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Nonstationary phenomena in the interaction of short light pulses in media with a polarization 
quadratic or cubic with respect to the field strength are investigated theoretically. Problems of 
frequency doubling of picosecond pulses are considered. Group retardation as well as dispersion 
smearing out of the pulses are taken into account. A similar analysis is performed for parametric 
amplification in the field of pulsed pumping. The features of cross-modulation of short light pulses 
in a cubic medium are discussed. Such effects can lead to anomalous broadening of the spectrum. 
The space-time analogy in the theory of nonlinear interactions of modulated waves is studied in 
detail. A comparison of equations describing interaction of plane wave packets in a dispersive 
medium on the one hand, and restricted wave beams non-modulated with respect to time on the 
other, shows that an analogy can be set up between them by comparing the time derivatives in the 
former with the derivatives in a plane perpendicular to the ray in the latter. A comparison of the 
coefficients of the de ' · -<~ also has a clear physical meaning. By exploiting the analogy one can 
apply the results obtained by considering nonlinear interactions in restricted beams to the theory 
of nonstationary nonlinear effects. Some practical applications of nonstationary effects such as 
monochromatization of the frequency spectrum, formation of short powerful pulses, etc. are dis­
cussed. It is noted in particular that nonstationary phenomena in generation of optical harmonics 
can be used to investigate the amplitude and phase characteristics of broadband optical signals 
obtained by self-focusing. 

1. INTRODUCTION (NONSTATIONARY EFFECTS IN 
NONLINEAR OPTICS OF PICOSECOND PULSES; 
FUNDAMENTAL EQUATIONS) 

1. It is known that the results of the theory of nonlinear 
interactions of plane waves cannot always be used to 
interpret the experimental data; in real situations, the 
modulation of the interacting waves plays an important 
role. In particular, in nonlinear optics, many important 
features of the interaction of light waves are connected 
with the spatial modulation (finite aperture of the 
beams). As to the effects of the time modulation which 
inevitably is present in laser radiation, they could 
certainly be neglected up to the very latest time, even 
in experiments with pulses of duration Tp ~ 10-8 sec, 
and the problem could be regarded as stationary 1,. The 
situation changed radically after picosecond-pulse 
generators were developed ( Tp ~ 10-12 sec); here, as 
shown by estimates, practically all typical nonlinear 
wave interactions become essentially nonstationary. 
The nonstationary character of the nonlinear effect can 
be connected, generally speaking, with two circum­
stances-the non-quasistatic character of the local 
nonlinear response (if the relaxation time of the non­
linearity is T > Tp) and the non-quasistatic character 
of the response of the nonlinear medium as a whole (if 
the nonlinear effect at the given point of space and 
given instant of time depends on the values of the 

l)Jt is interesting that this pertains not only to such "rapid" effects 
as parametric amplification, stimulated Raman scattering (SRS) and 
harmonic generation, but also stimulated Mandel'shtam-Brillouin scat­
tering (SMBS) in liquids and crystals at room temperature. 
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initial fields at separated instants of time, then in this 
case the non-quasistatic character is connected with 
the group delay of the pulses). 

In the present article we consider only nonstationary 
features of the second type; we are dealing with non­
linear interactions in a low- inertia ( T ~ 10-15 sec ) 
electronic nonlinearity. We describe below a procedure 
and the results of the solution of several problems of 
nonlinear optics of ultrashort pulses. The analysis is 
based on an approximate parabolic equation (the possi­
bility of its utilization for the description of nonsta­
tionary processes is discussed inr1 ' 21). An interesting 
circumstance revealed in the consideration of the indi­
cated processes is the existence of a sufficiently lucid 
space-time analogy in the theory of interactions of 
modulated waves. A comparison of the approximate 
equations describing the interaction of plane wave 
packets in dispersive media, on the one hand, and 
bounded wave beams that are not modulated in time, on 
the other, shows that a direct analogy can be estab­
lished between them if the time derivatives in the 
former are set in correspondence with derivatives in 
a plane perpendicular to the beam in the latter. In this 
case, the comparison of the coefficients of these 
derivatives has also a clear cut meaningZ,. It thus be­
comes possible to use many results of the theory of 
interaction of bounded beams in the theory of nonsta­
tionary nonlinear effects. 

2)The analogy under consideration has, of course, nothing in com­
mon with the well known space-time analogy that establishes the cor­
respondence between the nonlinear interaction of nonmodulated waves 
and the nonlinear interactions of oscillations in systems with lumped 
constants (see[ 3 ]). 
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The foregoing does not pertain, of course, to non­
linear optics alone; the considered analogy can be used 
also in the theory of waves in a plasma, etc. We shall 
trace below the space-time analogy using as an exam­
ple processes of two types: nonlinear interactions in a 
medium with polarization of the type p = KE + xEE 
(these interactions, for which the phase relations be­
tween the waves are very important, we shall call for 
brevity "carrier interactions"}, and interactions in a 
medium with polarization of the type P = KE + OEEE 
(principal attention is paid here to interactions for 
which the phase relations are insignificant; they are 
called "envelope interactions"). Besides the methodo­
logical questions, we consider in the article also new 
problems, namely the nonstationary generation of the 
second harmonic under high conversion-efficiency 
conditions, nonstationary parametric amplification, and 
cross modulation of light pulses in a nonlinear medium. 

It is shown that the nonstationary wave interactions 
on the electronic nonlinearity can be of appreciable in­
terest towards the shaping of ultrashort pulses and for 
the study of the amplitude-phase structure of broad­
band optical signals. 

2. The propagation of electromagnetic waves in 
nonlinear media is described by the equation 

a•E 0zpl 02pne (1)* 
c2 (V [VE]] +Di2+4n---;)i2+ 4n~ = 0 

and by the material equations for the stationary and 
spatially-homogeneous media in the form 

pi (r, t) = r dt1 ~ ~(r1 , t1)E(r- r1, t- t1)dr~, (2) 
u 

pne(r,t)= ~1 dt1dt2 ~ ~ x(r1,r2,t~ot2)E(r-r1,t-t1 ) .-
X E(r- r1 - r2, t- t1- tz)dr1 drz ... , 

where K, x, etc are tensors of the second, third, and 
higher ranks. 

