
SOVIET PHYSICS JETP VOLUME 28, NUMBER 4 APRIL, 1969 

LINE SHAPE OF V-DOUBLING TRANSITION 

A. I. BURSHTEIN and E. E. NIKITIN 

Institute of Chemical Kinetics and Combustion, Siberian Division, USSR Academy of Sciences 

Submitted April 22, 1968 

Zh. Eksp. Tear. Fiz. 55, 1393-1399 (October, 1968) 

A correlation theory is developed for the shape of the spectra of a two-level system subjected to a 
sudden amplitude-phase modulation as a result of collisions. With A-doubling as an example, it is 
shown that the spectrum of such a system consists of a resonance line and involves losses of the 
Debye type .. The resonance line is found to average out with increasing pressure, and the loss 
spectrum becomes narrow near zero frequency. 

As is well known, A-doubling of rotational levels of 
diatomic molecules is due to the splitting of the degen­
erate electron term as a result of a different non­
adiabatic coupling of each of them with other electronic 
states[11 . Describing the rotation of the molecules 
classically (this is done only to simplify the reasoning), 
the two considered components of the electronic term 
of the molecule, rotating with a given angular momen­
tum K, can be classified as positive and negative in 
accordance with the change of the sign of the function 
upon reflection in a fixed plane of rotation of the nuclei 
(case of coupling "b" after Hund). On the other hand, 
if the influence of the spin is significant and it is 
necessary to deal actually with splitting of the 2II 112 

term (case of coupling "a"), then both components 
differ in the factors + 1 or - 1, which result from the 
wave function upon reflection. 

There are two mechanisms of line broadening in 
the A-doubling transition. First, the finite lifetime of 
each doublet is connected with the fact that the mo­
mentum K is ch:mged by the molecule collisions in 
the gas. Inasmuch as the frequency of the A-transition 
depends on K[l], in collisions in which the rotational 
state of the partners changes, the frequency w ( K) of 
the A-transition shifts by an amount on the order of 
ow~ w(K)/K. The second cause of the broadening of 
the A-transition is due to the fact that the collisions 
lead to a reorientation of K without a change of the 
splitting w(K). As a result, the positive and negative 
components are intermixed in each collision, whereas 
between the collisions the non-stationary wave function 
of the doublet is represented in the form of a time­
oscillating superposition of a positive and a negative 
state. This cause of broadening may turn out to be 
much more effective than the first cause, since the 
cross sections of the collisions that lead to reorienta­
tion of K usually are much larger than the cross sec­
tions of the inelastic collisions. 

Let us assume that only the second broadening 
cause is significant and that each collision with effec­
tive cross section a leads to a uniform distribution of 
the projections of K. We assume also that the collision 
time Tc, during which the rotation of K takes place, 
is small compared with the free-path time T 0 = [ Nav ]-\ 
as is usually the case in impact theory for strong colli­
sions. 

In the language of the gyroscopic model [2 l this de-
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notes that the field vector suddenly changes its orienta­
tion, 1/To times per second, into some other orienta­
tion which is realized with a probability dn / 41T without 
any connection with the preceding orientation. Thus, 
the change of the field is a Markov process without 
correlation with a very simple (uniform) distribution 
of the angles in any instant of time. Each reorientation 
causes an according change in the plane of precession 
of the effective spin representing the A-doublet. This 
imparts a diffusion character to the precession (in 
spite of the constancy of the precession frequencies), 
and leads to a spatially-isotropic relaxation of all the 
components of the effective spin, causing broadening of 
the line of the transition to A-doubling. 

We derive below the relaxation equations governing 
this process, and calculate on their basis, in the :ap­
proximation of the correlation theory, the form of the 
frequency dependence of the dispersion, which deter­
mines the absorption spectrum in the A-transition. 

1. RELAXATION 

Inasmuch as the Hamiltonian of the A-doublet cor­
responds only to two states, and its eigenfunctions 
differ in symmetry with respect to the plane normal to 
K, it can be written in the following form: 

iJ = Wo a~ = Wo II cos t) sin t)e;"' II 
2 K 2 sin tte-;"' -cos tt ' (1. 1) 

where J and cp denote the orientations of K in a fixed 
coordinate system, and a are Pauli matrices. 

