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An asymptotic solution of Maxwell's equations is obtained by the geometric optics method for the 
general case of a weakly nonstationary and weakly inhomogeneous medium with frequency and spatial 
dispersion and also weak absorption. Waves in an anisotropic medium as well as transverse and 
longitudinal waves in an isotropic medium are considered. It is shown that a term due to the non­
stationarity of the medium appears in the energy conservation equation; terms also appear which are 
due to the presence of frequency dispersion in a nonstationary medium and to spatial dispersion in an 
inhomogeneous medium. 

THE propagation of electromagnetic waves in inhomo­
geneous and nonstationary media with frequency and 
spatial dispersion is described by Maxwell's equations 

1 an 1 aB 
rotH=-- rotE=---

c at ' c at ' 
(1) 

which must be solved together with the material equa­
tion 

t 

Da(r, t) = ~ dt' dr' e"~(t- t', t; r- r', r)Ep(r.', t') (2) 
lr-r'l<;;c(l-1') 

[it is well known that the magnetic permeability tensor 
can be assumed to be equal to 6af3 so that in Eqs. (1) 
H = B] . The inhomogeneity and nonstationarity of the 
medium manifests itself in that the dielectric permit­
tivity tensor Eaf3 depends not only on the differences 
t- t' and r- r' but also on t and r. The specific form 
of this tensor is determined by considering the micro­
scopic processes in the medium. 

Maxwell's equations can be solved by the methods of 
geometric optics in the case of weakly nonstationary 
and weakly inhomogeneous media under the condition 
that the wave is "almost plane" and "almost mono­
chromatic." If T and L are quantities characterizing 
the nonstationarity and inhomogeneity of the medium 
(i.e., characteristic scales of the variation of Eaf3 over 
the variables t and r), then for the method of geometric 
optics to be applicable it is necessary that the following 
inequalities be fulfilled: 

(3) 

where 7 is some average period and :X-the average 
spatial scale of the field. When conditions (3) are ful­
filled the wave can be assumed to be plane and mono­
chromatic over intervals .:.\t ~ 7 and distances .:.\r ~ :X. 

With the additional condition 

(4) 

where To and Ao characterize the frequency and spatial 
dispersion (i.e., To and Ao determine the scale of varia­
tion of E a{:3 as a function of the variables t - t' and 
r- r') the wave can also be considered plane and mono­
chromatic within the space-time region .:.\t ~To and 
.:.\r ~ Ao important for the integration in (2). It is impor-

tant to note that conditions (3) and (4) make it possible 
to consider, just as in the scalar problem, UJ both weak 
(To« 7, Ao « :X) and strong (To» 7, Ao » i) frequency 
and spatial dispersion. 

We shall seek a solution of Eqs. (1) in the form 

(5) 

considering the amplitudes E, H, D, as well as the quan­
tities vcp and acp/at, to change slo~ly over intervals 
At~ 7 and To and distances Ar ~A and Ao. Making use 
of inequalities (4), we write for Ef3 (r', t') the following 
approximate expression obtained by expanding the am­
plitude and phase in powers oft' - t and r'- r: 

E~(r', t') ~ exp [irp + iw(t- t')- ik(r- r')] 

{ aE~ , aEp , 
· l!p+-(x; -x;)+-(t -t) 

ax; at 

iE~ [ a•.-p + -2- (x;'- X;) (xm'- Xm) OX; OXm. 

a•q: 172.-p J 1 
+2(t'-t)(x;'-x;)atax; +(t'-t)•ai2 +···f• 

where Ef3 = Ef3 (r, t), cp = cp(r, t), and where we have 
introduced the notation: 

(6) 

k = k(r, t) """ V<p(r, t), {!) = ro(r, t) """ -Oq:(r, t) I at. (7) 

Defining the complex tensor Eaf3(w, t; k, r) as 
t 

e,.~(ro, t; k, r) = ~ dt' ~ dr' 8ap(t- t', t; r- r', r)-e;"(t-t')-;k(r··r'', 

we obtain from (2) with the aid of (6) 

. aE. ae"~ . aE~ ae"~ 
lJ"= e"pEp-!----+1---

ax; ok; Bt ow 

iE p { i72rp i72e"P o'cp i72e"~ i12cp i12e"~ 1 ( 8) 
- 2 a~--:a;;nOk; i1km- 2 at ox; ow ok; + atz i1w2 f + ... 

By virtue of (3) and (4) the terms with the factor i are 
small compared with Eai3E13. 

