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Expressions for the increments of the normal waves propagating at an arbitrary angle to a constant 
magnetic field are obtained by the method of kinetic equation with self-consistent field. These ex
pressions were investigated for the case when in the system consisting of the "cold plasma plus the 
nonequilibrium electrons" there arises a synchrotron instability. The difference between the in
crements of the normal waves, which can lead to noticeable circular polarization of the synchrotron 
radiation at sufficient dimensions of the radiating region, is obtained for the case of quasi-longitud
inal propagation. 

RECENTLY, Zheleznyakov and one of the authors[2 J 
presented a kinetic analysis of the synchrotron instabil
ity observed by Zheleznyakov[1 l; the analysis was de
voted to the particular case of propagation of electro
magnetic waves transversely to the constant magnetic 
field H. Article[2 J was devoted to an investigation of 
the peculiarities of the transition from the instability 
at individual harmonics to the synchrotron instability, 
which is determined by an aggregate of many harmonics 
of the radiation of relativistic electrons, and to a 
clarification of the degree of acceptability of the Ein
stein-coefficient method used in[1 (and also in many 
other papers devoted to investigations of the reabsorp
tion of synchrotron radiation and stability of waves in 
a plasma). In the present article, the kinetic analysis 
of the reabsorption of the synchrotron radiation is 
generalized to include the case of propagation at an 
arbitrary angle to the magnetic field. In the case of 
quasilongitudinal propagation, the expressions for the 
increments of the synchrotron instability coincide with 
those obtained in[1 J. 

1. Propagation of plane waves exp ( ik · r - iwt) in 
a homogeneous medium with a dielectric tensor 
Ea(3 ( w, k) is described, in the linear approximation, 
by the equation [JJ 

(1) 

where n = ck/w ( c-velocity of light in vacuum) and 
Oa(3 is the Kronecker symbol. The dielectric tensor 
can be obtained by integratin~ the kinetic equation with 
a self-consistent field (see[4 ). 

We shall henceforth consider a medium consisting 
of a "cold" magnetoactive plasma and non-equilibrium 
electrons. In a coordinate frame x'y'z', with z' axis 
directed along the constant magnetic field H and x' 
axis in the kH plane, the dielectric tensor of such a 
medium is given by 

(2) 

Here E~f3 is the dielectric tensor of the "cold" 
plasma, Lap takes into account the contribution of the 
nonequilibrium electrons to the dielectric tensor. Ac
cording to[sJ, the components E~f3 are equal to 

f.x~x' = f!.:''IJ' = 1-_v_, f!.z~z' = 1- V, 
1-u 

o o iv{U: 
Ex•y' = -ey'x' = --, 

1-u 

where v = w}jw 2 , u = wif/w 2 (here wL = (47Te2N0/m) 112 , 

wH = eH/m0c is the plasma and gyrofrequency of the 
electrons in the "cold" plasma; e and mo are the 
charge and rest mass of the electron, and No is the 
concentration of the cold-plasma electrons). 

The expressions for La(3 ( w, k) were found in[6J by 
the Shafranov method[41 : 

740 

L ( k)- ~Fa rd D,.~·(w,k,p!f.p_L) 
"~ w, - ~ J p J.. .\ PII -

•=-oo o -oo w- w,(pu, PJ.., k) 
(3) 

In (3) we used the following symbols: 

Di of 
A =(mw-kz'PII) --+kz'PJ..-, 

op1.. op11 

B = mw !!_, C = kx' ( PJ.. ~~ - Pn..!!!___) , 
0Pn \ opu opJ..' 

m = ( m~ + p2c-2 ) 112 is the relativistic mass of the elec
tron, nt = 47Te2N/m0 , N is the concentration of the 
nonequilibrium electrons with a distribution function 
f(pu, Pl) (PII and Pl are the longitudinal and trans
verse components of the momentum p relative to H), 
ilH = eH/mc, Js (X) is a Bessel function of order s 
with argument x = kx'Pl/milH. Expression (3) is valid 
when Im w > 0. The expression for Im w ::o 0 is ob
tained by analytic continuation of (3) into the lower 
half plane of w . 

