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Expressions for the increments of the normal waves propagating at an arbitrary angle to a constant
magnetic field are obtained by the method of kinetic equation with self-consistent field. These ex-
pressions were investigated for the case when in the system consisting of the ‘‘cold plasma plus the
nonequilibrium electrons’’ there arises a synchrotron instability. The difference between the in-
crements of the normal waves, which can lead to noticeable circular polarization of the synchrotron
radiation at sufficient dimensions of the radiating region, is obtained for the case of quasi-longitud-

inal propagation.

RECENTLY, Zheleznyakov and one of the authors!?!
presented a kinetic analysis of the synchrotron instabil-
ity observed by Zheleznyakov“]; the analysis was de-
voted to the particular case of propagation of electro-
magnetic waves transversely to the constant magnetic
field H. Article’®’ was devoted to an investigation of
the peculiarities of the transition from the instability
at individual harmonics to the synchrotron instability,
which is determined by an aggregate of many harmonics
of the radiation of relativistic electrons, and to a
clarification of the degree of acce})tability of the Ein-
stein-coefficient method used in'* (and also in many
other papers devoted to investigations of the reabsorp-
tion of synchrotron radiation and stability of waves in
a plasma). In the present article, the kinetic analysis
of the reabsorption of the synchrotron radiation is
generalized to include the case of propagation at an
arbitrary angle to the magnetic field. In the case of
quasilongitudinal propagation, the expressions for the
increments of the synchrotron instability coincide with
those obtained in(*’,

1. Propagation of plane waves exp (ik*r - iwt) in
a homogeneous medium with a dielectric tensor
€gp(w, k) is described, in the linear approximation,
by the equation’®!

[P20ap — nanp — eap{o, k) |Ep = 0, (1)

where n= ck/w (c—velocity of light in vacuum) and
6B is the Kronecker symbol. The dielectric tensor
can be obtained by integrating the kinetic equation with
a self-consistent field (see!*]).

We shall henceforth consider a medium consisting
of a ‘‘cold’’ magnetoactive plasma and non-equilibrium
electrons. In a coordinate frame x'y’'z’, with z’ axis
directed along the constant magnetic field H and x’
axis in the kH plane, the dielectric tensor of such a
medium is given by

2ap (0, k) = £ap®(0) — i*PLag (0, k). (2)

Here e(&ﬁ is the dielectric tensor of the ‘‘cold”’
plasma, Lgg takes into account the contribution of the
nonequilibrium electrons to the dielectric tensor. Ac-
cording to[sl, the components eoaB are equal to

0 0 0
Barar == £y == 1 — g =1—uv,

1—u’

0 vyu 0 0
By = — gyt = , Byrgr == Eyrqr == Eyrgr == By == 0,

1—u

where v = w] /w?, u = wj/w® (here wr, = (4me*No /1),
wy = eH/mec is the plasma and gyrofrequency of the
electrons in the ‘‘cold’”’ plasma; e and m, are the
charge and rest mass of the electron, and N, is the
concentration of the cold-plasma electrons).

The expressions for Lag (w, k) were found in'®! by
the Shafranov method!*:
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In (3) we used the following symbols:
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m = (m2 + p?c®)"? is the relativistic mass of the elec-

tron, Q}, = 47e°N/m,, N is the concentration of the
nonequilibrium electrons with a distribution function
f(pit, pL) (py and pj are the longitudinal and trans-
verse components of the momentum p relative to H),
Qy = eH/mc, Jg(x ) is a Bessel function of order s
with argument x = kx’pj/mQy. Expression (3) is valid
when Im w > 0. The expression for Im w = 0 is ob-
tained by analytic continuation of (3) into the lower
half plane of w.

We shall need subsequently an expression for the
imaginary part of Lyg for real w and k (seel®)):

Im Lop = —n >, \ dh,S dpy Dap* (0, k, pi, p1) 6 (0 — ws(k, pi, 1)), (4)
s=-o0 0 —oo
where 6 is the Dirac delta function.

