductivity, Q the thermoelec
tric power, K the thermal conductivity, N the conduction 
electron density, no the impurity density, e the electron 
charge, and atr the transport cross section of the colli
sions, defined by the formula 

<Ytr = JtaQ(1- cos{})cr(tt) 

=4:rt ~{(2l+1)[IAd•+S(S+1)IBd 2l 

(21) 

As already noted, the Kondo effect should be manifest 
only in one partial wave. If this is indeed the case in a 
wave with a certain l, then, by separating from atr the 
term containing the amplitudes with this l, we obtain 
a = a(K) + a<o> where 
tr tr tr' 

a<:> =4:rt(2l+1) {1Ad 2 +S(S+1) IBd 2 -2 Re[A1.At+S(S+1)Bzi1t]} 
;.:::: 4:rt(2l+1) {IAd 2 +S(S+1) IBd 2 -2[.A1 ReA1+S(S+1)B1ReBz]}, 

(22) 

a~~> is that part of atr which does not contain the ampli
tudes with the selected l, and 

- 1 
Az= 21 + 1 (lAz-t+{l+1)A1;-1), 

- 1 
Bz = 21 + 1 (lBz-t +(l+ 1)B:;-1). (23) 

The approximate equality in the right side of (22) takes 
place in the Born approximation, when Az and Bz are 
real. 

Now, using (11), (16), (18), (20), (22), and (23), we can 
easily obtain the following formulas for the conductivity: 

e2N { (O) [ -~ = -- <Ytr + 4:rt(2l + 1) az2 - 2Azaz 
nokF 

S(S + 1):n"gz2 2BzbzS(S + 1) ]}-t (24) 
+ 4kF2 (1- gzln(T /EF) ) 2 ( 1 + 4kF'aJfz) 1- gzln(T/EF) ' 

when gz > o or -gz(T) « 1 and 

2N 1 { (m) [ 

~ = :okF cr(O) + a(m) 1 + (j<o) ~ a(m) kF2ar ( az ·· · 2Az) 
TP l tr l 

S(S + 1):rt2 4 _ k 2 BzbzkF2 J} ( 
+ 4(In(Tz/T))•(1+ azAz F)-ln(T,/T) ' 25) 

where a(m) = 41T(2 l + 1)/~F. This formula is valid when 

l 
gz(T) « 1, i.e., in the low temperature region at gz < 0. 
Expressions (24) and (25) generalize the previously ob
tained results for s -scattering[sJ . It follows from (2 5) 
that when T- 0 the resistance p = E-1 increases by an 
amount close to a~m)nokF/e2N. Such an increase of the 
resistance is the maximum possible frofz:. the point of 
view of the unitarity conditions, since alm) is the uni
tary limit for the partial cross section. In this connec
tion, we call attention to recent experiments by Daybell 
and Steyert[s,loJ, who investigated the resistance of 
copper with slight additions of iron and chromium. In 
the first case (Cu + Fe) they observed an increase of the 
resistance, corresponding to the unitary limit for 
s-scattering, and in the second case (Cu + Cr) an in
crease corresponding to five unitary limits for s-scat
tering. In this case, apparently, the Kondo effect takes 
place in the d wave. 

We note also that, owing to the interference of waves 
with different l, the deviation of E from the limiting 
value at T = 0 is proportional to (lnTt\ and not to 
(lnTt2 , as for pure s scattering(aJ. It may be that it is 
precisely this interference effect which explains the 
qualitatively different character of the approach of the 
resistance to the limiting value in the two cases con
sidered in[5' 10l. 

Assume now that the Kondo effect takes place in two 
partial waves, i.e., the temperatures Tll and Tz2 lie in 
the experimentally attainable region. We confine our
selves to the case when gll < 0 and gz2 < 0. If ll1 -Z2I 
> 1, then the corresponding waves do not interfere and 
the contribution from them to the resistance is simply 
the sum of the contributions from each of the waves. On 
the other hand, if l2 = l1 + 1, then the interference be
comes appreciable. 

The corresponding behavior of the resistance can be 
easily obtained from the expression for atr(21). Thus, 
if Tz1 » Tz2 , then in the region Tz1• 1 « T « Tz 1 the 

increase of the resistance is proportional to 
41T(2ll + 1)/k~, and then, with decreasing temperature, 
the resistance decreases if l1 f 0, and increases if 
z1 = o, reaching a limit proportional to 81r/kF, i.e., so 
to speak the unitary limit with l = 1/2. On the other 
hand, if Tz1 +1 » Tz1, then the magnitude of the inter
mediate maximum is larger and is proportional to 
2t1 + 3, and the limiting value at T = 0 is the same as 
before. 

