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We consider the propagation of charged particles in a random magnetic field under the assumption 
that the characteristic dimension of the inhomogeneities of the magnetic field is much smaller than 
the characteristic value of the Larmor radius. An equation for the second moment of the exact 
distribution function is derived from the collisionless kinetic equation for the exact distribution 
function, using a diagram technique; this moment characterizes the fluctuations of the intensity 
of the charged particles. A solution of this equation is obtained for weak intensity fluctuations. 
It is shown that a study of the intensity fluctuations yields information concerning the structure 
of the random magnetic field. 

1. FORMULATION OF THE PROBLEM 

DoLGINOV and Toptygin[1 l obtained a kinetic equation 
for the average distribution function of charged parti­
cles moving in a random magnetic field. In a number 
of cases (in particular, for the interpretation of the 
intensity fluctuations of the relativistic solar protons[2 l) 
it is necessary to know also the characteristics of the 
fluctuations of the exact distribution function, due to 
fluctuations of the magnetic field. 

In the present paper we derive, using a procedure 
proposed in[1 l, an equation for the second moment of 
the exact distribution function of charged particles 
moving in a random magnetic field. A solution of this 
equation is obtained for weak intensity fluctuations. 
The conditions for the applicability of the solution are 
indicated. 

2. DERIVATION OF THE MAIN EQUATION 

Assume a stationary random magnetic field with 
smoothly varying average characteristics and having 
a normal distribution. We assume that the regular 
component of the magnetic field vanishes: 

(H)= 0. 

The second moment of the field, as shown in[ 1l, 
should be specified in the form 

(1) 

<Ha.(r1 )H~(r2))=Ba.~(r,x)=~H1•(~-...!:___&~)<p(r x) {2) 
12 ax .. ax~ ax," ' ' 

where H~ is the dimensional factor, cp is a scalar 
function of the variables r = ( r 1 + r2 )/2, and x = r1 
- r2. In the concrete calculations we shall assume 

<p = a2 exp ( -x2 / a2). (3) 

The higher-order even moments of the field are ex­
pressed in terms of the sum of products of the second 
moments (see[lJ ). All the odd moments vanish. 

We assume that in the elementary act of interaction 
with one inhomogeneity, the particle is scattered through 
a small angle, so that the inequality 

(4) 
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is satisfied, where c is the velocity of light, p the 
momentum, e the electron charge, and a the charac­
teristic dimension of the magnetic-field inhomogenei­
ties. 

In the derivation of the equation for the second 
moment of the exact distribution function, we shall use 
the method employed by Dolginov and Toptygin[1 l to 
derive an equation for the average distribution function. 
The exact distribution function satisfies the collision­
free kinetic equation 

at af 
m+v~+(HD)j = 0, (5) 

D =_:_[v!._J, 
c . ap 

(6)* 

where v is the particle velocity, r the coordinate of 
the configuration space, and t the time. We carry out 
in (5) a Fourier transformation with respect to r and a 
Laplace transformation with respect to t. Then, solving 
this equation by iteration, we obtain 

f(k, p,s)= Rofo(k, p)+Ro~ 5 IT {(HD)~:JZmdkm]· 
n=i m=t 

X/o(k-kt- ... -kn,P), 

Rm = [s + iv(k- kt- ... -km]-1, 

(7) 

(8) 

where k corresponds to r in Fourier space and s 
corresponds to t; fo (k, p) is the Fourier transforma­
tion of the initial distribution function; ( H · D )km is 
the Fourier transformation of the product ( H ·D), 
which depends on km. 

Let us represent the series (7) graphically. To this 
end, we introduce certain symbols (they correspond 
essentially to the symbols employed ini 1 l): 

I 

o- I I 
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FIG. 1. Series for f (k, p, s). 