Equations. Since the reorientation of the vector K 
is a Markov process without correlation, the equations 
for the density matrix can be obtained from [3 J with 
allowance for the concrete form of the Hamiltonian 
(1.1), in which the random quantities are the angular 
variables: 

0 0 
A p (t, t), <p)-p (t) 

p(t, tt, cp) =- t[H(tt, q;), p(t, tt, cp)]- _ , (1.2) 
To 

- ""s r sin t) dtt dcp 
p(t)= JP(t,tt,q:) 4 . 

o o n 
(1.3) 

Using the collecting indices a, {3 = 11, 12, 21, 22, we 
represent (1.2) in the form _ 

pa:(t,tt,cp)= G,.~(tt,q:)p~(t,tt,cp)+p"'(t), (1.4) 
To 

where Ga(3 is a fourth-order matrix, the determina-
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tion of which follows from a comparison of (1.4) with 
(1.2) with allowance for (1.1). Its explicit form will be 
made clear subsequently. 

Solution. Recognizing that at t = 00 there exists a 
stationary solution of (1.4), 

p,.( oo) = To-1 G,.~- 1p~(oo) =To-'~ 'f2G~,.·. (1.5) 

let us find the Fourier transform of the quantity p( t) 
- p( 00 ), defined by the relation 

~ 

$( w) = ~ [p{t)- p( oo)] e-irotdt. (1.6) 
,, 

Obviously, an analogous Fourier transformation can be 
introduced also for the partial density matrices con­
nected with the matrices averaged over J and cp by 
relation (1.3). Therefore, taking the Fourier transform 
of Eq. (1.4) directly, and solving this equation with re­
spect to cf1(w, J, cp), we get 

«D(w,t},tp)= -[G- iwE:t-'{p(O)- p(oo)+ :
0
(ii(w) }, (1.7) 

where E is a unit matrix: 6af3· Averaging of this ex­
pression with respect to J and cp will affect only the 
quantity on the right 

r r ~ ~ sin'(}dt} 
J dq: .1[G- iwE]-1 = Q, (1.8) 
o o 4n 

so that by solving the resultant equation with respect 
to ~( w ) we obtain finally 

iii(w) = B(w)[p(O)-p(oo)], (1.9) 

where 

(1.10) 

in close analogy with the result of[4 l. 
Averaging. The concrete form of the matrix G 

- iwE, which enters in (1.8), is 
~ 'I G-iwE 

iro0 sin t)oe-i'+' 
iroo . 

--2- sin t)oe1 '+~ 0 

iroo . 
- 2- sin t)oe1:P iwa cos -flo- s 0 

imo · 
--2- sin tle1'P 

(1.11) 

0 

s = 1/To + iw. (1.12) 

Inverting the matrix (1.11) and averaging it in (1.8) we 
get 

a-b 0 0 -b 

E+(J= o aO 
T0 0 0 a 0 

0 
(1.13) 

-b 0 0 a--b;1 

a=s(s2+wo2)-(s2+1/awo2)/ro, b= wo2 . (1. 14) 
s(s2 + Wo2) 3Tos(s2 + wo2) 

Inverting this matrix and using it in (1.10), we obtain 
untimately: 

a-b b -1 0 0 
a(a-2b) a(a-2b) 

1-a 
0 -- 0 0 

B =To 
a (1.15) 

0 1-a 
0 -- 0 a 

b 
0 0 

a-b 
1 a(a -2b) a(a -2b) 

This matrix determines completely the kinetics of the 
relaxation for arbitrary conditions: the latter is ob­
viously none other than the inverse Fourier transform 
of (1.9). 