An exact solution of the system (1) and (2) is im­
possible, as is well known, even for unmodulated waves. 
Therefore, in order to consider problems with modu­
lated waves, we shall use the method of slowly varying 
amplitudes; we confine ourselves first to relatively 
broad wave beams a/A.>> 1 and extended wave packets 
Tp/T » 1. We can then obtain in lieu of the initial 
equation (1) approximate equations of the parabolic type, 
if we seek a field in the form 

En (t, r) = enAn( 11( Pnr), l'~(pnr], l'~ ( t- ~:r) )exp [i (ront- knr)], (3} 

Here }J. « 1-small parameter: different powers of }J. 

preceding the different coordinates characterize the 
different degree of "slowness" of the spatial and tem­
poral variables (see [ 41 ); en-polarization vector (we 
shall consider below problems in which the wave polar­
ization is assumed to be constant}, Pn-unit vector 
parallel to the ray vector sn = 8kn/8wn, un-group 
velocity of the wave, un1 = I sn I, kn-wave vector. 

We substitute (3) in (1) and (2), following the usual 
procedure of the derivation of the abbreviated equa­
tions[3J. Retaining the terms of order }J., we get for the 

*['ii'['ii'E]) ='ii' X ['ii' X E) 

complex wave amplitude An the equation (we neglect 
the spatial dispersion of the medium) 

{ 1 82} 1 
[en[knenll V-i-zpngn Oljn2 An+i2L\.LAn=Fnn•(Am,A1), 

(4) 

where ~1 is the Laplacian in the plane perpendicular 
to the vector Pn and 

In the nonlinear term F~1 we have also retained the 
quantities of order ..... }J.. 

(5) 

3. Before we proceed to consider specific problems, 
let us clarify the character of the effects connected 
with the different derivatives in (4). To this end, we 
consider the propagation of modulated waves in a linear 
medium and stop to analyze separately the spatial and 
temporal modulation of the wave. The propagation of 
the indicated waves in the medium is then described by 
the respective equations 

(6a) 

(6b} 

The equations in (6) clarify the character of the ap­
proximations made on going over to them from Eq. (1). 
Analyzing the behavior of the Fourier components 
exp{ -i~kn · r} in (6b} and exp{ i [ ~wnTJ - ~kn · r]} in 
(6a}, we find that the real dependence of the wave vec­
tors on the direction in an anisotropic medium is ap­
proximated by the parabolic relation 

(7a) 

A parabolic relation describes in this approximation 
also the frequency dispersion of the medium 

(7b} 

Comparison of (6a) and (6b} shows that the derivative 
with respect to the coordinate TJn in (6a) can be set in 
correspondence with the derivatives with respect to the 
coordinates in a plane perpendicular to the ray vector 
Pn, with gn corresponding to kil1• If we confine our­
selves to two-dimensional beams Eqs. (6) can be repre­
sented in a unified form: 

{ 1 {)2 } 
PnV+i-zbn{)~n2 An=O. 

With this, we get in the temporal problem 

and in the problem of the propagation of spatially­
modulated waves 

(8) 

(Sa) 

(8b) 

If we put bn = 0 in (8}, then this equation has a solu­
tion in the form of traveling waves of arbitrary profile; 
their form is determined by the boundary conditions, 
which are specified at z = 0 

An (6n, Z = 0) = A no (l;n) · (9) 

In the analysis of the propagation of waves modu­
lated in space, this case corresponds to the simplest 
variant of the geometrical-optics approximation, while 
for waves modulated in time it corresponds to the first 
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approximation of dispersion theory. 
The parameter bn ¢ 0 is connected with the distor­

tion of the profile of the traveling waves. In the case of 
the quasiplane wave (6b), the dispersion of the profile 
is due to diffraction ( kji1 ¢ 0), while for the quasi­
monochromatic wave (6a) it is due to dispersion prop­
erties of the medium ( gn ¢ 0 ). By solving (8) and 
assuming for simplicity a Gaussian initial amplitude 
profile of the wave 

Ano(sn) =Aoexp{-6n2 /a2}, 

it can be shown that as the wave propagates in the 
medium the amplitude profile changes significantly 
over a length 

(9a) 

(10) 

In the spatial modulation problem lb = ld = kna2 /2 is 
the diffraction length of a beam of radius a having a 
plane phase front; in the temporal-modulation problem 
lb = ls = r (8 2k/8w2 r 1/2 is the length of the dispersion 
spreading of the amplitude-modulated (AM) wave 
packet. 

If phase modulation (converging or diverging beams, 
PM packets) is present besides the AM, then appreci­
able changes of the amplitude profile can occur over 
lengths shorter than lb (ld or respectively ls ). To 
describe the behavior of the signals experiencing AM 
and PM simultaneously, it is necessary to introduce 
the real amplitude An and the eikonal (/In: An 
- An exp{ -i(/'n/bn}· Then for An and (/In, choosing 
the zn axis parallel to Pn, we get from (8) 

(lla) 

(llb) 

The case bn = 0 ( gn = 0 or kn - 00 ) corresponds to 
the geometrical-optics approximation. For a wave 
which is phase modulated at the input in accordance 
with the law 

Ano(~n) =Ao(6n)exp{isn2 /2bnR}, (llc) 

the amplitude profile experiences noticeable changes at 
Zn = R. 

Summarizing the results presented in this section, 
we thus conclude that it is possible to trace a far­
reaching space-time analogy in the behavior of broad 
wave beams and extended wave packets in a linear 
medium. In the succeeding sections we shall verify 
that this analogy can extend also to the nonlinear case. 

