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Branched chain reactions are proposed as the basis of a chemical laser, the radiation energy of which 
depends weakly on the pumping energy. Conditions are derived which must be satisfied by the parame
ters of the reacting mixture in order to obtain population inversion. 

THE attempts made over the course of many years to 
create chemical lasers [1-71 have resulted in a number 
of experimental successes. [8 - 101 The experimental re
sults obtained in 1:8 - 111 are a direct proof of the occur
renee of inversion in the process of certain chemical 
reactions. However, in the lasers described in these 
papers an expenditure of energy considerably in excess 
of the output energy is required to initiate the chemical 
reaction. Hence the experimental successes achieved 
can scarcely be regarded as the culmination of the work 
on chemical lasers. Rather, they form the experimental 
basis which creates a real foundation for the discussion 
of means of realizing chemical lasers whose energy 
output in the form of useful radiation exceed the expen
ded energy. 

It is obvious that the way to such a laser is through 
a self-maintaining reaction. Among these (combustion, 
explosion, etc.), the most promising seem to be chain 
reactions, the importance of which for lasers was indi
cated already in L::!,sl. Interest in these reactions is also 
engendered by the experimental results that have been 
obtained: in [8 ' 91 population inversion and generation 
were obtained in hydrogen-halogen reactions, which be
long to this class. Hence the following analysis is devo
ted to just these ehain (simple and branched) reactions. 
For simplicity, we shall consider certain idealized 
schemes, having in mind, however, hydrogen-halogen 
reactions. 

The simple chain reaction. Consider the kinetics of 
the following chain process: 

initiation of a chemical reaction: 

(1a) 

an elementary act of reaction, not leading to inver
sion: 

A+ B2 = AD,+ B; 

an act of reaction leading to inversion: 

B + A2 = AB; + A; 

a relaxation process: 

AB+ + M = AB + M. 

(1b) 

(1c) 

(1d) 

Here Az and Bz are the initial reactants, AB• is a mole
cule in the upper working level, AB is a molecule in the 
lower working level, ABo is a molecule in the ground 
state, Q is the energy supplied to the system for the 
formation of chemically active centers, and M is any 
of the reactants. The energy scheme of the reaction is 
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FIG. I 

represented in Fig. 1. This scheme is close to that for 
the reaction of H2 with C!z. [91 

The rate equations describing this process have the 
form 

(2) 

where k*, k, k1 , ko are respectively the rate constants 
of the reactions (1c), (1b), (ld), and (la); for initiation 
of the reaction by light the quantity ko is proportional to 
the photon density and the photodissociation cross sec
tion. The symbol [ ] signifies the concentration of a 
reagent. Actually, the system (2) should be augmented 
by equations for the change in the concentrations [Az] 
and [B2 ] • However, we shall be interested in the linear 
approximation, assuming [Az] and [Bz] to be invariable. 
For convenience, we introduce the dimensionless varia
bles 

, [AB+) 
X=--

(B,.Jo' 
[A] 

U=(B,.Jo' 

[AB] 
X= [B2]o ' 

[B] 
v = [B2lo ' 

kfA2l 
r: = k' [B2]ot, a = k'[B,.Jo , 

k1[M] ko[A2] 
a, = k'(B2]0 ' y = k'[B,.Jo2' 

where [B2 ]o is the (initial) concentration of molecules 
Bz. Then (2) is rewritten in the form 

du 

dx' 
-=V-O'tX", 

dr: 

d-r= v-au+y, 

dx , 
d-c=OtX' 

dv 
dr: =-v+au. (3) 
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The solution to the system (3) for initial conditions 
x* = x = u = v = 0 at T = 0 has the form 

< < 

x• = e-a,< ~ v(,;')ecr.<'d,;', 
0 

x = a 1 ~ x' (t')d·t', 

< ,. 

v(,;) = ae-(Ha)<) dt'e(Hcr)<' ~ V(T")dt". 
0 0 

(4) 

We shall assume that excitation is effected by a short 
pulse, the length of which To is considerably less than 
the relaxation time. Then the maximum value of the 
population inversion for 1 + a>> a1 is 

1 <o 
a , \ 

(x'- X)max;:,;;: (1-Jn 2) --- J '/(T')d,;', 
1 +a a, 0 

(5) 

The maximum number of active particles depends on the 
ratio of the reaction and relaxation rates. The quantity 
a/ (1 + ala1 determines the effective length of the chain 
that gives a contribution to the population inversion. 