We proceed to calculate the thermoelectric power. 
Usually at low temperatures in metals, it is positive and 
small (proportional to T/EF). We shall now show that 
in the region of the Kondo effect this is not the case. In 
the calculations we shall systematically discard the 
small terms proportional to T/EF. As follows from (20), 
to calculate the thermoelectric power it is necessary to 
separate from atr the part that is odd in ~. In the limit
ing cases considered by us, this can be readily done by 
using (11), (16), and (18), after which we can easily ob
tain the following formulas: 

S(S+ 1)kF:rt2( g1 ) 2[ 2k B- + ng,(A,-a,) 1 Q=- Fa, z 
8:rtlelcrtr '1-gzln(T/EF) 1-gzln(T/EF) 

(26) 
when gz > 0 or gz < 0, but -gz(T) « 1, and 
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S(S+1)kFn·· 1 [ _ n(Az-az)J () 
Q= &jejcrtr (ln(Tz/T))2 2kFazBz+1n(T1/T) ' 27 

If gz{T) « 1. In these formulas atr = (nokF/e2N)~ is the 
magnitude of the transport cross section at l: = 0. We 
note that the thermoelectric power is absent if the am
plitudes az and A.z are equal to zero, or, what is the 
same, the nonexchange part of the interaction V 1 is 
equal to zero. This statement holds true also when 
T ~ Tz, as follows from the evenness of Az and Bz which 
was deduced in Sec. 4, and agrees with the numerical 
calculations inlll. 

Further, the first term in (26) and (27) is small (it 
contains the additional small factor kFBz) and therefore, 
with the exception of the region of very low tempera
tures, it can be neglected. If gz < 0, then Q !!_as the 
same sign, which coincides with the sign of Az - az at 
both high and low temperatures. IQI increases with de
creasing temperature in the former case, and decrea
ses in the latter thus indicating that Q has a maximum 
(if Az- az > 0), or a minimum (if Az- az < 0) at T ~ T~. 
This behavior agrees qualitatively with experimentr6 ' 15 

and with the results of the numerical calculations in [1 J • 

!:inally, if the sign of azBz is opposite to the sign of 
Az- az, then the thermoelectric power should reverse 
sign in the region of very low temperatures. 

Let us now calculate the thermal conductivity. As 
follows from the results obtained above for Q, the sec
ond term in the definition (20) of the thermal conductiv
ity K is proportional to gi(T) and can therefore be neg
lected; as a result we get the Wiedemann-Franz law 

(28) 

To conclude this section, let us analyze the specific 
heat. The contribution to the system energy from the 
pointlike impurities is determined by the formula [Bl 

no ooS 1; 
!'J.E=- d1;n(1;)-ReA(1;). 

n k 
-Ep 

(29) 

In the case of an impurity of finite radius, Eq. (29) 
should contain the quantity A(O, l;), as can be readily 
verified by considering, for example, the first terms of 
the perturbation-theory series. Expressing ReA in 
terms of ImA with the aid of the dispersion integral l1 ' 3 l, 
we obtain31 

/:,.E=-no r arJmA(1;) C d1;'1;'n(1;') (30) 
:rt2 J " ~ k'(\;'-1;) . 

-EF -EF 

It follows from this formula that ~E < 0, inasmuch as 
Im A > 0, and, as can be readily verified, the integral 
with respect to l;' :is positive for all l;. 

Let us calculate~ now the contribution of the impurity 
to the thermal conductivity. It is evident that ~C 
= d~E/dT = ~E'. In the expression for ~C, the term 
containing n' can be neglected, since it depends on the 
odd part of Im Hz, which has a small factor kFa (see the 
end of the next section). To calculate Im A[, we cannot 
use expressions (16) and (18). Thus, with the aid of (16) 
we arrive, for ~C in the lowest order in gz(gi), at an ex
pression proportional to the quantity 

3>strictly speaking, (30) should contain a term, which is immaterial 
for our purposes, proportional to the Born amplitude V1 (0). 

oo d oo d ,1;'n(1- n) oo d1;"1;"n(1;") 
~ 1; g 6 T'(6' -1;) g k" (6"- 6) ~ T. (31) 

-Ep ~EF -EF 

We shall show below that the main contribution to ~C is 
made by terms which do not contain the factor T and 
are proportional to gi. Obviously they cannot be deter
mined from (16). To calculate Im Az it is most conven
ient to use the formulas fromr3 J (see formula (35) in the 
next section). The calculation of Im Az gives rise to 
terms proportional to 17~ cos 2li:t and o~ sin 2o:t (o. = v. 
+ Re cp.). The contribution made by the terms with -
17~ to Im Az is proportional to gin'· 