2. CARRIER INTERACTION. GEOMETRICAL OPTICS 
AND FIRST APPROXIMATION OF DISPERSION 
THEORY 

The simplest example of wave interaction of this 
type is the second-harmonic generation in a quadratic 
medium. In this case, the change of the wave ampli­
tudes under conditions of exact phase synchronism is 
described by the equations 

{ 1 (JI} • 
PtV-t-t 2 bt 0s12 At=-taAaAt, (12) 

{ Pz V + i __!__ bz ~}Az = - iaA12 
2 i)~2 ' 

where a-coefficient of nonlinear coupling. The indices 
1 and 2 pertain to the waves with frequencies w and 
2w. Each equation of (12) is written in its proper co­
ordinates. As above, the influence of the temporal and 
spatial modulations of the waves on the course of the 
nonlinear processes will be analyzed separately. The 
equations (12) are applicable for both cases; the con­
version to one of them is effected by the substitution 
(8a) or (8b) (compare with (8)). 

In the case of normal incidence of the waves on the 
interface between the media, the system (12) assumes 
in the geometrical-optics approximation the form (we 
assume that bn = 0 and also that the conditions of syn­
chronism are satisfied for the case when the funda­
mental wave is ordinary and the harmonic extraordi­
nary, and introduce a common coordinate system <:on­
nected with the ray coordinates of the ordinary wave) 

!._A 1 =- iaAv4t•, oz 
( a a \ . -+ ~- Az =- !aAt2 oz ox I 

(13) 

for spatially modulated waves and 

(14) 

for time-modulated waves. .......... 
In (13) and (14) TJ = t - z/u1, (3 = P1P2-anisotropy 

angle, 11 = ( 1/u2 - 1/ul) characterizes the difference 
between the group velocities. 

We note that the system (14) can be obtained from 
(13) by setting definite parameters in the latter in cor­
respondence with the analogous parameters in the tem­
poral problem. Such parameters are x, (3, and TJ, 11 

with 
X~f], p~v. (15) 

1. Generation of Second Harmonics by a Short Pulse 
(AM Signals) 

For a wave modulated in amplitude only (a pulse or 
a bounded beam with a plane phase front), the harmonic­
generation problem can be solved exactly31 • The solu­
tion is of considerable interest for the problem of fre­
quency doubling of picosecond pulses; we shall there­
fore consider it in terms of the system (14). Going 
over in (14) to real amplitudes and phases An- An 
exp ( i(/'n) and putting for z = 0 

At(z=O,TJ)=Aw(TJ), Az(z=O,TJ)=O, (16) 

we can reduce the system (14) to the Ricatti equation 

dAz/dz+aA 22 =aA 102 (T)-vz). (17) 

Specifying the form of the pulse of the fundamental 
wave at the boundary 

A10 (t) =Ao/{1+ (t/'t') 2}, (17a) 

we arrive at the following solutions for A1 and A2 in 
an arbitrary section of the nonlinear medium: 

3fWe note that in the papers published to date this problem was 
solved only in the approximation using a given field of fundamental 
frequency. 
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Al(TJ, z) = (1 + fl2)''• [1 !• (TJ- z)"]'1• { ch y + (lh'lla";i__ 1)'1• shy r;18a) 
la z chy + [(lk'lla• -1)''•- Tj (Tj- z)(lk'lla• -1)-'1•] shy 

Ao(TJ,.z)=Aoz;;- [1+('ij-z)']{chy+fi(lk2/la'-1)-'1•shy} ' 

where 
y = (lK2 I 1.,2 -1)'" (arctg TJ-- arc tg(iJ- z)], 

rl = T] h:, z = z IlK. 

(18b) 

In (18a, b) we have introduced the characteristic 
lengths: 

la = (aAo)-l (19) 

-the so-called length of nonlinear interaction (70% of 
the conversion of the fundamental power into the har­
monic takes place over this length in a non-modulated 
wave, see[3 J) and 

lq = tlv (20) 

-the so-called quasistatic length-the length over 
which a noticeable spreading of the pulses of the funda­
mental radiation and of the harmonic takes place as a 
result of the group-delay effect. 

Before we proceed to analyze the solutions (18), we 
note that a similar form will be assumed, evidently, by 
the solutions of the system (13); besides changing the 
variables, it is necessary here, obviously, to replace 
lq by la: 

(21) 

-the so-called aperture length (see[s] ). 
The behavior of the amplitude profiles of the funda­

mental radiation and of the harmonic is determined by 
the ratio of the lengths la and lq (or else la and la in 
the spatial problem). If 

(22) 

then the amplitudes of the interacting waves change in 
exactly the same manner as for the unmodulated waves 
(compare with [3 J); in this connection, we shall call the 
condition (22) quasistatic. 

When At» A2 and z << la (specified field At = A10 
(t - z/ul)) and z < lq, the pulse of the harmonic is 
exactly the square of the fundamental pulse, and its 
amplitude increases in proportion to z, namely A2 
= azA~o ( t - z/ut). When z > lq, the harmonic pulse 
broadens; its duration increases in proportion to the 
length, r 2 ~ r ( 1 + z/lq ), and the amplitude remains 

Yt.l 
1.0 

FIG. 1. Profiles of _pulses of 
fundamental radiation It =At 2 I 
Al02 (solid curves) and of the 
second harmonic i2 = A2 2 I A10 2 

(dashed) for (l /la)2 = 1 and dif­
ferent values of the traversed dis­
tance z = z/lq: 1- 0.5; 2- 1.0; 
3 - 5.0. The plots of the same 
figure also characterize the varia­
tion of the beam profiles in the 
case of generation of a harmonic 
by a beam with a plane phase 
front: lq-+ la, 11-+ x = x/a. 

constant, A2 ~ alqA~ 1 4 l With increasing intensity of 
the fundamer\tal radiation, so that la << lq, the fre­
quency-doubling process becomes more and more 
quasistatic; the harmonic pulse broadens to a lesser 
degree5l. 

For the general case, Fig. 1 shows the variation of 
the wave profiles on going through the nonlinear 
medium. It also shows how the wave forms of the 
pulses of the fundamental radiation and the harmonic 
become modified as they propagate in the nonlinear 
medium. If the reaction of the harmonic on the funda­
mental radiation is appreciable, then the broadening of 
the harmonic pulse is accompanied by a certain narrow­
ing of the fundamental pulse. At the same time, besides 
the shifting of the top of the harmonic pulse (in the 
coordinate system z, 1J ) there can occur a noticeable 
shift of the peak of the fundamental radiation in the op­
posite direction (effects that are analogous to a certain 
degree to those occurring in laser amplifiers). 