*[v l__l =v X l_ 
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1. A black circle on a diagram with n vertices 
corresponds to the quantity fa ( k1 - ... - kn, p); 

2) a shaded-line segment emerging from the m-th 
vertex corresponds to the factor ( H · D )km; 

3) a straight-line segment joining the vertices m 
and m + 1 corresponds to a factor Rm; 

4) an empty circle with a line emerging from it de­
notes the function f ( k, p, s ) ; 

5) integration with respect to km is carried out 
over all the internal vertices. 

The series (7) is shown graphically in Fig. 1. Out 
of this series, we make up a combination for the sec­
ond moment: 

<l>(k1, k2; P1, P2; s,, s,) = (f(kl, P1, St) -j(k2, p2, s2)>. (9) 

The angle brackets in (9) denote averaging over the 
realizations of the random magnetic field. 

Graphically, the procedure of averaging consists in 
the fact that the free ends of the dashed lines are joined 
pairwise. The segment of the dashed line joining the 
vertices i and j corresponds to a correlation function 
( ( H · D )ki · ( H · D )kj). Graphically, the series for <P is 
shown in Fig. 2. In the figure, the rectangle with two 
emerging lines denotes the function <P. The vertices 
of the diagrams that enter in the series for <P can be 
strongly and weakly coupled. A strongly-coupled 
diagram cannot be divided into parts without cutting at 
the same time a dashed line. A weakly-coupled diagram 
can be separated into parts without cutting the dashed 
line. A weakly-coupled diagram can be combined out of 
corresponding strongly-coupled diagrams with the aid 
of weak couplings. The strongly-coupled diagrams, of 
which the diagrams that enter in the series for <P are 
made up, can be divided into two types. The diagrams 
of the first type join the vertices located at only one 
level (Fig. 3a). The diagrams of the second type join 
vertices located at two levels (Fig. 3b). 

It can be shown that the strongly-coupled diagram of 
order 2n + 2 (containing 2n + 2 vertices) has an extra 
factor of a 2 /p{ compared with the strongly-coupled 
diagram of order 2n. By assumption, this factor is 
small, so that we can disregard diagrams which con­
tain as components strongly coupled diagrams of order 
higher than two. This denotes that in the expansion in 
the parameter a2/p~ only the zeroth term is taken into 
account. The remaining diagrams from the series 
represented in Fig. 4. 

Diagrams containing an equal number of diagrams 
of the second type can be summed. As a result we ob-
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FIG. 3. Examples of strongly connected diagrams of first (a) and 
second (b) type. 
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FIG. 4. Series for <P, in which the strongly-coupled diagrams of 
order higher than two are discarded. 
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FIG. 5. Partly summed series for <1>. 

tain the series represented in Fig. 5. In this figure, 
the heavy straight-line segment emerging from a black 
circle denotes the average distribution function 
F (k, p, s) = ( f ( k, p, s )) . The heavy line without the 
circle denotes the average Green's function G ( k, p, s ). 
It is easy to see that the series represented in Fig. 5 
is a solution of the equation represented in Fig. 6. Let 
us rewrite this equation analytically in the coordinate 
representation 

<P(r~o r2; Pt, P2; ito lz) = F(rt. Pt. tt)F(rz, Pz, t2) 

+ ~ G (rt - rt', Pt, it- it') G (r2- r2', P2, t2- tz') 

XD..DrJl"~ (rt' + rz', rt'- rz') <J) (rt', r/; Pt, p,; ft', fz') 

· drt' dr2' dt{ dt2'. 

3. WEAK INTENSITY FLUCTUATIONS IN THE 
STATIONARY CASE 

(10) 

Let us consider first a bounded volume with a ran­
dom field, in which the integral scattering is through 
a small angle, and that the particles not be scattered 
outside this volume. The average distribution function 
will be assumed stationary. The stationary average 
Green's function, assuming small scattering, has in 
accord with[1J the form 

(11) 

(12) 

where lj! is the polar angle characterizing the direction 
of the momentum p, reckoned from the direction of 
the vector r - r'. 