In (3) there is no assumption about breaking of the 
chain due to chemical processes, and the finiteness of 
the effective chain length is determined by the relaxa
tion time. But if the chain length 11 due to chemical 
processes is less than a/ (1 + ala1 = "eff, then 

(x'- X) max;:,;;: v fv(-r')dt'. (6) 

The integral appearing in (5) is proportional to the 
absorbed number of pump quanta. Hence even for a long 
effective chain length the output power of a chemical 
laser will be determined by the pump intensity. And if 
one considers the inevitable energy losses in the ratio 
of an emitted to an absorbed quantum, in the ratio of the 
total spectrum of the pumping source to the absorbed 
spectrum, etc., then the dependence of the output power 
on the pump intensity becomes extremely significant. 

The branched reaction. For such reactions it has 
been shown ll2l that the rate grows exponentially with 
time. This gives grounds for supposing that the number 
of active particles obtained in the final stage is indepen
dent of the energy initiating the reaction. However, they 
have been investigated only from the viewpoint of chem
ical kinetics. The necessity of obtaining a population 
inversion imposes, as will be evident from the follow
ing, a number of limitations on the rate of the elemen
tary acts of a branched chemical reaction. 

We assume the following branching scheme: 

AB+ + RA = AI3 + H + A, (7) 

where RA is some additional reagent that dissociates 
upon collision with an excited molecule AB+. Then to the 
Eqs. (3) we add a term corresponding to the branching 
process, so that 

dx 
dt =(a,+ a2)x', 

du 
dt = v- au+ a2x' + v, 

dv 
de= -v+au, (8) 

where a2 = k2[RA]/k*[B2], and k2 is the rate constant of 
the process (7). The system of equations has three 
linearly independent solutions that vary exponentially 
with time. Two of these decay and one grows with time. 

After a certain interval of time, this growing exponen
tial will be dominant, so that the solution of (8) may be 
written 

a,+ az 
X=--Ae8"', 

s 
(9) 

where A is a constant that depends on the intensity of 
illumination, and s is the positive root of the equation 

s3 + s2 (1 +a+ a,+ az) + s(1 +a) (a, -j- az) - aaz = 0. (10) 

The condition of exponential growth of the inverted popu
lation leads to the inequality 

(11) 

If the rate of branching is small compared to the proc
ess (1c), then s = aada1, so that the condition (11) takes 
the form 

(12) 

The relation (12) is modified if it is assumed that as 
a result of dissociation of a molecule RA due to colli
sion with AB+ the latter falls into a "non-working" 
level "0" (see Fig. 1), i.e., the reaction goes according 
to 

AB+ + RA = R + A + ABo. 

Then instead of (12) we have 
a 

-1-a2> a,(a,+ az). 
+a 

(13) 

The inequalities (12) and (13) in the limiting case of high 
rates of branching (a2 » a1) have a different physical 
meaning: 

a 
1 +a> a2, 

a. 
1-j-a>a,. 

(12a) 

(13a) 

At the same time both relations in the case of small 
branching rates give 

(14) 

Conditions (12) and (13) superpose a limitation on the 
partial densities of the reactants and the temperature 
of the reacting mixture. Actually, the rate constants of 
the reactions may be represented in the form u2J 

k = np(T), (15) 

where r is a constant quantity depending on the nature 
of the interacting molecules; cp(T) is a function of tern
perature, usually of the form 

(16) 

where LlE is the activation energy of the process. 
For illustration, we consider the simple case of low 

branching rates (a2 « a1), and also set a << 1. Then 
( 14), with ( 15), can be written 

(1-I-1J-i-s)2 rr2 (1",,' -·----<--F(T), 
lJS r 12 

where ~ is the ratio of densities [RA]/[B2], and 
7J = [A2]/[B2], F(T) is some function of temperature. 
Since physically 7] > 0 and ~ > 0, then from (17) must 
come the requirement 
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(18) 

for which there .exists a region of values of ~ that satisfy 
the inequality (17): 

6-<6<6+, (19) 

where ~+and ~-are the roots of the quadratic equation 

62 + 2 (1 +11- TJ~F(T) \/s +(1 + TJ) 2= 0. (20) 
2r12 

Thus, here we have a certain equivalent to the "ignition 
peninsula" in branched chain reactions. [12 J We should 
like to emphasize the principal distinction of our 
"peninsula": this "peninsula" is associated with ob
taining an inverted population and departure from it 
cannot disrupt the vigorous course of a reaction; how
ever, it will go on without producing inversion. 

Analogous conclusions can be drawn about 71, since 
both ~ and 71 enter into Eq. (17) in a completely symme
trical way. If the branching is effected by reactant Ba: 

AB+ + B2 = 2B -r ABo, 

then the "peninsula" is retained: 

T)- <TJ<TJ+. 

11+ , 11- are the roots of the equation 

TJz + [ 2 - ~;2 F ( T) ] TJ +, 1 = 0, 

where we must have 
rr2 
-F(T);;a,4. 
r,z 

(21) 

(22) 

(23) 

And if branching of the reaction occurs by way of dis
sociation of Aa molecules: 

AB+ + A2 = 2A + AB0, 

then it is necessary that 

~F(T)> 1 
r,z 

and 

( 1/-r" - )-' 
TJ> f r,:F(T)-1 . 