The terms o~ lead to a small contribution to ~C (they 
give rise to terms proportional to (31) or to analogous 
small integrals, or else proportional to gil, except for 
the case gz < 0, gz(T) « 1, when a term 

n n.S(S + 1)g14 ~ di; (2S- 1)sin 26+ +(2~ + 3)sin 2/J_ 

2 (1-gzln(T/EF)) 4_ 00 1; 2S+1 

2(ln(T1/T) ) 4 ' 
(32) 

having the same order of magnitude as the contribution 
from the terms with 11:, arises. As a result we have for 
gz > o and for gz < o but -gz{T) « 1 

t:,.C = :rr}S(S + 1)no~z:_- (2l +f), 
2(1- gzln(T/EF)) 4 

and for gz < 0 but gz{T) « 1 

n 2 S(S + 1)n0 

;:,.c = 2 ln'(Tt/T) - (2l + 1)[c -1]. 

(33) 

(34) 

Here c is a constant determined by the equality (32). It 
should obviously be larger than unity. 

The term c - 1 in (34) is due to the contribution made 
to Im Az by terms containing 17: cos 2o±, inasmuch as 
in the case under consideration cos 26± RJ -1. The exis
tence of a maximum of ~C when g < 0 is apparently con
firmed by experimentlel, and was also predicted 
earlierra,al, but the cited papers did not contain limiting 
formulas such as (33) and (34), from which it follows 
that when T- 0 the impurity specific heat is much lar
ger than the electronic specific heat. 

4. ANALYSIS OF THE EXPRESSION FOR THE AMPLI
TUDE. COMPARISON OF RESULTS OF DIFFERENT 
INVESTIGATIONS 

We shall demonstrate the equivalence of the expres
sions obtained inr1' 3 ' 4 l for the amplitudes. We start with 
the comparison of the results of[3 J andr4 J. We shall 
henceforth omit the subscript l from all the quantities. 
It is sufficient to demonstrate the equivalence of the ex
pressions for s<•>, since s<•> and s<-> are connected by 
the simple relation (10), which is a consequence of the 
unitarity condition la, 3 J. In [3 J we obtained the following 
expression for S <:t> 

SC±J = exp{2i(v± + !p±) }, 

k oo dE' 
2Dm - I· lnlJ 2 (E') 

-.±-2niJk'(E'-E-iii) ±' 
0 

(Im 11>) 2 +(S + 'I• =F n}2 

lJ±2 = (Im<I>) 2 +(S+'/.) 2 -n(1-n) 
(35) 

Here II± is the scattering phase shift in the absence of 
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the Kondo effect in the case of a pointlike center, given 
by (seel2' 31 ) 11! = tan-1ka±, where a! is a constant. The 
function 41 is connected with the function 
u = B-1(1 + 2ikA), introduced in[2' 31 , by the equality 
2ik41 = u. By virtue of the unitarity of (4), u(E + io) 
- u(E - io) = 2ik[1 - 2n(E)] and therefore u is given by 

2E C dk'n(E') 
u(E)=P(E)--l(E)+ik, l(E)=2kF J E'-E. 

nkF 0 
(36) 

Here P(E) is a function that is regular on the complex 
E plane with a cut along the negative part of the real 
axis, the same as for the scattering amplitude (Fig. 1). 

It is shown in[2' 31 that in the case of a pointlike cen
ter 

(37) 

where a. =a+ bS, a_ =a- b(S + 1), a and b are the non
exchange and exchange parts of the Born scattering 
amplitude4 >. It is easy to show with the aid of perturba
tion theory that in the general case, when E ~ EF, we 
have P(E) ~ -4'1T/V2(EF). 

We shall now show that 

where K, Ko, and ~ are determined by equalities 
(12)-(14). Using (35), we can write 

(38) 

k 'f dE' 1J+2 k c dE'lniKI 2 

Zicp+=2nt~ k'(E'-E-i11) 1nTKI 2 +2ni ;k'(E'-E-i6). (39) 

The first term in the right side of this equality is ex
actly equal to 2i~. Further, recognizing that 41(E + io) 
= 41 *(E - io) and that the same property is possessed by 
the function K(41), we get 

dE'lniKI 2 _ }!_ r ~~ 
k'(E'-E-i6)- 2ni~ k'(E'-E-i6) 

k 1 dE'InK 
=InK(E)+2nt J k'(E'-E), 

c, 

(40) 

where the contours C and C1 are shown in Fig. 2. The 
contour C1 encompasses all the singular points of the 
function ln K(E'), lying on the physical sheet off the 
positive part of the real axis. These singular points 
coincide with the poles of the r -functions, which enter 
in definition K (12), and with the start of the left cut of 
the function P(E). The function I(E) which enters in the 
definition of 41 is large only when E ~ EF, and can be 
neglected for other E. Therefore the poles of the 
r -functions can be of two types. The first includes the 
poles near the Fermi surface, due to the compensation 
of the large quantities 4'1T/V2 and 2EI/'ITkF. It is easy to 
show that there are no such poles. 