If we choose as F the solution for a pointlike source 
contained in the volume under consideration, and 
represent the solution of Eq. (10) in the form of an 
iteration series, then it is easy to see that all the inte­
grals that enter in the series diverge. The mean 
square of the intensity fluctuations becomes infinite in 
the entire volume under consideration. Physically this 
is explained by the fact that the inhomogeneities of the 
magnetic field can focus the radiation of a pointlike 
source into a point. To eliminate the singularities it is 
necessary to assume that the average distribution func­
tion has a sufficiently smooth dependence on the angles 

FIG. 6. Equation for <1>. [[ += 
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in velocity space in the entire volume under considera­
tion. 

Let us consider the case of a weakly anisotropic 
average distribution function. Let the dependence of 
F on p be so weak, that in the solution of (10) by an 
iteration method it is possible to confine oneself to 
iteration of first order. We assume also that F de­
pends little on the coordinates, so that it can be taken 
outside the integral sign. Quantitatively these limita­
tions will be considered below. Thus, under these 
limitations, we have in the stationary case 

ll>(r,, r,; p,, p,) = F (r~, p,)F(r,, P•) 

v 
(13) 

where 1/Ji is the angle between ri- ri and Pi· 
Let us examine in greater detail expression (13) for 

the case r1 = r2 '= r, P1 = P2 = p, i.e., for the mean 
square of the exact distribution function. We write the 
integration variables in a rectangular coordinate sys­
tem: ri- ri =xi, yi, zi. We direct the z' axis along 
the vector p. Inasmuch as in the region significant for 
the integration we have xi « zi and Yi « Zi> we 
can write approximately 

3 [ 3v(x·'2 + y-'2 ) J 
G(lr;-r/I,1JJ;)=--exp - ' ' . 

4nqz/3 4qz/3 
(14) 

The off-diagonal components of the tensor Ba 1a 2 make 
no contribution to the integral, and furthermore Dz = 0, 
since vx = Vy = 0; we can therefore put in (13) a 1 = a 2 
= a, whereby a assumes the values x and y. 

The functions Baa (I r~ - r~ I) depend on the differ­
ence z~ - z~ much more strongly than the functions 
G (I ri - ri I, 1/!), and therefore, in integrating with re­
spect to z~ - z~, we can disregard the dependence of 
G on zi: 

" 
Ill = F2 + 'Y<><> (Da.F) 2 ~ dz' ) G (xt', y1', z') 

0 

xG(x2', y2', z')R,.,.(x,'- x2', y;- y2')dx,' dy,' dx2' dy2', (15) 

where zo is determined by the shape of the volume and -'Y<><> = ~ Baa(z) lx=y=odz, 

+oo 

R,.a = ~ B,(x, y)dz/yaa· (16) 

If the concrete form of Baa is determined by expres­
sions (2) and (3), then (15) can be integrated with re­
spect to xi and Yi: 

,,- H z '" 3 8 '3/3 
Ill= F2+(DaF) 2 -r_n_, \ a /1- qz v ) dz'. (17) 

6 ~ a2 + 8qz'3 /3v \ a2 + Sqz'• /3v 

An important feature of the integrand in (17) is the fact 
that it decreases rapidly (like z'-6 ) when z' > l;, 
where l; is determined by the expression 

~ = (3a2v I 8q) '", (18) 

and when z' < l; the integrand is not dependent on z'. 
Thus, only a small region adjacent to the point of ob­
servation in the direction of the line of sight takes part 
in the formation of the fluctuations. This region is 

determined quantitatively with the following relations: 

(19) 

The first two inequalities in (19) are determined by the 
form of the function G. 

If F has circular symmetry in the angular spectrum, 
then, denoting by (} the polar angle measured from the 
symmetry axis, and approximately integrating with 
respect to z', we obtain the simple relation 

Ill = F· + ( ~: n :q r 3'"· (20) 

Expression (20) has a simple meaning: scattering by 
the inhomogeneities located near the point of observa­
tion shifts the average angular spectrum by a random 
small angle J:::.() i'::l -./ ql; /v, and this is the cause of the 
intensity fluctuations. 

