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Formulas for the differential cross section of elastic scattering are obtained in the approximation of 
two interacting terms and are used to analyze the scattering of He• by Ne. It is shown that the slope 
of the potential of the inelastic interaction at the point of term intersection can be obtained from the 
period of the oscillations of the inelastic cross section. 

1. INTRODUCTION 

THE differential cross section of inelastic atomic col­
lisions has been intensively investigated recently. The 
results of such investigations yield extensive informa­
tion on the electronic states of a two-particle system, 
and this information can be used to verify the theoreti­
cal predictions. By now, measurements have already 
been made of the differential cross section of elastic 
scattering of He+ by Ne and Ar in a wide range of 
energies from 10 to 600 eV[11• Starting with 30 eV for 
He• + Ar and 50 eV for He+ + Ne, regular oscillations 
have been observed on the smooth plot of the elastic­
scattering cross section. In the experiment with Ne, 
the amplitude of the oscillations is smaller than in the 
experiment with Ar. In both cases, they begin with a 
certain value of the reduced angle T = BE (6-scatter­
ing angle, E-c.m.s. energy). With increasing energy 
of the incident ions, the value of T first decreases 
slowly, but then rapidly assumes a constant value, 
which is definite for each system. The quasiclassical 
expression E6(p) can be expanded in powers of E-t, 
and the coefficients of the series depend only on the 
impact parameter p[2l: 

t """SE = to(p) + E-1tt(P) + o o o 

The interaction causing the transition differs from 
zero in a small vicinity of the point of intersection of 
the electronic terms, and its influence on the scatter­
ing is large if the particles pass through this region 
sufficiently slowly, i.e., in those cases when the clas­
sical turning point coincides with the level intersection 
point. At large energies T R: To and the impact 
parameter coincides, with the same accuracy, with the 
turning point. Therefore, if the oscillations begin at 
T = const, then it can be assumed that they are the 
result of the interaction of the electronic terms at the 
internuclear distance R0 R: p. 

In this paper, using the model of linear terms, we 
obtain an expression for the differential cross section 
of inelastic scattering and attempt to estimate from 
the period of the oscillations, the slope of the terms 
for He+ + Ne at the intersection point. It turns out 
here that a transition occurs from the ground state of 
He+ + Ne to an excited state whose electronic term 
corresponds to attraction at the intersection point. 

719 

2. SCATTERING MATRIX IN THE APPROXIMATION 
OF TWO STATES 

To calculate the transition probabilities in slow 
collisions of atoms and molecules, frequent use is 
made of the approximation of two molecular terms. 
The Schrodinger equation for the two-level problem is 

[ 
ft2 'aJl ] . -~!.IR+H (r,R) lj)=Eij), 

and its solution is sought in the form 

1 
lj)=cp!(r) ~ Rxu(R)Y1m(8,cp) 

l,m 

1 
+cpz(r) ~ R)(zl(R)Yzm(S,cp), 

l,m 

(1) 

(2) 

where rp t( r) and f/)2 ( r) are the wave functions of the 
electrons in the atoms, 1J. the reduced mass of the 
nuclei, and R the radius vector of their relative posi­
tion. The role of the nuclear wave functions is as­
sumed by x il ( R). They satisfy the system of two 
equations 

fi2" ( h2l(l+1)) 
-2 Xu (R)+ E-Hu- xu(R)=H12xzz(R), 

1-' 2!.1B' 

h2 " ( fz.2l(l+ 1)) -xzz (R)+ E-H22---- xzz(R)=HztXu(R)o 
21.1 2!.1B' 

(3) 

Far from the term intersection point, the system 
breaks up, and the motion of the nuclei becomes quasi­
classical in potentials H11(R) and H22(R). 

The region of the transition is assumed to be small, 
and therefore Hik(R) and WZ(R) = ti2l (l + 1 )/2J.J.R2 can 
be expanded in powers of x = R - Ro ( Ro is the point 
of intersection of the potentials Hu(R) and H22(R). In 
the expansions of Hii(R) and Wl (R) we retain the 
terms that are linear in x, and in the expansion of 
Hik(R) only the zeroth term. Then, within the region 
of transition, we have for the functions x il (R) the 
system of two equations 

where 

(4) 

E(l) = E --Hii(Ro)- Wz(Ro), 

{} 
Fi(l)=- oR(H;;+W.Jin~n., a=H1.(R0 )o (5) 
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The solution of the system (4) is made continuous 
with the quasiclassical solution outside the region of 
the transition, and is asymptotically continued to in­
finity, where the wave function of the system of the 
two nuclei can be written in the form of a column 

(6) 

where the first row is the wave function of the nuclei 
in the first channel (motion in potential Hu(R)), and 
the second row is the wave function of the nuclei at the 
second channel (motion in potential H22(R)). The con­
nection between the columns a and ~. describing the 
amplitudes of the converging and diverging waves, is 
determined by the S matrix 