We shall need subsequently an expression for the 
imaginary part of La(3 for real w and k (see raJ): 

~ 

ImL,.~ = --n2; ~ dPJ..,~ dpnDa~'(w,k,pii.PJ..)II(w-w,(k,pu,PJ..)),(4) 
.......... 0 

where o is the Dirac delta function. 
It is convenient to investigate Eq. (1) by directing 

one of the coordinate axis along k. We therefore 
change over to the coordinate system x, y, z (the z 
axis along k, y axis in the (k, H) plane). In the new 
coordinate system, the dielectric tensor Ea(3 takes the 
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form (IJ = kH): 

1 
····· -•u'x' cos a+ ••• ,. sin a ••. .,.sine+····· cos 0 } 

- ex'u' cos 6 + Bz'y' sin 6 ex'x' cos2 0 + ez.'z' sin2 6- ez'x' sin2ij- ex'z' cos26 

•·~= -(•.,·,·+•, • .,.)sinBcose +(e,.,.-e., • .,.)sin0cos6 • 

Ex'y' sinO+ ez'y' cosO - ez'x' COS2 6 + ex'z' sin2 6+ ex'x' sin2 6 +ez'z' cos26 

+ (•,·,·- • ., • .,.)sin 6 cos a + (•,·.,· + •.,·,·) sin 6 cos 6 

(5) 

We assume that the concentration of the high-energy 
particles is small compared with the concentration of 
the electrons of the "cold" plasma, so that for non
zero components E~j3 the following conditions are 
satisfied 

(6) 

Eliminating Ez from the system (1) with allowance 
for (5), we get 

(A.,.,- n2 + M.,.,)E., + (A xu+ M.,.)Eu = 0, 

(Aux + illyx)E., + (Auu- n2 + Muu)Eu = 0. (7) 

In (7) we introduced the notations 

Axx = Bxx0 + £2ezz0, Axy = -Ayx = 8xy0 - GT]8zzo, 
Ayy = Byy0 - t'f·ezz0 ; 

M.,., = -Lu'u'- i£[2L.,,., sin 6 + (Lu'z'- Lz'u')cos 8) 

- £'[£.,,.,, sin2 ()- (L.,,,, + L, • .,.)sin 0 cos 0 + L,.,, cos2 0], 

Mxy = (cos 8 + T] sin 8) [iLx'y' + !;(Lx'x' sin 0- Lz'x' cos 8)) 

+ (TJ cos 8- sin 8) [iLu'z' + 6(£,,,, cos 8- L.,,,, sin 8) ], 

M yx = (cos 8 + T] sin O)[ -iLx'y' - £ (Lx'x' sin 8 - L.,,,, cos 8)) 

+ ( TJ cos 8 - sin 9 )[ iLz'u' - 6 (L,,,. cos 6 - L, • .,, sin 6)), 

Myy = (cos 6 + TJ sin 8) 2£.,,.,,- (cos 8 + TJ sin 8) (TJ cos 6- sin 6) (£.,,,, 

+ L,,.,,) + (TJ cos 0- sin 0) 2£,,,,; 

In the expressions for Maj3, we discarded the terms 
of second and third order in Lik, which are small by 
virtue of the condition (6). In addition, we used the re
lations 

The dispersion equation (the condition under which 
the system (7) is not trivial) takes, with allowance for 
the terms linear in Laj3, the form 

[n12 (oo) -n2)[n,2 (oo) -n2) + (Ayy-n2)Mxx 

+ (Axx- n2)Mvy + Axy(Mxy- Myx) = 0, (8) 

where 

n~· = 1/z(Axx +A.,)± 1/2[(Axx- A •• )'- 4A.,.2]'" 

=i- 2v(1-v) 
2(1- v)- usin2 8 + [u2 sin• 0 + 4u(1- v)'cos' 6]''• 

are the squares of the refractive indices of the normal 
waves in the "cold" plasma; the +sign corresponds to 
the ordinary wave (index 2). The solutions of (8) can be 
obtained by perturbation theory. Putting w = n j + 0 j' 
where S'2j is the solution of the equation n2 = n: ( w ) and 
loji«S'2j, andassumingthat J 

ln•'(Q;)-n!'(Q;)I~ILc.~l. (9) 

we obtain from (8) 
y;2 (kv ); 

6; =- --·2n·;' [-L •••• - 2a;L., .• ,- a;p;(L.,.,, + Lz'x') 
J 

Here 

(kvgr); = n;Q;[Bn;(oo) /iJooJ;};~"n;, 

and Kj and r j are the polarization coefficients of the 
normal waves in the cold plasma (see also[71, Sec. 23): 

2"J'u(1- v)cos 8 
=-i--~----~~--~----~-----

usin26+[u2sin46 +4u(1- v)'cos"8]''•' 

if;=_ E,i = e,.,o + iK; e,.• = -i v11~sin6- K;uv sin 8 cos6 
E) e,.o ezz0 1-u-v+uvcos•e 

In (10) ~nd throughout, w = S'2j and k = njnj (S'2j )/c. 
The mcrements of the normal waves are determined 

by the imaginary parts of Oj. Taking (3) and (4) into 
account, the increments are equal to 

(11) 

The same expression for the increments was obtained 
earlier by the Einstein-coefficient method in the clas
sicallimit1>[sJ. 