The correlation function can be calculated quite 
similarly. We present the final expressions for a num­
ber of cases, assuming that F depends only on e. Let 
P1 = P2 = p, r1"' r2, and let the vector p be perpen­
dicular to the vector r 1 - r2. We direct the x axis 
along the vector r1 - r 2. In this case we have 

(21) 

where A is the angle between v.PF and r1- r 2. We 
see from (21) that the charactenstic transverse spatial 
scale of the intensity fluctuations is approximately 
equal to the dimension of the inhomogeneities of the 
magnetic field. If the vector p is directed at any angle 
to the vector r 1 - r2, then, directing the x axis along 
the projection of the vector r 1 - r2 on the x, y plane, 
we obtain 

ll>(x, -xz, z,- z,) = ll>(x,-x,) lz,=z, = ll>_j_(x, -x,). (22) 

Thus, the correlation function depends only on the 
projection of the base on the plane perpendicular to the 
line of sight. This indicates that the longitudinal corre­
lation scale is much larger than the transverse corre­
lation scale. 

Let now P1"' P2 and r1 = r2. When t::..k = p1/lp2l 
- pdlp2l « 1, we have 

Ill (t.k) = F• + ( oF)' _J__a_ erf (- I t.kl ~) 
ae 3v I t.k I I a ' ' 

2 X 

erf (x) =-=-) e-t' dt. 
yn o (23) 

From (23) we see that the characteristic scale of the 
angular correlation equals a/l;. 

Let us refine now the limitations imposed above on 
F. Since the fluctuations are determined only by the 
region (19), we can lift the limitations on the magnitude 
of the volume V: integral scattering in the entire 
volume can be large; it merely suffices that the scatter­
ing occur through small angles in the region (10): 

qU 3v = (aq I 3v)''• <Si; 1. (24) 

It is sufficient to impose on the dependence of F on r 
the condition that F changes weakly within the limits 
of the region (19). An estimate of the second-order 
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iteration terms shows that, on top of the first-order 
iteration terms, there appear terms with order of 
magnitude (aFjaO )4 (ql; )2 • It is therefore necessary to 
impose on the dependence of F on 9 the condition 

3''{:: n :q r1 F·~ 1, (25: 

i.e., that the density fluctuations be small compared 
with the average intensity. 

The obtained results can be applied also to the case 
of a nonstationary average distribution function, if the 
characteristic scale of variation of F with time 
greatly exceeds l;/v. 

It should be noted that the intensity fluctuations 
yield new information compared with the average 
intensity. Indeed, F depends only on q - H~ a. Ob­
servations of the intensity fluctuation scale yield 
directly the characteristic dimension of the inhomo­
geneities of the magnetic field a. A comparison of the 
mean square of the intensity fluctuations with the 
average intensity yields the parameter qa - H~a2 • On 
the other hand, if fluctuations are not observed, then 
it is possible to impose limitations on the maximum 
dimension of the inhomogeneities of the magnetic field 
and the minimum field intensity in them. 

In conclusion, let us compare the theoretical results 
with the observed data on the flare of solar cosmic 
rays of 15 November 1960(2 J. The motion of the in­
homogeneities of the magnetic field with the velocity 
of the solar wind ( V ::::> 300 km/sec) has changed the 
spatial fluctuation picture into a temporal one. There­
fore, the theory developed above can be used for the 
temporal picture of the intensity fluctuations of solar 
cosmic rays. According to data by McKracken [2 J, for 
particles with energy ::::> 2 x 109 eV, the characteristic 
time dimension of the fluctuations amounted to approx­
imately 10 minutes, giving a ::::> 3 x 1010• For the same 
station ( ~ - F2 )/(a F jao )2 ::::> 0.04, giving H1 ::::> 10-4 G. 
1·nese figures agree well with Coleman's data[3 J. 
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