The curves of Fig. 2 illustrate the influence of the 
difference of the group velocities on the maximum ef­
ficiency of the frequency doubler; the shortening of the 
pulse duration (together with the associated shortening 
of the quasistatic length lq) leads to a decrease in the 
efficiency of the doubler. For a KDP crystal at ;\, t 

Efficiency 

1.0 

0,8 

0.6 

2 J ~ 5 6 7 6 t-z-.-

FIG. 2. Dependence of the energy coefficient of conversion of a 
frequency doubler (i.e., efficiency equal to W2 /W10), excited by a 
laser pulse or by single mode radiation, on the reduced length z' = 
zClq-1 + la-1 ) for different values of C = Clq/la)2 : curve 1 - 0.5, 2-
1.0, 3- 10. For single-mode laser radiation z'= z(la-1 + la-1 ), C = 
Clalla)2 • Curve 4 corresponds to conversion of plane monochromatic 
radiation. 

4> A similar result was obtained also in [6] in an analysis of fre­
quency doubling of short laser pulses with synchronized modes. 

S)We emphasize that the condition (22), la < lq, pertains to a non­
dissipative medium, and in a medium with appreciable losses the 
harmonic-generation process remains quasistatic at distances l > lq and 
at low intensities la ~ lq. In a specified pulsed field of fundamental 
radiation A1 = A10 (t- Z/ut> exp (-6 1 z) at a quasistaticlength greatly 
exceeding the photon mean free path lql6 2 - 26 1 1 ~ I, the connection 
between the amplitudes of the fundamental wave and the harmonic 
wave becomes algebraic (and consequently the nonlinear response 
becomes quasistatic): 

A,= -iaA,.'(t- z / un) [exp (-21hz)- exp (-6,•)] (6,- 26,)- 1; 

n = 1, 2. If 62 ~ 61 , then n = 1, i.e., in this case the field of the har­
monic that "breaks away" from the fundamental pulse attenuates 
rapidly; the shape of the harmonic pulse does not depend on the group 
delay. In the opposite case 61 ~ 62 , n = 2 the effective generation of 
the harmonic occurs only in the first layers of the nonlinear medium 
(z ~ 61 -t ) , where the process is still quasistatic. 
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1.0 / 21hJ·!!)/J,(l111) 

~L-~~~~0~~~~--~ 

(ZW-ll.)/11, 

FIG. 3. Monochromatization of the frequency spectrum in fre­
quency doubling under conditions when the group detuning differs 
from zero. I - spectrum of harmonic under conditions of quasistatic 
doubling; its width Q 2 is of the order of the doubled width of the spec­
trum of the fundamental radiation n I 0 Curve 2 - spectrum of harmonic 
produced at a distance z > 11/vil1 at a nonzero group detuning (the 
curve was plotted for the case~= 0, vn, z = 411). 

= 1.06 1J. and Tp Rl 10-12 sec, we get lq Rl 3 em; for 
A 1 = 0. 53 1J. and for the same duration we get lq 
Rl 0.3 em. Thus, the effects under consideration be­
come decisive in cascade multipliers intended for the 
generation of picosecond pulses of ultraviolet radiation. 

The foregoing results can be easily formulated also 
in spectral language. The formulas are particularly 
simple in the given-field approximation; assuming that 
not only the group difference but also the phase differ­
ence differ from zero for the average frequencies 
w and 2w, ~ = 2wc-1 [ n ( w ) - n ( 2w )], we get 

• 
A 2 (t, z) = - ia ~ A102 (t- zju2 + vy) e-it>.Ydy. (23) 

0 

Introducing the complex-amplitude spectra 

(24) 

we get from (23) 

sin[vQ-A]z/21" 8 ')S ('"")d'" S,(O z)= -2icrei[(<lv-t>.)/2-<>lu,]z --------- I !o(Q-Q 10 "' "' · 
- --, [vQ-A] "' 

-oo (25) 
According to (25), the harmonic intensity spectrum 
12 ( 2w - n) = S2 (n) s: (n) becomes narrower with in­
creasing path traversed in the nonlinear medium, in 
accordance with the formula 

sin2 [v(2w- Q)-L\]z/2 (25a) 
1,(2w -- Q) ~ [v(2w- Q)- L\]' . 

The maximum of the spectral density of the harmonic 
is reached at the frequency 

Wmax = 2w- L\ / V. (25b) 

At a fixed value of z, the width of the harmonic spec­
trum does not exceed ilmax Rl 211"/zv. 

Formulas (25) thus show that the process of non­
quasistatic ( z > lq) frequency doubling of nonmono­
chromatic radiation can serve as the basis for the de­
velopment of a sufficiently narrow-band generator with 
a smoothly variable frequency. Indeed, according to 
(25a), the spectrum of the harmonic can be much nar­
rower than the spectrum of the fundamental beam (the 
foregoing is illustrated by Fig. 3); on the other hand, 
formula (25b) describes the "tuning characteristic" 
of such a generator. The output frequency of the har­
monic generator can be varied by varying the phase 
difference t:;. = 2wc·1 [ n ( w) - n ( 2w )], the temperature, 

or the orientation of the nonlinear crystal61 • 

The foregoing effects have simple spatial analogs­
the narrowing of the angular spectrum of the harmonic 
in an anisotropic crystal with increasing crystal length, 
and the smooth variation of the angular frequency of 
the harmonic when the orientation of the anisotropic 
crystal relative to the diverging beam of the funda-­
mental radiation is changed. 