It is convenient to investigate Eq. (1) by directing
one of the coordinate axis along k. We therefore
change over to the coordinate system x, y, z (the =z
axis along k, y axis in the (k, H) plane). In the new
coordinate system, the dielectric tensor €yg3 takes the

740



REABSORPTION OF SYNCHROTRON RADIATION 741

form (6 = kH):

E .
vy

— &y cos 0 —{-ez,y

- ,sinf e,

Eap =

, ,sin®2e.., —&
ey sin® +e, v cos 6 2%

+ (ez'z' -

We assume that the concentration of the high-energy
particles is small compared with the concentration of
the electrons of the ‘‘cold’’ plasma, so that for non-
zero components €yg the following conditions are
satisfied

leag®| > | Linl- (6)
Eliminating E, from the system (1) with allowance
for (5), we get
(Axx —n? + Mxx)Ex + (Axy ’i“ ‘M'xy)Ey = O,v.

(Ayw + Mys) Ex + (Ayy — 02+ M) Ey = 0. ()

In (7) we introduced the notations
Are = &:° -+ E%..°, Awy = —Aye = &y’ — Enezl,
Ayy = gy — 1%e";
Myx = —Lyyy — iE[2Ly sin @ + (Lyrw — Lyoy) cos 6]
— B[ Ly 8in? 0 — (Lyryr + Lyge)sin 0 cos 0 - Ly cos? 6],
My = (cos 0 + 1 sin ) [iLyeyr + E(Lyar $in 8 — Ly cos 0) ]
+ (ncos 0 — sin 0) [iLysr 4 E(Lyp cos 0 — Lyrpsin 0) ],
My = (cos 6 4 1 sin 0) [—ilizy — E(Lywr 8in 0 — L cos 6) ]
=+ (n cos 0 —sin 8) [iLoy — E(Luw c08 8 — Ly sin 6) ],
My = (cos 0 + 1 sin 0)%Lxn — (cos 0 + 1 sin 0) (1 cos 6 — sin 0) (L
+ L) + (1 cos 0 — sin 0)2L,.y;

&= &2/ €% N = &;:°/ &,

In the expressions for Myg, we discarded the terms
of second and third order in Ljk, which are small by
virtue of the condition (6). In addition, we used the re-
lations

ey = &y, ex’ = —ep’, &’ = —en’, Luy = —Lyx.

The dispersion equation (the condition under which
the system (7) is not trivial) takes, with allowance for
the terms linear in Lgg, the form

[n(0) — ] [n?(0) — 2] + (A — 1) My

+ (Aux — 1) My + Ay (My — Mys) = 0, (8)
where
m,22 =1/s (Axx + Auy) =+ 1/2[(‘4m - Aw)z - l‘*Axyz]‘/2
i 2v(1—v)

2(1 —v)— usin20 F [u2sin* 0 + 4u (1 — v)2cos? 0]
are the squares of the refractive indices of the normal
waves in the ‘‘cold’’ plasma; the + sign corresponds to
the ordinary wave (index 2). The solutions of (8) can be
obtained by perturbation theory. Putting w QJ +08j i
where Qj is the solution of the equation n® = n2 (w) and
| 0j | Qj, and assuming that
[n2(Q5) — n (@) | > [Lasl, (9)

we obtain from (8)
it (kve)s

2n2

— Bi (Ly’z' -

67 = [—L!I’b’ - zajo’y’ - a]'ﬁj (Lx'z' + Lz’x')

L)+ 0 Lyrwr + B2 Lyoy ). (10)
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Here
(kvg); = nQ;[9n;(0) /doIl o,

and Kj and I'j are the polarization coeff1c1ents of the

normal waves in the cold plasma (see also!” , Sec. 23):
. Ei Ape — 0
lKJ === E’:]— == "—'—'Axy

. 27u (41— v)cos 0
i »
usin? B F [u2sint 0 + 4u (1 — v)2cos? 0]~
Ej 2;2° g0 vYusin® — K;uv sin 6 cos 9

. . 2y .
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In (10) and throughout, w = Q;j and k = Qn;j (2 )/c.