The conditions under which the expressions (11) for 
the increments were obtained are the conditions for the 
applicability of the Einstein-coefficient method. Satis
faction of conditions (6) and (9) denotes that the aniso
tropy of the medium (the polarization of the normal 
waves and the Faraday rotation) is determined by the 
"cold" plasma. In addition, in order for the perturba
tion-theory method used in the derivation of (10) to be 
applicable, it is necessary that the distribution func
tion be sufficiently smooth (for more details see[2l ). 

2. Let us examine the reabsorption of synchrotron 
radiation of relativistic electrons ( E >> m0c2) in a 
plasma. For simplicity we assume that f ( p ) is iso
tropic2>. 

If the distribution function is sufficiently broad and 
the frequency spectrum of the emission of the system 
of relativistic electrons is continuous, it is possible to 
replace approximately the sum over s in (11) by an 
integral with infinite limits. Integrating with respect 
to s with the aid of the o function, we obtain 

llThe expressions for the increments of the normal waves were 
obtained in [6 ) also by a kinetic method, but their identity with (II) 
has been demonstrated only for frequencies close to harmonics of the 
gyro frequency. 

2lThe analysis remains valid also in the case of weak anisotropy, 
when the distribution function changes little over the width of the 
angular spectrum of the radiation of the relativistic electron. 



742 V. L. BRAT MAN and E. V. SUVOROV 

(12) 

"s '[ dJ,Z ( dJ, )ZJ G;(p)=y;2 sins1jl b;"li+b;-d-+ d d1jl, 
o X X 

(13) 

where 
s = (ro /QH) (1-llun; cos 8), 

b; = (K;(cos 8- n;llu) +I'; sin 8] I!I.Ln; sin 8, 
llu = Pul me. ·II.L = P.LI me. 

In (12) we have changed over to the integration vari
ables p and ljJ (Pu = p cos l/J, Pl = IP sin l/J ). 

Going over from the increments to the reabsorption 
coefficients of the normal waves31 and from the distri
bution function f (p) to the energy spectrum 
( Nf ( p ) 41Tp2dp = N ( E ) dE, E ~ pc ) , we obtain 

2:t•c• ... 5 d ·[ N (E) ]· 
!';=-·--· ~·-- E2Q;(ro,E)dE, 

ro2 0 dE E2 

8 K1 ctg 8 [ ( ro J ( (J) )-1 +----(1-n;"!l2)''• K•,,- + -
3 1 +K;2 _ ro;c ro;c 

rz .. 
+2--1- s K•1,(Tl)dt1}- (14) 

1 +K;2 •>/ci•je 

Here Wjc = (%) ilHl sin() ( 1 - nj/32 )-3/2, K 11 is the 
Macdonald function of order v. Iri the derivation of 
(14), the integral (13) was transformed with allowance 
for the known properties of the Bessel functions and 
their asymptotic expressions in terms of the Macdonald 
functions (for details see[12J ). In addition, it was as
sumed that the condition 

(1- n/'112) ~ 1, (15) 

is satisfied, corresponding to a high energy of the 
relativistic electrons in a highly rarefied plasma. The 
expression for Q~(w, E) coincides, accurate to terms 
of order ( 1 - {32nj }, with the expression obtained in[sl 

for the total power of the synchrotron radiation of an 
electron with energy E per unit frequency interval in 
the j-th wave. 

It should be noted that by virtue of the condition (15) 
rj- 0 (the normal w~es are almost transverse); we 
can therefore use for Qj ( w, E) the abbreviated equa
tions 

Q;(ID,E) ~ e2w- { (1- n;2112) f r K(TI)d'll + 1-K;• K•,, (~)]}. 
2:tc)'3 · 1 1 + K;2 W;c 

"'"'ie (16} 

In (16) we have also omitted small terms of order 

3Jin a rarefied plasma (11 - njl ~I) the amplitude increment is 
connected with the reabsorption coefficient by the relation 21m llj = 

- Cl"j· 

( 1 - n~{32 ) 3 / 2 • The omitted terms must be taken into 
account only if the reabsorption coefficient (14) is 
equal to zero when expression (16} is used. 