We note that if the fundamental beam has simultane­
ously sufficiently broad frequency and angular spectra, 
the frequency-doubling process can be used for the 
transformation of the frequency modulation into angu­
lar modulation. 
2. Frequency Doubling of PM Signals; Shape of 

Harmonic Envelope 

In the preceding subsection we analyzed the shape of 
the harmonic envelope only for an AM fundamental 
signal. Yet in many experimental situations interest 
attaches to the shape of the envelope of the harmonic 
in the case of a PM fundamental signal (strong PM is 
encountered in broadband optical signals produced in 
self-focusing liquids, see for example[s-uJ). In the 
given-field mode and neglecting dispersion spreading, 
it is possible to use for the calculations the solution 
(23); in the more general case it is possible to use 
second order differential equations, for example such 
as (11). We shall not present here a general analysis 
(we note that the spectral formulas are valid for any 
type of modulation), and will confine ourselves to an 
important particular case. We assume that at the input 
to the nonlinear medium 

A10 (t) exp[tqJ (t)] = A0 exp ( -t2 /t2 + iyt2), 

and then we get for the intensity of the harmonic from 
(23), if z < T/11 and ('h) y ( vz )2 < 1, 

I,(t,z)=a'l,'(t-.!..) sin2 [t-zjut)yvz] z', 
- u1 [(t- z/ut)yvz]2 

i.e., if the indicated conditions are satisfied, phase 
modulation of the fundamental radiation leads to a 
sharp amplitude modulation of the harmonic. 

(26) 

The AM period TM Rl rrjyvz decreases with in­
creasing length of the nonlinear medium. Using (26), 
we can introduce the characteristic spatial scale 

l~=n/v{}ff! lz~o (26a) 
{}t 

which is the length that must be reached in order for 
the PM of the fundamental radiation to start influencing 
the form of the AM of the harmonic. The "phase" 
length lcp has a simple intuitive analog-that is the 
so-called coherent length for a diverging beam in an 
anisotropic medium. 

3. Shaping of Pulses in Frequency Doubling; Intera.ction 
of Pulses of Different Durations 

One of the important applications of nonlinear wave 
effects is the shaping of ultrashort laser pulses; cer-

6) A laser of this type was realized recently by Carman and co­
workers [7], who used as the fundamental radiation laser pulses 
passing through a self-focusing medium. 
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tain promises are offered in this sense by the use of 
frequency doubling. In a specified field, the shortening 
of the duration of a Gaussian pulse by approximately 
one half (see subsection 1 of this section) is attained 
under the conditions of quasistatic interaction 
( z < lq); when z > lq, the harmonic pulse broadens. 

There is, however, another pulse-shaping mode, 
for which the group difference contributes to a narrow­
ing of the harmonic pulse. We have in mind the inter­
action between a relatively narrow harmonic pulses, 
obtained from an external source, and a quasicontinu­
ous fundamental radiation. Here, under conditions 
when the reaction of the harmonic on the fundamental 
radiation is appreciable in the presence of a group dif­
ference, the character of the energy exchange between 
the harmonic and the fundamental wave is different for 
the leading and the trailing edges of the pulse. Let us 
consider, for concreteness, the case u2 > u1 ( v < 0); 
the leading edge of the harmonic pulse in this case 
"overtakes" the fundamental wave, acquiring an ap­
preciable fraction of its energy; much less energy is 
left for the trailing part of the pulse. 

A theory of this effect can be developed with the aid 
of the procedure described in subsection 1 of this sec­
tion. An equation of type (17) can be written for 

A2 (z=0,tJ) *0, oA 2 (z,'I'J)Iazlz~o*O; 

its form is 
dA2 uA20 (!J- vz) 
- + aA,2 = crA102 (!]- vz) + aA202 (!J- vz)- v ---'=-'----'-

~ ~ ~7) 

Assume that at z = 0 and at the instant t = 0 a rec­
tangular harmonic pulse (see Fig. 4) enters into a non­
linear medium excited by a quasicontinuous wave of 
fundamental frequency. According to (27), the shape of 
the harmonic pulse inside the medium changes; this 
change is described by a solution of the form 

A2(t], z) = A 0 th [F + aAo(z-!] I v)], 

Ato ( !J \ A 20 thF=-th aAo~ +-; 
Ao v J Ao 

(28) 

On the leading front of the harmonic pulse (t = z/u2, 
i.e., z = 'f//v ), the amplitude experiences a jump equal 
to A.o, i.e., the same as at z = 0: 

A2 ( -0) = A 10 th (crAwz), 

A2 (+0) =A20 +A 10 th (crAtoz). 

(29a) 

(29b) 

The foregoing is illustrated by Fig. 4; the width of the 
peak shaped near the leading front equals, according 
to (28), .ll-r ~ v(crA 10)-1• 

FIG. 4. Dynamics of the process of 
formation of an initially rectangular 
second-harmonic pulse of amplitude A2 

during the course of propagation in a 
field of quasicontinuous radiation of fun­
damental frequency (amplitude A1 ). Plot 
1 - form of the harmonic pulse at the in­
put; 2 - after the leading front passes the 
distance z < (aA10r 1 ; 3- stationary 
pulse of harmonic produced at z > 
(aAtor1 . 

4. Three-Photon Parametric Interactions of Modulated 
Waves 

Just as in the case of frequency doubling, we can 
separate here two sets of problems: parametric am­
plification in the field of a modulated pump (including 
pulsed), and parametric amplification of modulated 
waves in the field of a quasi-continuous pump. For the 
degenerate regime, the calculation must be based on 
the system (14); we shall henceforth call the wave fre­
quency w the signal ( A1 = As), and the wave of fre­
quency 2w the pump ( A2 = Ap). 

In the given pump field (Ap » As), the intensity of 
the signal wave, according to (14), in a lossless 
system 7>, is 

I, (t, z) = I8,, 0 (t- zlu,)exp{ 2a ~ Aplo(t- zluc- vy)dy}. 
0 

(30) 

If, in particular, the pump is pulsed, then the signal 
acquires when z » (aAp,maxr1 a pulsed shape, re­
gardless of the shape of the input signal. Practical 
interest attaches to the circumstance that under defi­
nite conditions the pulse duration of the signal can be­
come shorter than the duration of the pump pulse; 
thus, an additional narrowing of picosecond laser pulses 
is possible. 