The poles of the second type lie far from the Fermi 
surface and the function I can be neglected in their de
termination in the first approximation. The integral in 
(40) can be represented in the form of a sum of integ
rals along the contours C2 and C~, where the contour C2 
encloses the left-hand cut (Fig. 2), and C~ all the singu
lar points In K due to the poles of the r -functions. The 

4>we disregard here the possibility that the function P may 
have poles at E"" Ep (the CDD ambiguity) [1-3]. The same pertains 
also to exp (2iv). 

® 

FIG. 2 

integral along the contour C~ can be readily determined 
by integrating by parts (see the appendix ofl21 ): 

_!!___ \ dE'ln K (E') __ 1_ \ dk' (-1- __ 1_) ln K E' 
2ni .l, k'(E'-E) -2ni J, 'k'-k k'+k- ~ ) 

Cl· CL 

1 [ k' - k J k' - k 1 =- ln--lnK(E') - ~ dk'ln----
2ni k' + k circuit along c" , k' + k K (E') c, 

dK(E')]= ~lnkp-k_ ~In k,-k. (41) 
X dE' .'"-l kp+k .W. k,+k 

p ' 

Here kp and kz are respectively the poles and zeroes of 
K(E) on the physical sheet. . 

Thus, by virtue of (39) and (41), we have for e21cp+ an 
equation similar to (38), where, however, K~1(41) (Ko(<P) 
is defined by formula (13)) is replaced for the time 
being by the factor 

-1 - 2iV IT kp- k.TI k, + k . - __!:__ r dE'lnK(E') (42) 
K, (<ll)-e · k +k k,-k' Zty- 2rti J k'(E'-E) . 

p P z c~ 

The product Ki1(<P )K(41) is obviously so constructed that 
it has no zeroes or poles on the physical sheet, nor 
does it have a left-hand cut, in full agreement with the 
properties of the function exp(2icp+). Further, it is ob
vious that K1(.p) ~ K(41o), since, as we have already 
noted, kp and kz lie far from the Fermi surface and can 
be computed, in first approximation, with the aid of 
41o 5 >; the same, of course, pertains also to the function 
2iy. Therefore the function determined by the equality 
(42) can be chosen as Ko(<P) which enters in (38) and (12). 
We note also that when V2- 0 (b- 0), the quantity s<+> 
(and consequently also the scattering amplitude) has as 
a function of V2 an essentla.l~singularity, thus explaining 
the entirely different character of the behavior of the 
amplitude at V 2 > 0 and V a < 0. This statement is a 
direct consequence of the formulas (12), (38), and (42) 
given above, if we recognize that kp, kz, andy can be 
represented in the form of a series in powers of V 2· The 
latter statement can be readily verified, for example, 
in the case of a pointlike center. 

We shall now show that our results are equivalent to 
those of Suhl and Wongu1. We confine ourselves here 
only to the case of a pointlike center. The formulas ob
tained for A and B in LlJ at T > TK are 

1 . 
A =2.ik (e2WR-1), B =-1-e2i•R 

2ikll> ' 

{ k .. dE' I<DI• } 
R-ex - ln 1 

- p 2ni ~ k'(E'-E- i6) I<DI 2 +S(S + 1) · 
(43) 

Here e2i11 is a unimodular function of the energy with a 

5>1n the case of a pointlike center, kp and kz are of the order of a-1 , 

and the corrections to them are of the order of kF 3 ab. 
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cut from zero to infinity, assuming complex-conjugate 
values on different edges of the cut, and approximately 
equal to 1 + 2ika. The function .P is related to the func
tion F introduced in [1 J by the equality .P = -(2JTikFf 1• 

TK is the temperature above which in the function .P 
there are no zeroes on the physical sheet (TK = To). 
Obviously, such zeroes can occur only when g < 0. 