Let us introduce weak absorption in the medium. To 
this end we separate from Eaf3(w, t; k, r) the antihermi­
tian part v a{:3 = (Ea{:3- E~a)/2 which we shall assume to 
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be small compared with the hermitian part (Ea.tJ + E~a.)/2 
for which we retain the notation E a.tJ· 

Substituting (5) and (8) in (1), we obtain in the zeroth 
approximation the system of equations 

- (J) 

i(kH0}.+ i-8apE~0 = 0, 
c 

- (J) 

i[kE0] .. - i--H .. 0 = 0, 
c 

{9)* 

whereas the amplitude of the first approximation satis­
fies the system 

- w - 1 a 
i(kH1]a + i-ea:,E~1 =- rotaH0 +--(8apEp0) 

c c ilt 

-~ iiEp•ilea~ +~iiE~0 ileap _ iwVap Ep• 
c ilx; ilic; c at ow c 

wEp0 { il~ il2sap il2cp il•ea~ il2cp il2eap) 
- ~ ox; OXm ilk; ilkm- 2 at aX;' Ow ilk; + Oi'i ilw2-f == x .. , 

- w - 1 ali .. • ( ) i[kE1] .. -i-Ha1 = -rotaE0 ----== Ya. 10 
c c ilt 

According to {9) the coupling between the amplitudes 
"'""o ""o E and H turns out to be the same as in a homogeneous 
stationary medium, although now the quantities k and w 
are functions of r and t [see (7)]. Setting the determin­
ant of the system {9) equal to zero, we obtain for the 
phase cp an eikonal equation (or, what is the same,-a 
"local" dispersion equation) in the form 

det I!Dapll == det llk20a~- kak~- ::sap~= 0. (11) 

The solution of this equation can be sought by the method 
of characteristics (see, for example, [2-51 ). 

The polarization of the wave is also obtained from 
(9). In the case of anisotropic media when there is no 
polarization degeneracy and the matrix IIDa.tJII is a ma­
trix of the second rank it is convenient to describe the 
polarization of the field with the aid of a unit (in the 
general case complex) polarization vector f which char­
acterizes the direction of the electric and magnetic field 
vectors: 

E =·!I>f, H = !I>h, h =_!!__[kf] (12) 
(J) 

(here and below we omit the zero and the tilde in the 
amplitudes of the zeroth approximation). Eliminating 
the vector H from (9), one can convince oneself that the 
polarization vector f satisfies the system of equations 

(13) 

where the components of the tensor Da.tJ are given by 
expression (11). 

The system (13) and the normalization condition f · f* 
= 1 determine the vector f with an accuracy up to an 
arbitrary phase factor exp(ia.). The arbitrariness in the 
choice of a can be removed by fixing, for example, the 
direction of the real part of f (in practice it is most 
convenient to follow the local symmetry axes of the 
medium). As in[5 ' 61 , in which no account was taken of 
nonstationarity and spatial dispersion, one can show that 
fixing the direction of the real part of f does not affect 
the values of E and H. 

Thus in an anisotropic medium only the complex am­
plitude factor <I> = I <I> I eili remains undetermined in the 
zeroth geometric -optics approximation. The absolute 

value and the argument of <I> can be obtained from the 
consistency condition of the equations of the first ap­
proximation, i.e., from the orthogonality condition of 
the six-vector (X, Y) with the six-vector (E*, -H*) 
which satisfies the system of homogeneous equations 
transposed with respect to (9): 

XE'-YH' =0. (14) 

Let us define the density of electromagnetic energy 
W averaged over the period of the oscillations and an 
averaged Poynting vectorS in analogy with the way in 
which this is done for a homogeneous stationary med­
ium[7'81. 

W = _1_ [ il(w8ap) E • E + HH' ]= I!IJI2 [ il({l)Ba~) f */ + hh'] 
16ll ilw a p 16:rt ilw a ~ ' 

(15) 

c * • (I) aea~ • 
8=--([EHJ+[EH])---Ea Ep 

16:rt 16:rt ilk 

I <111 2 [ , 1 , ilea~ • J =16n c((fh]-,[fh])-w-iik/a fp, (16) 

but we shall keep in mind that k and w are functions of 
rand t. 

Substituting in (14) expressions for X and Y from (10) 
and setting the real a.nd imaginary part of (14) separ­
ately equal to zero, we obtain two equations 

where 

N = Im{cfroth' + ch' rotf + ha* ilha 
ilt 

+/a' !J!.. il(wBa~) _ ol/a' !J!.. Oeap). 
ilt O(J) OXj ilk; I 

(17) 

(18) 

(19) 

The Poynting vector S in the energy conservation 
equation (17) is equal to the product of the density of the 
electromagnetic energy W and the group velocity vector 
u = dw/dk. One can verify this most readily by multi­
plying the first of equations (9) by E* and the second­
by H*, adding the resulting expressions and differentiat­
ing the result with respect to k. This was done approxi­
mately in[7' 81 . Rytov obtained the equality S = uW con­
siderably earlier as one of the results of considering 
field equations in their four -dimensional form. [BJ 

The term 2iwv a.tJ in the right-hand side of (17) des­
cribes weak absorption. The three following terms 

ilea~ ii2Ea~ il2e .. ~ 
-----+w--·-w--

ilt iJwiJt ilx;ilk; 
(20) 

determine the change in the energy as a result of the 
nonstationarity and inhomogeneity of the medium. Un­
like the first term in (20), the second and third terms 
are related with the presence of frequency dispersion 
in a nonstationary medium and of spatial dispersion in 
an inhomogeneous medium. They can be considered as 
additions to the hermitian part of the dielectric permit­
tivity tensor 