(7) 

If the splitting between the adiabatic terms (-a) is 
small, then the system (4) can be solved by perturba­
tion theory. The scattering matrix sl obtained in this 
case is given by 

where 

Sd = q'ilb'~>ll>(- eb''•)exp[i(Llz1 + Ll?)], 

s:1,22 = (1- nb'l•/211>2(- eb''•)] exp (2ill~'2 ), 

E(l) (Ft-Fz) 
e= 2a(FtFz)'" ·; 

(8) 

b~1, 

cl>(- Eb213 )-Airy function, aJ'2 -quasiclassical scatter­
ing phases in the potentials Hu(R) and H22(R). 

In the case when perturbation theory is not applica­
ble, the S matrix can be obtained for E » 1 and 
-E » 1, i.e., for transitions for which the level inter­
section point is far from the turning points. The prob­
lem is solved by the method of Pokrovski1 and 
Khalatnikov[31. We present the results: 

When E » 1 ( b » 1 ), the S matrix takes the form 

Sll1 = [(1-e-2"11 )e-z;~ + e-2•0 ] exp (2iM- i6-2i6ln8e), (9) 

Szz1 = [(1- e-2"6)e+z;~ + e-2" 0] exp (2iM'+ i6 + 2illln8e), 

S1z1 = +i112P'I•(l) r-in 11 exp [i(M + M)], 

where P( l) = 2e-~'7T0 ( 1 - e-21TO ) is the Landau- Zener 
formula for the probability of a non-adiabatic transi­
tion, o = bE-112 /8, 

2 , n i f(1+ill} 
11 = -be·i·-6+6ln6+-+-In (9') 

3 4 2 f(1-i6) 

~ { 2/sbe''• + n/4 
2/sbe'" 

When - E » 1 ( b » 1 ) we get 

Su1 = exp[2i(Az' +31(6)]; S2i = exp[2i(M- nil)]; 

-y'2n6 [ 2 J 
S121 = i f( 1 - 6)6-0 e0 exp - 3 bJel''•+ i(M +M) 

{ i-y'2n6exp(-"/sblel''•+ i(M+M)) for 6~ 1 
~ 2isinn6exp(-2fablel''•+i(M+M)) for 6>1' 

(10) 

where 0 = ( Ys )b I tE r112 ( I Sd 12 gives the probability of 
the nonadiabatic transition, which coincides with the 
results of[ 41 ). 

3. DIFFERENTIAL INELASTIC-SCATTERING CROSS 
SECTION 

In this section, using the expressions for the S 
matrix, we obtain formulas for the differential inelas­
tic-scattering cross section. The inelastic-scattering 
amplitude equals[sJ 

1 
ftz(6)=-= ~ (2l+ 1)Pz(cose)Stz1• (11) 

2i-y'k,k2 1 

Inasmuch as the motion of the nuclei is considered in 
the quasiclassical approximation, we can change in (11) 
from summation to integration with respect to l, and 
replace Pz (cos 0) by its asymptotic form at l » 1. 

We consider first the case of strong splitting of the 
terms. For E >> 1, the off-diagonal element of s'L is 
given by (9). Substituting it in (11), we get 

(12) 

where 
QJ± = Llz1 +M± 6(l + 112) ± n /4. (13) 

The integral with respect to l is calculated by the 
saddle-point method. It is assumed here that the phase 
TJ is small compared with the quasiclassical phases az'2 • Therefore, for potentials that are repulsion 
fields, only to the last two exponentials will have a 
saddle point. The differential inelastic-scattering 
cross section equals 

da12 = ~ [ P(~~ (I +yz) I + P(~_} (l + __ 1/z) I (14) 
da kt2 I!J>--'111 1=1 1 IIP-+111 z=zrr 

-2 ( P(~~ (l +_lfz) )"' ( P(l~_{l +yz) )"' cos(Q-(lr)- Q+(trr))]. 
Jtp---TJI z=z, I!Jl-+111 z=z 11 

where Z1 and ln are the roots of the equations 
a cf2 dl-n 
dl(IP-±11)= rJ; rp· ~~· dl~'l'-: '1 =di2, 

and the function in the argument of the cosine is given 
by 

:rt i tp-±11 
Q±(l)=cp-+-+ -In.. .. ±11- (14') 

4 2 I!J>-±TJI 

Thus, da12/dO oscillates with a period -27r/[Sr(ll 
- n+ (ln)] between the envelopes 

da± = ~ [( P(l!. (l +yz) r ± ((l) (l +_1/z) )"' r. 
de k.• I!Jl--111 z=z, l<p-+TJI z=zrr (15) 

For an under the barrier transition ( - E » 1 ) , 
oscillations in the inelastic cross section will occur 
when o » 1 (see formula (10)). In this case, the ex­
pression for da 12/d0 is similar to (14), where the 
phase TJ will be replaced by 7TO and P( l ) will be re­
placed by the tunnel-transition probability PT( l) 
= 2 exp[-('Y:l}biEI 3 fi]. 