Using (30), we can show that in the field of a Gaus­
sian pump pulse of the form 

Apo(t) = Ao exp {-t2 I 2.r p2} 

at aAoz » 1 and v = 0 (group synchronism), the signal 
pulse also becomes Gaussian, and its duration changes 
with increasing z in accordance with 

-r,(z) ~ 1.4-rp(crAoz)-'"· (31a) 

In real conditions, when a¢ 08 >, the narrowing of the 
pulse takes place only for z < v/Tp, so that the limit­
ing relative narrowing is of the order of 

(lim) --

2c_""' V-"- . (31b) 
'tp crAo'tp · 

When z > v/Tp, the signal pulse again broadens 9>. 
Thus, the qualitatively considered picture is similar to 
the picture of frequency doubling in a given field; how­
ever, the magnitude of the pulse narrowing for para­
metric interaction turns out to be more appreciable. 

7lThe losses determine the threshold of the parametric amplifica­
tion. A unique feature of parametric amplification in a modulated 
pump field is the fact that it is necessary to speak here not of a thres­
hold power density, but of a threshold pump energy. From (14) we 
get for the reduced threshold energy (W = fl(t)dt) the formula Wp(thr) = 
(l/2)yf7i"({)/a}2rp, where {j is the damping decrement at the signal fre­
quency. 

Slit should be noted, to be sure, that in birefringent crystals it be­
comes possible to create conditions under which both phase and group 
synchronism exist simultaneously. 

9lThe effect of broadening of a weak parametric signal pulse in a 
pulsed pumping field at z > lq was considered also by Glenn [ 12 ]. It 
should also be noted that in nondegenerate parametric amplification, 
strong damping of one of the amplified waves causes the amplification 
process to become quasistatic also when z > lq. The best example of 
such a situation is stimulated Mandel'shtam-Brillouin scattering, for 
which appreciable damping of the hypersonic wave is capable of 
"compensating" the group detuning 11 = c-1 (see [13 •14 ]). 
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Estimates show that in real situations it is possible to 
obtain Ts (lim)/Tp ~'=' 0.2, whereas in quasistatic fre­
quency doubling this quantity amounts to ~0.5-0.6. 
The behavior of a modulated signal in the field of 
quasicontinuous pumping depends on the ratio of the 
amplitudes As and Ap, and on the group difference v. 

In the degenerate regime, the spectrum of the am­
plified signal changes only when the reaction of the 
signal on the pump is appreciable. When Ap ~ As and 
v ;.o 0, an appreciable broadening of the signal spectrum 
(narrowing of the pulses) is possible. This effect, which 
is to a considerable degree similar to the process con­
sidered in subsection 4 of this section, makes it possi­
ble, as shown by estimates (see[15l) to obtain giant 
pulses (with a power exceeding the pump power) of 
parametric radiation. 

In the nondegenerate regime ( Ws + Wd = Wp), the 
picture becomes more complicated. The form of the 
spectra (or envelopes) of the modulated waves at fre­
quencies Ws and Wd in the quasi-continuous pumping 
field changes 'in the given pumping field if the group 
velocities of the signal and different frequency waves 
are different, ( v = 1/us - 1/ud ;.o 0 ). 

Solving the system of corresponding linear abbrevi­
ated equations 

(32a) 

(32b) 

we can readily show that in the region where the pump 
greatly exceeds threshold the width of the spectrum of 
the amplified signal 

LlQ ~ 4.5 lA oil/ 2<Js<Jd 
lv I ,p V z 

(32c) 

decreases monotonically with increasing distance. 
An analysis of the nondegenerate amplification with 

allowance for the reaction on the pump at us ;.o Ud is a 
rather complicated problem. From the point of view 
of narrowing down the pulses, particular interest at­
taches to the case of essentially unequal damping 
decrements at the frequencies Ws and Wd· 

3. ENVELOPE INTERACTION; CROSS MODULATION 
OF MODULATED WAVES IN A MEDIDM WITH 
POLARIZATION THAT IS CUBIC IN THE FIELD. 
GEOMETRICAL ANALYSIS 

By way of an example of nonlinear interactions of 
modulated waves in a medium with nonlinear polariza­
tion in the form pn1 = e E3 , we consider the interac­
tion of wave packets 

I ~ 

_ · - FIG. 5. a- interaction of _J~ 3 I iL pulses I and 2 in a cubic medium 
a 3; b - spatial analog of Fig. a -

~
- - · interaction of bounded beams 

·. of weak wave of frequency w 1 

· -~ are shown dashed; rays of in-
- -·-· tense wave of frequency w2 -

.. ~ to solid. 

Et(t, z) =A1(t, z) exp [i(ro 1t-k1z)], 

E2(t, z) = A2(t, z) exp [i(ro2t + k2z) ], 

propagating against each other in a nonlinear medium 
of dimension L (see Fig. 5). Assuming that the fre­
quencies w 1 and W2 are noncommensurate, we obtain 
~or the complex amplitude A1 and A2 abbreviated 
lquations in the form 

(33) 

(33b) 

In (33) 

The system (33) should be solved with the boundary 
conditions 

At(t, z=O) =A 10 (t), 
A2(t, z = l) =A2o(t). (33') 

Eqs. (33) can be solved in general form; for example, 
for A1 we have 
A1 (t, z) = A1o(t- z I u1) exp {-ia11 IA10(t- z I ut) 12 --i(jl1. (t, z, L)}, 

where 
' 

<ra(t,z,L) = -a12 ~ !A2o(t- v+z + V+Y) i 2 dy, 
0 

V+ = U2-t + Ut-1. 

A2 is expressed similarly. 

(34a) 

(34b) 

Thus, in a cubic medium, the modulated waves can 
exhibit not only self-action but also an influence on the 
phase of the other waves propagating in the medium 
(cross modulation). Let us analyze the behavior of the 
additional phase Cfha (34b) due to the cross-modulation 
effect. Let us assume that the amplitude A2o (t) is 
harmonically modulated, A2o (t) = Ao cos Ot; we then 
obtain 

1 [ sin(Qv+z)] ( 1 ) (35) 
<j)ta = - 2'<Jt.Ao2 > + Qv+ cos Q t-v~+ - 2 "+': . 