The increments of the normal waves are determined
by the imaginary parts of 6j. Taking (3) and (4) into
account, the increments are equal to

I © o w
Imé; = ZL 'Z" vAkve); 2§ dp.§ dpy—
s=—o0 0 —o0
X{p IS (%) + lesprsx~t A Bipil Js (%) }2 8 (0 — s (p1, L))
) P
X[smomg—f-l— - alfu] (11)

The same expression for the increments was obtained
earlier by the Einstein-coefficient method in the clas-
sical limit"(®],

The conditions under which the expressions (11) for
the increments were obtained are the conditions for the
applicability of the Einstein-coefficient method. Satis-
faction of conditions (6) and (9) denotes that the aniso-
tropy of the medium (the polarization of the normal
waves and the Faraday rotation) is determined by the
‘‘cold”’ plasma. In addition, in order for the perturba-
tion-theory method used in the derivation of (10) to be
applicable, it is necessary that the distribution func-
tion be sufficiently smooth (for more details seefz])

2. Let us examine the reabsorption of synchrotron
radiation of relativistic electrons (E » mec’) in a
plasma. For simplicity we assume that f(p) is iso-
tropic®

If the distribution function is sufficiently broad and
the frequency spectrum of the emission of the system
of relativistic electrons is continuous, it is possible to
replace approximately the sum over s in (11) by an
integral with infinite limits. Integrating with respect
to s with the aid of the 6 function, we obtain

D The expressions for the increments of the normal waves were
obtained in [®] also by a kinetic method, but their identity with (11)
has been demonstrated only for frequencies close to harmonics of the
gyrofrequency.

2)The analysis remains valid also in the case of weak anisotropy,
when the distribution function changes little over the width of the
angular spectrum of the radiation of the relativistic electron.
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kvg); Q.2
Imaj=l(;¥l’ - S p3~G(p), (12)

E ]
60 =yt Yoo o4 0, G0 (Ge ) Taw (19)

where

s = (o [Qa) (1 — Pyr; cos 6),

bj = [Kj(cos @ — njBy) + ['jsin 6] /p.Ln;jsin 0,

Bi=py/me, Bi=pi/me.
In (12) we have changed over to the integration vari-
ables p and ¥ (py=pcos¥,p  =psiny).

Going over from the increments to the reabsorption
coefficients of the normal waves® and from the distri-
bution function f(p) to the energy spectrum
(Nf(p)4np’dp = N(E)dE, E = pc), we obtain

W= 2:1;:2 ) GE [ N(E) ]Ezo,( E)d
K2
Qi(0,E)= 22) [ ws/.m Ks,(m)dn + . —|—K:2 Ky, ( (.(:‘_)1,
EEC
X S K'/a(n)dn]‘ 2 1I:Lchtge(1—n2¢2)

/0,

x!5 3 Ky (m)an — Ko () | s =y im0
+21+K2 S K/,(n)dn} (14)

Here wjc = (%)QpLsiné (1 - nf*)°~, K, is the
Macdonald function of order v. In the derivation of
(14), the integral (13) was transformed with allowance
for the known properties of the Bessel functions and
their asymptotic expressions in terms of the Macdonald
functions (for details see'*?)). In addition, it was as-
sumed that the condition

(1 —nfp?) <1, (15)

is satisfied, corresponding to a high energy of the
relativistic electrons in a highly rarefied plasma. The
expression for le(w E) coincides, accurate to terms
of order (1 - g° 1 ), with the expression obtained in!®’

for the total power of the synchrotron radiation of an
electron with energy E per unit frequency interval in
the j-th wave.