For small splitting of the adiabatic terms the off­
diagonal element of the S matrix is given by (8). This 
formula was obtained for all values of E, i.e., for all 
values of the kinetic energy at the intersection point. 

The amplitude of inelastic scattering in a repulsion 
field is 
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. -t- ... 
ftz(6) = ' ) dueiu'/3 ~ dl(l + 112)'1• b'l•(l) 

2l'2nktk2 sin a -00 0 

X exp{ i [ i\z1 + .v- a (l + 1/2)- :- ueb't•]}. (16) 

We have used here the definition of the Airy function 

1 .. 3 

11>(-x)=-) cos(~- ux)au. 
fit 0 3 

(17) 

We expand the integrand in (16) in powers of (l- l 0 ), 

where lo is the threshold value of the orbital angular 
momentum, defined by the condition 

E (lo) = E- Hii (Ro) -1i2(lo + 1/2) 2 I 2Jlll.o2 ~ 0. (18) 

We retain in the exponential the terms ~( l - lo )2 , and 
take the pre-exponential function at the point lo (the 
parameter of the expansion is ( l - lo/1 0 , which depends 
on the second integration variable u. The possibility 
of such an expansion will be justified in what follows.) 

After calculating the integral with respect to l, we 
obtain an expression for the differential inelastic­
scattering cross section in the form 

do~= 2n(l0 + 1/.). b'l•(lo) (19) 
d9 

where -1(9-ao)= J ~ ("+u)-'i•exp{i[~ + (y(a:~):vu)•J}auJ'. 
-oo 

(29) 

The parameters which enter in the integral are as 
follows: 9o = d(~z + ~~ )/dlo-threshold scattering 
angleu, 

"=~lilol (~)--''· (RoFt)''·( 1-x ) .... ,, Q-•, 
2 2Jl.Ro2 x (21) 

1 ( h.• )-'Ia ( 1-x )-'I• 
V =- -- (ReF,)'i•. -- Q-'1., 

2 2!1Ro2 \ x 

\1= (__!!:.__ )-'I•(RoF.)-'1• ( 1 - x )'''-yE- H(Ro)Q-'1• 
2Jlll.o2 x ' 

. d2 
ao = dlo• ( .iz' + i\z•)' Q= 16E-H(R0 ) 1+x 

3 RoFt X 
1. 

(22) 

A plot of the differential cross section, calculated in 
accordance with formula (19) for certain values of the 
parameters (see Sec. 4) is shown in Fig. 1. The oscil­
lations in the cross section, just as in the case of large 
splitting of the adiabatic terms, are due to the inter-

(. 

/000 zooo 3000 
t, eV-<Ieg 

FIG. 1. Differential cross section of scatter­
ing of He+ by Neat Elab = 400 eV and F2/F1 = 
0.14. The absolute scale is arbitrary. 

I l If the position of the threshold 8 0 decreases with increasing en· 
ergy, then d8 0 /dE < 0, from which it follows that d8 0 /dl0 = e0 < 0. 

ference of the amplitudes corresponding to scattering 
by two different potentials. 

4. ANALYSIS OF SCATTERING OF He+ BY Ne 

In experiments on scattering of He+ by Ne, there 
are observed regular oscillations of the inelastic dif­
ferential cross section. They begin with T ~ 1000 
eV-deg. The minimum amplitude of the oscillations 
differs from zero. With increasing energy of the He• 
ions, the period of the oscillations and the minimum 
amplitude decrease2 >. When T is in the interval from 
zero to 4000 eV-deg., the inelastic losses are small, 
so that it can be assumed that in this region of ener­
gies and angles only one inelastic channel is open, and 
the interaction between the adiabatic terms is weak. 
Then, using formula (19) for the differential inelastic­
scattering cross section, we can obtain certain infor­
mation concerning the interaction potential between the 
particles in the inelastic channel. 

From an analysis of the data on the elastic scatter­
ing of He+ by Ne, the following inelastic-interaction 
potential was obtained in[e] 

Hu(R)= ~2 exp(- ~) 

withparameters ~ =17.5 and c=0.68a, andtheposi­
tion of the intersection point Ro = 8.9a was obtained 
from the threshold value of T. Thus, we know the 
value of the potential at the intersection, H( Ro) 
~ 18 eV, and we can claculate F1 for all energies. 
Therefore, the free parameters, in the differential 
cross section (19) are x ( E ) , IBo I (E), and b( lo ). 