The index of the phase modulation of the wave im:reases 
linearly with distance if 

(36) 

If the interacting waves propagate in identical direc­
tions, it is necessary to write in (36) v = u21 - u11 in 
lieu of v+. Particular interest attaches to an analysis 
of the phase 'P1a in a pulsed field 

IA2o(t)! 2 =12o{1(t) -1(t-,;)} (37) 

( 1 (t) is the Heaviside unit step function and T is the 
pulse duration), which increases 10> in a nonlinear 

lO) A case of practical interest, corresponding to such a formulation 
of the problem, is the problem of cross modulation of long (Tp"' to-s 
sec) SRS pulses propagating in the direction of the scattered radiation, 
and ultrashort SRS pulses (Tp"' 10-11 sec) propagating at 180° 
(see [10 ]) • 
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FIG. 6. Plots of the reduced phases 
lp = K.p Ja(K = -P+/o12 120 ) (solid curves) 
and of the reduced deviation of the 

JL-.=!.+---!---+1~~t~/f carrier frequency f! = K il.p1 a/ilt (dashed) 
f-7, at the different values of ex : I - ex= 0, 

).II : 2 -ex= 0.2 P+/T(P+L= 51'). 
Z I I 

\ : 
\ I 
I I 
I I 
II 
~ 

medium. It is necessary to add under the integral in 
(34) a factor exp [ 2a ( z - y) ], where a is the growth 
coefficient. In this case the change of the phase at the 
exit from the medium, z = L, is determined by the ex­
pression 

t.:;;;;o, t;>T+v+L 

o.:;;;;t.:;;;;"' 
't'.:;;;; t.:;;;; v+L. 

v+L'(;t'(;'t'+ v+L 

(38) 

A plot of 'Pta (38) is shown in Fig. 6. The same figure 
shows the behavior of the frequency deviation of the 
signal wave, n = dq;ui/dt111 • Thus, owing to the change 
in the carrier frequency, the spectrum of the wave can 
broaden. ~the analysis of the phase q; 1a it was tacitly 
assumed that the signal wave is monochromatic. In the 
case of a pulse signal of frequency w" it is possible 
to determine the character of the change of the phase 
'Pta by plotting along the abscissa axis the times of 
appearance of the leading and trailing fronts of the 
signal, the time being reckoned from the instant 
( t = 0) of the appearance of a pulse of frequency w2 

on the boundary of the nonlinear medium z = L; the 
time interval determines the change of the phase q;1a. 

From the analysis of the spectrum connected with 
the phase (38) we can deduce one important circum­
stance: the signal spectrum has an asymmetrical dis­
tribution, whereby in a focusing medium ( a 21 > 0) the 
spectrum decreases more slowly in the low-frequency 
region, and in a defocusing medium (a 12 < 0) in the 
region of high frequencies. 

A spatial analog of the just investigated problem is 
the interaction of bounded beams, for which the fore­
going results are valid, including the plots of Fig. 6 
(t- x). Inasmuch as the beam is phase modulated, a 
plane-parallel beam becomes diverging (see Fig. 5). 
If the beam under consideration has a definite initial 
divergence, then in the field of an intense wave the 
cross modulation may increase or decrease its diverg­
ence. The latter effect depends on the sign of the 
nonlinearity of the medium and on the boundary near 
which the beam interaction takes place. 

lllUnder real conditions, the flnite rise time of the fronts of the 
pulse IA20 (t)i2 leads to a continuous change of frequency. 

4. WAVE OPTICS AND SECOND APPROXIMATION OF 
DISPERSION THEORY 

1. Frequency Doubling in the Presence of Dispersion 
Spreading of Wave Packets 

We now proceed to an analysis of nonlinear interac­
tion of wave packets with allowance for second deriva­
tives in the equations (4). We are thus dealing withal­
lowance for the dispersion spreading of the packets. It 
should be borne in mind that a consideration of these 
effects becomes significant in practice when Tp 
Rj 10-13 sec, since in typical nonlinear crystals we have 
82k/Bw2 Rj 10-27 sec2 /em, and consequently, when 
T ::s 10-13 sec we have ld ::s 10 em. We turn to an in­
vestigation of the frequency doubling process. The ef­
fects of dispersion spreading take part here, as can be 
readily verified, as an appreciable change of the form 
of the spectrum of the harmonic and in a change of the 
rate of growth of the energy of the harmonic with in­
creasing distance. In the given-field approximation, 
this process is described by the equations 

(39) 

with boundary conditions of the type (16). 
The solution of the system (39) leads to the following 

expression for the frequency spectrum of the harmonic: 

Here 

-Sz(Q,z)= iae-i>~>><">• ~ ~ 8 10 (Qt')S10(Qt'')e-i¢z/2 (40) 
-oo 

sin('IJlz/2) 
X -,j,~ 6(Q- Qt'- Q1")dQ{ dQ 1". 

1Jl(Q, Q{, Qt'') =~+'IJlt(Q{) +'lllt(Qt'') -ljl.(Q), 
'IJln (Q) = Q / Un + 1/2gnQ2• 

An appreciable contribution to the spectrum 
S2 ( n, z) is made by waves whose spectral components 
satisfy the relations 

u = Q{ + Q{'; 1Jl(Q, Q{, Q,") = 0, (41) 

and the latter relation, taking into account (7b) and the 
expression for t::., can be written in the form 

kt(oo+Qt') +kt(oo+Qt'') =k2 (2oo+Q). (42) 

Thus, it turns out that an appreciable contribution to 
the spectrum of the harmonic is made by spectral com­
ponents of the fundamental wave, for which the phase 
synchronism condition is satisfied. The presence in 
the general case of an aggregate of synchronous inter­
actions can lead to a modification of the spectrum of 
the harmonic. 

If I g1 I ::s I g2 I, then there can exist only two syn­
chronous interactions; in this case 

'Ill'=~- vQ- 1/zg2Q2, 

and the spectrum of the harmonic 

S . { z }sin(ljl'z/2) 2([l; z) = z.aexp -i¢2 (Q)z- i¢'(Q)-
2 ¢'/2 
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-t:oo 

X ~ S10 (Q- Q{)S10 (Q{)dQ{ 

has zero values that are non-equidistantly spaced 
(see (25)). 