When T < TK, formulas (43) are not applicable, since 
B acquires a pole on the physical sheet, contradicting 
the spectral representation for this quantityc2 ' 3 ' 12 J. A 
method for analytically continuing (43) with respect to 
temperature, makilng it possible to get around this diffi
culty, was proposed in [1J • As a result, very complicated 
expressions were obtained for A and B, whose analysis 
is possible only wi.th the aid of numerical integration. 
In c2 ' 3 J, owing to a more successful choice of the initial 
amplitudes (a! in Heu of A and B), the foregoing diffi
culty did not arise at all. We shall now indicate an 
analytic continuation in the temperature by a method 
simpler than in [1J. Recognizing that .P (E + i6) 
= .P*(E- iO) when T > TK, we have 

k f dE'' lui <lll' k 1 dE' In <ll 
2ni k'(E'-E-i6) = 2ni,J k'(i7-E-i8) 

k 1 dE' In <ll 
==In <ll + 2ni ), k' (E'- E) 

(44) 

where the contour C is indicated in Fig. 2, and the con
tour C' encompasses the zeroes of .P lying on the phys
ical sheet at E < 0. With the aid of this expression, we 
can rewrite (43) in the form 

1(.<ll) A=-- e''V--1 
2ik D 

e2i'V 
B = -· -· n-1 

2ik 

D = ex {}!___ 'f dE' In [I <PI' + S ( S + 1)] } 
p 2ni; k'(E'-E-ifJ) 

k 1 dE' In <ll 
v=v- 4nJ,k'(E'-E) (4 S) 

It is evident that B now has no pole on the physical sheet 
at T < TK· These formulas effect the analytic continua
tion in the temperature from T > TK toT< TK· The 
point T = TK is not a singular point of the amplitude. 
The mechanism of this continuation can be readily 
understood by starting from the following considerations. 
When T > TK, the zeroes of .P lie on the unphysical 
sheet. When T = TK they go on the real axis, and when 
T < TK they go over to the physical sheet. By the same 
token, they deform the integration contour C as shown 
in Fig. 3, where the positions of the zeroes are marked 
by crosses. The r19sult of the contour integration re
mains unchanged and leads to formulas (45). 

We note an important consequence of formulas (43). 
The function R can be represented in the form R = 7)e2i6. 
In the integral that determines R, the integration region 
near the Fermi surface is important. In this region 
lei> 12 is an even funetion of E' - EF. It is easy to show 
that if we neglect the corrections of the order l;/EF, 
then TJ is an even fu.nction and 6 an odd function of ?; • 
Recognizing that e:llV ~ 1 + 2ika, we obtain 

1 
I rnA ""' =- (1- '1 cos 26 + akFI] sin26), 

2:kF 

ReA ::::; l (sin 26 + kFa cos 26). 
2kF 

(46) 

FIG. 3 

From this we get, taking into account the definition of 
.P (11), the properties of evenness of A and B, whieh we 
used in Sec. 3. Since the point T = TK is not a sin!?;Ular 
point of the amplitude, these properties remain in force 
also when T < TK. 

It remains to demonstrate the equivalence of (45) and 
our results. To this end, we compare the expressi.on for 
Bin (10) and (45). Recalling the definitions of .P, s:< .. ), 
and 7)~ , we readily obtain the equality 

. 1 { k oo~ dE' In I !ll + S I' } 
ex 2' ' v =-~ex -.p{ (y,- +)} <ll+S p 2ni k'(E'-E-io) 

I) 

{ k s dE'In(<ll+S) } 
=exp 2ni .·k'(E'-E-io) · 

c 
(47) 

Here the contour C" encompasses the zeroes of .P + S, 
lying on the physical sheet when E < 0 (for details con
cerning these zeroes see [2 J). With the aid of (45) and 
(47) we can determine the function v which enters :ln the 
Suhl and Wong solution in terms of the function v+, and 
vice versa. 

The solution of the problem on the basis of the prop
erties of analyticity and unitarity is in principle non
unique. It contains certain simple auxiliary functions, 
which must be determined from additional considera
tions. In our case these are P and v .. , in c2 ' 3 J these are 
II+ and 11-, and in[1 J these are P and v. We determine 
these functions by starting from the requirement that 
our formulas go over, outside the region of the Kondo 
effect, into the formulas of the perturbation theory. 
Suhl and Wong did this somewhat differently, so that 
their formulas go beyond the scope of perturbation 
theory when ll: I » TK, and therefore, in particular, in 
their formulas TK depends on V 1, although at suffieiently 
small V 1 their formulas practically coincide with ours. 
Actually, however, when TK << EF, the scattering am
plitude depends only on two parameters, determined by 
the values of the auxiliary functions at E = EF. In our 
c~se th~se are the parameters az(EF) and gz(EF) 
(V and J in the notation of Suhl and Wong). These are 
the parameters that should be used to compare theory 
with experiment. 
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