(24) 

(25) 

Fulfillment of the conditions enumerated above guar
antee the exponential growth of the inverted population 
with time in the initial stage of the reaction. The ex
penditure of the initial reactants, obviously, will lead to 
a limitation on the growth of inversion. In order to fol
low the entire process of change of x* - x with time it 
is necessary to add to the system (8) equations that 
describe the change of concentration of Aa, B2, and RA 
with time. The parameters cri in this case also become 
variable, since we must deal with a nonlinear system of 
equations. 

Up until now we have not considered the possibility 
of populating the lower of the working levels in the 
course of the reaction Aa +B. However, such population 
occurs in real systems. It is not difficult to generalize 
the results obtained to cover this case also. All the 
considerations and calculations we set forth in obtaining 
the inequality (11) remain in force, however, the inequal
ity itself becomes the relation 

11112 1-a 
8 > 111 + 112 + s(s+1+11) a ' 

(26) 

where a is the probability of the reaction Aa + B = AB+ 
+ A, and 1 - a is the probability of the channel Aa + B 
= AB +A. Obviously, to obtain inversion we must have 
0! > 0.5. 

With all the assumptions that led to (17), the inequal
ity (26) takes the form crcra/cr~ > 1/a. It is seen that Eqs. 
(17)-(25) remain in force also for the case of popula
tion of the lower level if we replace F(T) in them by 
F(T)/a. 

We have set up a system of equations in which, to
gether with the decrease of concentrations [A], [B], and 
[RA], the possible reactions 

B+AB+=A+Bz, 

B+AB = A+B2. 

were also taken into account. The constants of all reac
tions were to a certain extent selected arbitrarily. 
However, in their selection, we had in mind the reac
tion of hydrogen with chlorine. [12 l The dependence on 
time of the exciting light pulse was taken in the form 

e-"V't 

y(t)=yn(1+e ")2' 

which qualitatively reflects the character of the light 
flux from a pulsed lamp. 

Figure 2 shows the dependence x*(T) - x(T) for dif
ferent intensities of light initiating the reaction. The 
kinetic parameters used to obtain these curves are: 
y = 10-4 ; 0! 0 = k/k* = 1; 0!~ = kUk* = 0.01; 0!1 = kd'k* 
= 0.001; O!a = ka/k* = 0.001; O!s = ks/k* = 0.001, where 
k~ is the rate constant for the establishment of thermal 
equilibrium due to collisions of AB+ with AB+ , AB and 
ABo; k1 is the same ask~ for collisions with other par
ticles; ks is the rate constant of the reactions AB+ + B 
=A+ Ba and AB + B =A+ Ba. Figure 2 clearly demon
strates the independence of the maximum inversion on 
the intensity of initiation of reaction, which could be ex
pected from the exponential growth of inversion at the 
initial moments of time. 

The fact that a branched reaction goes independently 
of the degree of initiation creates a difficulty in its ex
perimental realization, since the time of the reaction 
may turn out to be less than the time of preparing the 
initial mixture of reagents. Here inhibitors may be of 
use; these are substances the addition of which even in 
small quantities to the reacting mixture strongly slows 
down the reaction. [12 J Mter preparation of the mixture 

D.2 

IJ.I 

500 IJOOt 

FIG. 2. The function x* (T)-x(T) for different intensities of the 
light initiating the reaction. Initial conditions: forT = 0, [A2 ] = [B2 ] = 
[RAJ =[A] = [B] = [AB+] = [AB] = 0. Values of n for curve 1-lo-s; 
2-10-6 ; 3-Io-7 ; 4-Io-s; s-I0-9 • 
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the inhibitor can be disposed of by a sufficiently strong 
initiation of the reaction, and as a result of the subse
quent rapid development of the branched reaction in the 
reacting mixture a "pulse" of inverted population 
arises, which can be used for generation. In such a 
mixture the formation of a "pulse" of inverted popula
tion recalls in its mechanism the formation of a pulse 
of light in a laser with a clarifying filter. 

We have here analyzed the simplest scheme of chain 
and branched reactions. In real systems not all the 
energy developed in the reaction process goes into 
radiation and the reacting mixture becomes heated. 
Heating of the mixture will lead to a change in the rates 
of the individual reactions and inevitably to a significant 
alteration of the kinetics of the reaction as a whole. 
However, this does not change the relations obtained 
above, which are valid for the initial stage of the reac
tion. It makes sense, however, to carry out a complete 
analysis of the kinetics with account taken of the heat 
balance for specific compositions of the reacting mix
ture. 
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