(43) 

Expression (43) makes it possible to analyze har­
monic generation with various types of modulation of 
the fundamental. 

Integrating the solutions of (39) with respect to time, 
we can readily see that the character of the dependence 
of the harmonic pulse energy on the distance z covered 
in the nonlinear medium depends essentially on the 
relation of z with lpn = r /( 2B 2kn/Bw~ ). The corre­
sponding formulas are particularly clear in the case 
of v = 0 (under the conditions of group synchronism). 

For the case ld1 = ldd2 = ld > z we have 

(44) 

For z > ld we get 

(45) 

We note, finally, that by using the foregoing formulas 
we can determine the optimal pulse duration of the 
fundamental radiation having a fixed energy, i.e., the 
duration at which the efficiency of the frequency 
doubler of length z is maximal. This problem is ana­
logous to the problem of optimal spatial focusing in a 
frequency doubler (it can therefore be called the prob­
lem of optimal compression). 

An analysis of the solutions (39) leads to a physically 
lucid result: the optimal pulse has a duration 

't' = To ~ Vz {)2ki . 
Bo) 2 

Of course, the problems of optimal compression 
occur also for other nonlinear processes (parametric 
amplification, multiphoton effects, etc.). 

2. Influence of Finite Pulse Duration on the Behavior 
of a Bounded Light Beam--Nonstationary Diffraction 

The theory developed above for nonstationary effects 
pertains to interactions between plane wave packets. 
Allowance for a simultaneously present spatial modula­
tion (bounded beams) entails no great difficulty if the 
characteristic spatial dimensions lq and la (see (20) 
and (21) and ld and ls (see (10)) differ greatly in mag­
nitude. 

The problem becomes more complicated if lq ~ la 
and ld ~ ls. Then the effects of temporal and spatial 
modulation appear simultaneously and can greatly in­
fluence each other. 

Thus, divergence of the fundamental beam (angle 
a 1) can greatly influence the temporal and spectral 
characteristics of a frequency doubler for picosecond 
pulses. It is easy to verify that if ll!1 R:> SJ1d®/dw1, 
where the derivative d® /dw characterizes the sensi­
tivity of the synchronism angle to the frequency, and 
n 1 is the width of the fundamental-radiation spectrum, 
there will be no monochromatization of the beam as a 
whole (of the type described in subsection 1 of Sec. 2), 
even when z > lq = T/v. On the other hand, an analysis 
shows that in many cases the limiting parameters of 

"giant" parametric pulses are determined by the 
spatial limitation on the beam. 

An analysis of these problems is, however, beyond 
the scope of the present article. We therefore confine 
ourselves here to a brief discussion of the linear prob­
lem, pertaining to the indicated circle of problems, 
namely the problem of the diffraction of a short pulse 
in a linear non-dispersive medium. The initial equa­
tion is in this case a second-order equation in the 
form 

oA 1 i o2A 
-=-i-.c\.LA+---. 
{)z 2k w {)z OTJ (46) 

The notation in (46) is standard (see Sec. 2); the in­
fluence of the temporal modulation on the diffraction is 
described by a mixed derivative. Using (46) for the 
spectral amplitude S ( n ) 

+oo 
A(t)= ~ S(Q)e"!tdt 

of the frequency spectrum of the packet, we obtain a 
parabolic equation with a diffusion coefficient tha.t de­
pends on n: 

oS(Q) _ 1, A S(Q) 
{)z -2ik(1 + Q/w) .L • 

(47) 

From (47) it follows directly that the frequenc:y 
spectrum, and consequently also the form of the wave 
packet on the beam axis is deformed with increasing 
z; the short-wave components are diffracted more 
slowly than the long-wave components; the indicated 
effect is noticeable at not too small SJ/w, i.e., for 
pulses of duration of several optical periods. 

5. CONCLUSION 

The foregoing results thus show that the use of ap­
proximate parabolic equations makes it possible to 
solve an extensive group of problems connected with 
non-stationary interactions of light waves. Among the 
most important parameters occurring in nonstationary 
nonlinear optics is the group detuning v; such pro­
cesses as generation of harmonics by short pulses and 
parametric amplification in a pulsed pumping field pro­
ceed effectively so long as z < lq (the effect of dis­
persion spreading can be neglected in real situations 
up to T R:> 10-13 sec, since usually B2k/Bw 2 

R:> 10-27 sec2 /em). In this connection, the problem of 
finding media in which the conditions of phase and 
group synchronism are simultaneously satisfied be­
comes importane2 ,. In a KDP crystal, at A 1 R:> 1.06 JJ., 
the directions of the indicated synchronisms differ 
somewhat; they can apparently be aligned by changing 
the crystal parameters. 

At the same time, as already indicated, there is 
another important class of nonstationary wave phe­
nomena, for which the group detuning increases the 
efficiency. We have in mind three-photon interactions 
of optical signals with essentially differing durations, 
for example parametric amplification of a short pulse 

12)Qbviously we are referring to temporal analogs of media that 
admit of synchronous interactions without the diaphragm aperture ef­
fect (see [ 8 ]). 
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in a quasi-continuous pumping field. An examination 
of the nonstationary wave phenomena, from the point 
of view of the formation of ultrashort pulses, was re­
ported by us in[ 151 • To understand many features of 
nonlinear interactions of ultrashort pulses and to 
systematize the theoretical results, the space-time 
analogy in the theory of nonlinear interactions of modu­
lated waves, investigated in detail above, is very use­
ful. 

We note finally that an investigation of nonstationary 
wave phenomena can be a useful method of analyzing 
the amplitude-phase structure of broadband optical 
signals, particularly broadband signals obtained in 
self-focusing liquids (see[8 ' 9 ' 15 ' 161• As shown in Sec. 2, 
at an essentially nonquasistatic frequency doubling 
( z > lq), the form of the envelope of the harmonic 
turns out to be very sensitive to the form of the modu­
lation of the fundamental radiation (AM, PM ) ; certain 
information can be obtained also by measuring the fine 
structure of the harmonic spectrum. 

The authors are grateful to R. V. Khokhlov for use­
ful discussions. 
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