Gyroscopic description. If from the very outset we 
introduce the notation of the gyroscopic model: X1 
P11- P22, X2 = P12, X3 = P21, 

(1.16) 
i=i 

then the problem simplifies noticeably. This is con­
nected with the conservation of the normalization of 
the density matrix (Pll + P22 = 1) which reduces the 
rank of all the matrices to three. For the three-com­
ponent vector Xi we obtain in lieu of (1.9) 

~ 

iiJi{ w) = J X";(t)e-irotdt = B;hXh(O). (1.17) 
0 

Here Bik is a diagonal matrix: 

(1.18) 

in which 
1-a s2 +'/swo2 

c ( w) = To-- = ---,--;:-:---;::-:........;--:C-;-::...._ 
a s(s2 + wo2)- (s2 +, w02/3)/-r; 

(1.19) 

Thus, the relaxation of all the components of the ef­
fective spin occurs in perfect uniformity. This was to 
be expected, in view of the complete spatial isotropy of 
the problem. 

2. CORRELATION THEORY 

Absorption. A general formula for the absorbed 
power of the alternating field at Po = C/2 ) ( w « kT ) 
can be expressed concretely in the following manner: 

N _ w•noE" f S [ i5{:r) b (O)+D (0) D(:r} ] d (2.1) - ---vli' J P Po 2 cos roT T 
0 

w1n E 2 f 
= 4~T 0 Re J Da. (T) e1"''dTDa" (0), 

0 

where n0 is the equilibrium population difference of 
the A doublet, D is the operator of the dipole moment 
of the transition, and Eo is the amplitude of the ab­
sorbed monochromatic wave of frequency w. 

The change of the dipole moment under the influence 
of the Markov noise obeys the equations 

ab = i[HDJ- b-iJ 
dt To ' 

(2.2) 

"- r" f • sin t} 
D = J d<pJdM(t}, <p) ~, (2.3) 

0 0 

which can be readily derived by the same method as 
(1.2) and (1.3). However, by virtue of the obvious dif­
ference between these equations, we obtain in place of 
(1.4) 

dDa. • Da. 
-d.= Gpa Dp+-. 

t To 
(2.4) 

~ 

Since 0(00 ) = 0, the Fourier transform of (2.4), which 
is perfectly analogous to that just taken, gives a result 
similar to (1.9): 

~ 

S Da(t)eiootdt = Aa.pDp(O), (2.5) 
0 

where 
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Aa~=-ro{[lla~+ :
0 
(G~a'+iwlla~)-1r-1\a~}=B~a·. (2.6) 

Thus J. a general :elation exists between matrices A 
and B, namely A = B+. Substituting (2.5) and (2.6) in 
(2 .1) we obtain finally 

w2noEo2 W 2noEo2 (2 7) 
N = ~ReAa~,D~(O)Da'(O) = -;;;;rReBa~Da' (O)D~(O). · 

This general formula is the Markov analog of the cor­
responding result obtained in the impact approximation 
in [sJ. The difference between them reduces mainly to 
the different definition of the matrix A. Averaging over 
the Markov variables ( J and cp ) , denoted by the bar 
in (2.6), replaces the averaging over the impact 
parameters of the collision. 

Dispersion. Inasmuch as in our problem it is neces­
sary to deal with long-wave spectroscopy ( w << kT), 
we can describe the effect just as successfully by using 
the imaginary part of the susceptibility. This is some­
times even more convenient in that it makes it possible 
to describe more naturally and distinctly--in terms of 
dispersion theory-not only the resonance absorption 
but also the Debye losses in the low-frequency region. 

Using the definition of the susceptibility in terms of 
the absorption [sJ and the estimate of N obtained in 
(2.7), we get 

, 2N wn0 , {2 B) 
X = wEo2 = 2kTReBa~a (O)D~(O). • 

Taking into consideration the explicit form of (1.15), 
we get therefore 

x" :=::: 2:~ [Re Bu.u ( ]Du] 2 + ]D12] 2) + ReBu.22·2 ReD11 'D22 

+2ReB12,12 JD12 J']. (2.9) 

In the absorption of the electric component of the al­
ternating field at the A transition, only the off-diagonal 
elements of the moment are different from zero, 
namely D12 = Dil> while Du = D22 = 0. Therefore 