(21) 
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They thus make a certain contribution to the enhance­
ment (or weakening) of the field in a nonstationary and 
inhomogeneous dispersive medium and must be taken 
into account for example, in discussing the problem of 

' . h 1 [10,11] the stability of a weakly m omogeneous p asma. 
The term ~ <h:/awat has been derived by Pitaev­

ski1[121 for the case of an isotropic dielectric, and the 
term with o2E/oxj a~ has been noted by Petviashvili for 

[13 14] 1 . [1] h a weakly turbulent plasma, ' as we 1 as m w ere 
the problem of the propagation of a monochromatic 
wave in a medium with spatial dispersion was consid­
ered. As communicated to the author by Stepanov, 
analogous terms were obtained by the latter in conjunc­
tion with Ostrovski'l in a study of waves in a nonstation­
ary isotropic plasma. 

The last two terms in (20) are symmetric with 
respect to the space and time variables. On the other 
hand, there is no such symmetry in the first term, be­
cause we have assumed that the medium as a whole is 
at rest. Going over to a relativistically invariant form 
of notation should apparently establish the four-dimen­
sional symmetry of both Eq. (17) and (18). 

Equation (18) obtained by setting the imaginary terms 
in the consistency condition (14) equal to zero deter­
mines the change of phase o. The law governing the 
variation of o could already have been obtained from 
the work of Rytov[91 in which the imaginary terms were 
not analyzed, although it was noted that they concern 
the structure of the wave field to a greater degree than 
the law of conservation of energy. In the absence of spa­
tial dispersion and in a stationary medium Eq. (18) is 
equivalent to the results obtained by Lewis [5 1 in a more 
abstract form (a medium with n > 3 spatial dimensions), 
and with the additional condition w = const (monochrom­
atic wave) it goes over into Eq. (13) of[6 J. All the 
properties of o established in [51 and [61 extend also to 
the more general case considered here. 

For an isotropic medium the dispersion equation (11) 
takes on the form 

where E 1 and E 11 are the transverse and longitudinal 
dielectric permittivities. The propagation of transverse 
waves for which 

kE = kH = 0, c2k 2 = w2e.L, 

is by characteristic polarization degeneracy (the matrix 
11Daj3ll is a first-rank matrix, not a second-rank matrix 
as is the case for an anisotropic medium). 

. h k f R t [15,16J In this instance, as m t e wor o y ov, one 
must seek the fields E and H in the following form: 

E = <D1n + <D2b, H = )'8:;: (<D1b- <D2n), (22) 

where n and b are unit vectors of the normal and bi­
normal to the ray. From the consistency conditions of 
the first-approximation equations 

Xn -l'e:;:bY = 0, Xb + "J'B:;:nY = 0 (23) 

we obtain then the law of conservation of energy (17) in 
which one must replace Ea J3 by E 1 oa J3 and W and S de­
note the following quantities: 

W=-1-[o(we.L) EE*+HH*]= 1 o(w2e.L) (i<Dd2+1<D212), 
16n ow 16n wow 

S = 1: 11 [ c ([E*H] + [EH*])- ro ~~.L EE* J 
1 ( - 08_L ) = 16~\ 2c"J'e.Lt- roak (I<Dd 2 + I<I>2I 2), 

where t = k/k is a unit vector tangent to the ray. 
In addition we obtain with the aid of (22) and (23) 

' ' f th f' ld t [15' 161 Rytov' s law of the rotation o e 1e vee ors 

ae Ida= 1 IT, (24) 

which was initially obtained for monochromatic waves 
in a stationary inhomogeneous medium without spatial 
dispersion1>. In (24) () = tan-1(<Pa/<Pl) is the angle between 
the vector E and the vector of the principal normal to 
the ray n, T is the radius of torsion, and do- = udt is an 
element of length of the ray. Thus (24) is valid in the 
general case of modulated waves in an inhomogeneous 
and nonstationary medium with frequency and spatial 
dispersion. 

For longitudinal waves in an isotropic medium (for 
which the eikonal equation is of the form E 11 = 0) E X k 
= 0 and H = 0. Therefore the electric field should be 
sought in the form E = <Pt = <Pk/k. From the consistency 
condition of the first-approximation equations for longi­
tudinal waves, X· k = 0, we obtain the law of conserva­
tion of energy in the form (17) with E aj3 replaced by 
E 11 iiaj3· Here one must bear in mind that for longitudinal 
waves 

W= _1_o(roe 11 ) EE* = _1_o(weu) I<DI 2, 
16n ow 16n ok 

S= -~~EE*= -~~I<DI 2· 
16n ok 16n ok 

In conclusion, the author expresses his deep grati­
tude toM. L. Levin and S. M. Rytov for reading the arti­
cle and for valuable remarks. The author is also grate­
ful to N. S. Stepanov for a discussion of the problem. 
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