At Elab = 400 eV, for different values of x from 
0.9 to 0.1 and O<A :s 9, we obtained I(9- 90 ) curves 
in the region 1 o :s 9 - 9 o :S 10° 3 >. Figure 2 shows the 
dependence of T of the first period of the oscillations 
for different values of x. It is seen from this figure 
that the experimental period T ~ 2o (see footnote 2) 
is reached when x < 0.4. Inasmuch as the minimum 
amplitude of the experimentally observed oscillatione: 
does not vanish, the best value will apparently be 
x = 0.14, when the experimental period is reached at 
A ~ 7 .8. The ratio of the first maximum to the second 
is here ~1.05, and the ratio of the first maximum to 
the first minimum is ~2.9, whereas experiment yields 
values ~1.5 and ~1.8 respectively (see footnote2 > ). 

Since these ratios are determined mainly by the pre-

FIG. 2. First period of the . ~ ~ 1."~ oscillations of the inelastic cross ......._ ~ 
section (formula (19)) vs. the ~ -----
parameter A at different x = 2 ~ OJ4 

F2/F1 (scattering of He+ by Ne). --- a4 a3 
au 

2>F. T. Smith, Private Communication. 

3lSince we are working in the region f < 4,000 eV-deg, it is not 
necessary to calculate 1(8 -8 0 ) at large values of the angles (8- 80 ). 
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n. 

FIG. 3. First period of the 
oscillations of the inelastic cross 
section (formula (19)) vs. the 
parameter A at different en­
ergies (scattering of He+ by Ne). 

exponential function, which we have taken at the point lo 
when integrating with respect to l, such a discrepancy 
is not surprising. For x > 0.14, the experimental 
period is reached at smaller values of A, and the ratio 
of the maximum value of the amplitude to the minimum 
one will be larger. 

Since F 1 ~ 370 eV/a when Elab = 400 eV, we ob­
tain for x = 0.14 that F2 ~ 52 eV/a. But then it follows 
from the definition of F2 (see formula (5)) that 
dH22/dR0 ~ 280 eV /a. Thus, a transition takes place 
into an excited state, whose electronic term at the 
point of intersection corresponds to attraction. Know­
ing now dH22/dRo, we can find the value of F2 for dif­
ferent energies. For Elab = 400, 450, 500, and 600 eV 
we calculated the functions I(8 - e 0 ) in the region 1 o 

:s 8 - 80 :s 10° at 0 <A :s 9. 41 The dependence of the first 
period of the osc:lllations on A for different values of 
Elab is shown in Fig. 3. It is seen from the figure that 
with increasing energy the value of A at which the ex­
perimental period is obtained decreases. Therefore, 
the ratio of the maximum to the minimum should in­
crease with increasing energy. 

Thus, the qualitative change of the amplitudes and) 
of the period of the oscillations as a function of the 
energy is obtained in this model sufficiently well. As 
to quantitative results, there are many circumstances 
which can cause errors and an associated discrepancy 

4lThe integral in the function 1(8- 80 ) is calculated by the saddle­
point method in that region of A, where the equation for the determina­
tion of the saddle point has two real roots. Knowing Ueff, we can ca 1-
culate the parameter of the expansion with respect to I. For Flab= 
400,450, and 500 eV we have (1-10 )/10 ""' 10-2 . At Elab = 600 eV, this 
parameter becomes equal to 10-1 , but such an increase of (I - 10 )/10 is 
apparently connected with the fact that the accuracy with which Ueff 
is determined at A < I is worse than in the preceding cases, since the 
saddle points come closer together with decreasing A. Nonetheless, 
even at 600 eV energy, the expansion in I in formula (16) can be 
regarded as justified. 

between the theoretical and experimental curves for 
the differential cross section. First, the uncertainty 
in the value of the parameters of the elastic potential 
and in the position of the point of intersection of the 
terms R0 • (An analysis of the differential cross sec­
tion with the aid of formula (19) at an arbitrary choice 
of the potential would lead to a problem with a large 
number of free parameters). Second, the approximations 
made in the calculation of the function I ( 8 - 8 o) (the 
accuracy of the saddle-point method is not better than 
10% in the angle region under consideration, and the 
error in the calculation of the period is apparently 
smaller than in the calculation of the absolute values 
of the function I ( e - eo)). At large values of the re­
duced angle T =BE, the differential cross section of 
the inelastic scattering increases. This can be the 
result of the fact that a new inelastic channel is opened, 
the influence of which on the scattering in the channel 
under consideration is disregarded. Nonetheless, when 
T :s 4000 eV-deg, formula (19) apparently describes the 
experiment satisfactorily, and its analysis can serve 
as a source of information concerning the inelastic­
potential parameters. 

In conclusion, the author is sincerely grateful to 
E. E. Nikitin for suggesting the topic and continuous 
interest in the work, and M. Ya. Ovchinnikova for 
numerous useful discussions. 
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