, _ wnoiD12! 2 R B _ wno]D12! 2 R ( ) {2.10) 
X - kT e 12,12- kT e c w , 

where c(w) is defined in (1.19). On the other hand, if 
we bear in mind the model problem of a spin-% parti­
cle in a random reorienting magnetic field of constant 
magnitude, then Du = D22 = I D12 1/ft = y /2, as is al­
ways the case in the absorption of the magnetic com­
ponent of the wave. However, even in this case, as can 
be readily verified by direct utilization of (1.15), we 
have 

" wnov2 [ 1 J 3wnoy2 
X= 2kT ZRn(Bu,u-Bu,22)+ReB12,12 =4kTRec(w). 

(2.11) 

Therefore, generalizing these results, we can express 
x" as a universal function of the dimensionless 
parameters z = 1/woTo and x = w/wo: 

"-A xz(z2+x'+'/s) 
X - 4z2('/3 - x')'+ x2(1 + z2- x')'' 

(2.12) 

in which the difference between (2.10) and (2.11) is 
reflected only by the difference in the form of the 
constant A, namely A = 2no I D12 ]2 /3kT in the first 
case and A = noY 2 /2kT in the second. 

3. TRANSFORMATION OF THE SPECTRUM BY 
PRESSURE 

It is of interest to investigate the form of the ab­
sorption spectrum in the limiting cases of small 
(z « 1) and large (z » 1) pressures. 

Rarefield gas. For small pressures, the simplified 
expression for x " ( x, z) assumes a particularly simple 
form for the frequency region close to resonance 
(x = 1) and close to zero frequency (x = 0 ). In the 
former case we obtain the usual Lorentz contour 

A 2/sz 
XL"(x,z)= 2 (tlx)2+(2/sz)2; 

z<%; 1, !lx = Jx -11<%; 1, 

and in the second case the Debye contour 
,, ~ A (2/ 3z) ·X 

XD (X, o) = 2 X 2 + ('fsz) 2 ; 

Z <%; 1, X<%; 1. 

(3 .1a) 

(3 .1b) 

On the whole, the picture of the distribution of intensi­
ties corresponds to a superposition of a Lorentz con­
tour and Debye contour (see the figure), both of which 
are characterized by the same relaxation rate %To. 
The coefficient % is due to the fact that one of the 
three spatial orientations of K is parallel to the 
generalized spin and is therefore ineffective: instead 
of precession, which ensures the diffusion, it causes 
only the rotation of the spin about its own axis. 

The unusual appearance of the Debye contour is ex­
plained as follows by the character of the process un­
der consideration. In the classical approximation, the 
absorption in A doubling can be visualized as absorp­
tion of an oscillating dipole (with frequency w0 ) 

directed along the vector K. The electric field eom­
ponent directed along K is absorbed by the dipole, if 
its frequency is close to Wo. The field components 
normal to K do not interact with the dipole oscillations 
and are absorbed only at frequencies close to the re­
ciprocal time of the orientation relaxation 1/70 • 

It is seen from (3.1a) and (3.1b) that x£ » X]D• as 
a result of which the maximum of the resonance curve 
goes off the figure. 

Dense gas. With increasing pressure, the maxima 
in the regions x ~ z and x ~ 1 become comparable in 
magnitude, and subsequently the absorption maximum 
goes over into the region of low frequencies. Expres­
sion (2.12) then reduces to the following: 

II ZX 
X =A(2/s)'+(xz) 2 ; z;J;>1, x<%;1, (3.2) 

which leads to a lengthening of the relaxation time 

Frequency dependence of the 
susceptibility at three different 
values of z. 
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( (% )W 2To r 1 and to a narrowing Of the line lOSS. 
This is precisely the limiting case described by 

perturbation theory when applied to a problem that is 
formally analogous to that considered by Gordon[ 71 . It 
must be borne in mind, however, that for A transitions 
the effect of narrowing can be masked by broadening 
due to the finite lifetime of the doublet (see above). 
Therefore, an investigation of the region of large pres­
sures should be carried out, generally speaking, with 
allowance for collisions that change both the orienta­
tion of K and its absolute magnitude. 
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