It should be noted that by virtue of the condition (15)
F] — 0 (the normal wayves are almost transverse); we
can therefore use for Q](w E) the abbreviated equa-
tions

) - 20} . i 1— K32 , © 1
OoEym S {a—ni | | keman+ 0w ()]}
(16)

0fw;e
In (16) we have also omitted small terms of order
3)1n a rarefied plasma (|1 — n; 2| < 1) the amplitude increment is

connected with the reabsorption coefflclent by the relation 2Im 6 =
-C “J
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(1- n?Bz )*/2. The omitted terms must be taken into
account only if the reabsorption coefficient (14) is
equal to zero when expression (16) is used.

In{»®*1 the reabsorption of synchrotron radiation
was 1nvest1gated by the Einstein-coefficient method.
Inm, attention was called to the fact that the reabsorp-
tion coefficient should be referred to a single normal
wave®. The latter circumstance was not taken into
account in®-**), The expression obtained in!*! differs
by a factor % from the corresponding expressions
used in'**'*), and coincides with expressions (14) in
the case of quasilongitudinal propagation (Kj=+1,

I"j = 0), if we neglect the difference between the re-
fractive indices of the normal waves® .

The expressions for the reabsorption coefficients,
used inlt101] , were obtained assuming a §-like angu-
lar emission spectrum of the relativistic electron.
Less accurate results are obtained when an approxi-
mate account is taken of the finite width of the angular
spectrum, as was done in[g], since an additional factor
E appears under the integral sign in the expression of
the type (14). The expression (14) given above takes
correct account of the finite width of the angular spec-
trum.

It follows from the results of!****] that in the case
of quasilongitudinal propagation, at a definite choice of
the distribution function of the relativistic electrons,
negative reabsorption of the synchrotron radiation is
possible in a medium (plasma). It is shown in[®J that
the reabsorption can be negative also in the case of
transverse propagation.

It is easy to show that pj can be negative when the
propagation is at an arbitrary angle to the magnetic
field. It follows from (14) that

222 §° N(E)

d
-2 [0 (0, E)dE.

= (a7

mz

o
Negative reabsorption is possible if d[ E? Q (w, E)])/dE
< 0 in a certain energy interval. In the reglon of ap-
preciable influence of the medium, where

(1 —n?) (B[ mc?)* 21,

the expression for Q; (w, E) is given by the function
®; (w E) (%5 1s obtained from (14) by putting
1~ nj =1~ n ). The expression d[ E*®j(w, E)]/dE

is of alternatmg sign, inasmuch as
S —[EZcD (0, E)]dE = E*®;(0,E) | =

from which it follows that K < 0 for certain distribu-
tion functions.

3. The normal waves experience different degrees
of absorption (amplification) as a result of reabsorp-
tion. In radio astronomical applications, an important
role is played by the case of quasilongitudinal propa-
gation, where the normal waves are circularly polar-
ized. In this case

4)Normal waves for a system of relativistic electrons were not in-
vestigated, so that the problem of the reabsorption coefficients of a
system of relativistic electrons in vacuum still remains open.

5)The reabsorption coefficients of normal waves in transverse pro-
pagation (kj =0, oo; Fj = 0) coincide with those obtained in [?].
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The first term in (18) is connected with the small
deviation of the polarization of the normal waves from
circular polarization, and is of the order of uvu; the
second term is of the order of puv 1l — n23% and is con-
nected with the nonzero degree of circular polarization
of the radiation of the relativistic electron.

The difference ( u, — K;) is small (of the order of
4, wHg/w and uv 1 — n282). However, in the case of
negative reabsorption and sufficient dimensions of the
radiative region, even a small difference between the
reabsorption coefficients can lead to an appreciable
difference between the intensities of the normal waves,
if | pe - p|L~ 1.

In a cosmic plasma, the conditions for quasilongi-
tudinal propagation are usually satisfied in a wide
range of angles and frequencies. Therefore circular
polarization of the synchrotron radiation can serve as
an indication of negative reabsorption in the source.

The authors are grateful to V. V. Zheleznyakov for
directing the work and V. N. Sazonov for a remark.
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