In[l,9-lll, the reabsorption of synchrotron radiation 
was investigated by the Einstein-coefficient method. 
In [lJ, attention was called to the fact that the reabsorp
tion coefficient should be referred to a single normal 
wave 41 • The latter circumstance was not taken into 
account in[s-HJ. The expression obtained in[1 J differs 
by a factor % from the corresponding expressions 
used in[ 10 ' 11l, and coincides with expre'ssions (14) in 
the case of quasilongitudinal propagation ( Kj = ± 1, 
r j = 0), if we neglect the difference between the re
fractive indices of the normal waves 51• 

The expressions for the reabsorption coefficients, 
used in[1 ' 10 ' 11l, were obtained assuming a a-like angu
lar emission spectrum of the relativistic electron. 
Less accurate results are obtained when an approxi
mate account is taken of the finite width of the angular 
spectrum, as was done in[9 J, since an additional factor 
E appears under the integral sign in the expression of 
the type (14). The expression (14) given above takes 
correct account of the finite width of tke angular :spec
trum. 

It follows from the results of[1 ' 111 that in the case 
of quasilongitudinal propagation, at a definite choice of 
the distribution function of the relativistic electrons, 
negative reabsorption of the synchrotron radiation is 
possible in a medium (plasma). It is shown in[2 J that 
the reabsorption can be negative also in the case of 
transverse propagation. 

It is easy to show that J..Lj can be negative when the 
propagation is at an arbitrary angle to the magnetic 
field. It follows from (14) that 

2:t2e2 s.. N (E) d 
J.!; = ----;z -------w:- dE [E2Q; ( ro, E)] dE. 

0 

(17) 

Negative reabsorption is possible if d [ E2Qj ( w, E )]/dE 
< 0 in a certain energy interval. In the region of ap
preciable influence of the medium, where 

(1- n/') (E I moe')'~ 1, 

the expression for Qj ( w, E ) is given by the function 
<Pj ( w, E) ( <Pj is obtained from (14) by putting 
1 - nj {3 2 = 1 - nj). The expression d [ E2 <Pj ( w, E )]/dE 
is of alternating sign, inasmuch as 

... d 
S -[E241;(w,E)]dE = E241;(ro,E) lo00 = 0, 
odE 

from which it follows that J..l.j < 0 for certain distribu
tion functions. 

3. The normal waves experience different degrees 
of absorption (amplification) as a result of reabsorp
tion. In radio astronomical applications, an important 
role is played by the case of quasilongitudinal propa
gation, where the normal waves are circularly polar
ized. In this case 

4)Normal waves for a system of relativistic electrons were not in
vestigated, so that the problem of the reabsorption coefficients of a 
system of relativistic electrons in vacuum still remains open. 

5)The reabsorption coefficients of normal waves in transverse pro
pagation (kj = 0, oo; rj = 0) coincide with those obtained in [2 ]. 
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3 ro ( ro )]' y;-sin29 ( ro )1 ---K•" - +(f-n2f12)---K•1, - dE 
2 (l)c roc 2·cos9 ro, f 

8rce2c r d [ N(E) ]' [ ( ) +--_ctg9 J- -- E~(1-n2f12)'''' K•1 ~ 
3y3ol' 0 dE E2 . ' roc 

The first term in (18) is connected with the small 
deviation of the polarization of the normal waves from 
circular polarization, and is of the order of JJ...fli.; the 
second term is of the order of JJ...J 1 - n2{32 and is con
nected with the nonzero degree of circular polarization 
of the radiation of the relativistic electron. 

The difference ( JJ.2 - JJ.t) is small (of the order of 
JJ., WH/w and JJ...J 1 - n2{32). However, in the case of 
negative reabsorption and sufficient dimensions of the 
radiative region, even a small difference between the 
reabsorption coefficients can lead to an appreciable 
difference bet~een the intensities of the normal waves, 
if I /J.2 - /J.tiL ~ 1. 

In a cosmic plasma, the conditions for quasilongi
tudinal propagation are usually satisfied in a wide 
range of angles and frequencies. Therefore circular 
polarization of the synchrotron radiation can serve as 
an indication of negative reabsorption in the source. 

The authors are grateful to V. V. Zheleznyakov for 
directing the work and V. N. Sazonov for a remark. 
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