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The paper presents the results of analyzing the parameters of pulses generated by a laser in a sta
tionary mode -locking regime achieved by resonance modulation of the transparency of one of the 
mirrors (at a frequency equal to the frequency difference of the neighboring axial resonator modes). 
It is shown that in the absence of dispersion (infinite gain bandwidth and infinite number of equidistant 
resonator modes) the pulse has a finite length. The pulse shape is close to a triangle with a vertical 
leading edge. 

AMONG the most promising methods of producing 
short light pulses of record intensity is the so-called 
method of capture (mode -locking) of the axial modes of 
the laser resonator. Mode locking is accomplished 
either by resonance variation of the laser parameters 
or by self -synchronization due to various nonlinear 
effects. Theoreti<:al and experimental investigation of 
this phenomenon show that a suitable choice of laser 
parameters can make the length Tp of the emitted pulses 
significantly shorter than the travel time T .R of light 
through the laser resonator so that the fielCI in the 
resonator takes up at any time only a small portion 
(T p/T p « 1) of the cavity. Under these conditions the 
processes occurring in the laser can be more ade
quately described by the space-timel1-31 approach than 
by the spectrall4- 181 approach, since in the latter case a 
large number of modes must be considered to describe 
the behavior of a small "bunch" of the field in the 
resonator. As it was noted inl31 the space-time ap
proach represents the generation of a periodic pulse 
sequence as the result of a periodic emission and the 
subsequent amplification of one or several pulses that 
"travel" in the resonator. Consequently some results 
obtained in the study of short-pulse amplification in 
active media can be applied to the investigation of the 
generation process. 

In the present paper this method is used to find the 
parameters of pulses generated by a laser in a station
ary regime with resonance loss modulation. In the 
analysis it is assumed that the gain of the active med
ium is independent of frequency and there is no disper
sive washout of the pulse in the medium filling the 
resonator. Under these conditions the pulse length is 
obviously minimal and the remaining parameters as
sume limiting values. The assumption of an unlimited 
gain bandwidth significantly simplifies the analysis since 
it permits us to use rate equations to describe the inter
action between the field and matter. 

1. BASIC RELATIONS IN A TRAVELING-WAVE LASER 

The model of a traveling-wave laser given in Fig. 1 
yields the sought answer in the simplest manner. 
Resonator losses are varied by changing the reflection 
coefficient of one or several mirrors. We assume that 

the reflection coefficient of all mirrors referred to a 
single mirror equals p(t). The initial equations have the 
following form. 

The equation for field intensity m in the resonator is 
om om 
Tt + v oz = Bmn, 

{1) 

where t and z are the time and coordinate, v is pulse 
velocity, and B is the Einstein coefficient. Attenuation 
in the medium is neglected and it is assumed that the 
basic losses are due to the departure of p{t) from unity. 

The equation describing the variation of population 
difference n when the pulse passes through point z under 
consideration is 

on I ot = -Bmn. (2) 

The effect of pumping and population relaxation during 
this time is neglected. 

The equation for the population difference when there 
is no pulse (during the excitation of the material) is 

on lot= -(n- no) IT,, {3) 

where T1 is the effective relaxation time of the mater
ial (Tl » Tp) and no is the stationary value of population 
difference at zero-field in the resonator. 

A separate analysis of (2) and (3) is obviously possi
ble only when the pulse length Tp is significantly shorter 
than the travel time of the pulse through the resonator. 
This condition is assumed, as noted above. 

The solution of the system {1) and (2), provided that 
the quantity n1{z) (the value of n at point z at the instant 
before the pulse passes through this point) is given, can 
be readily obtained (see[191 for example): 

t, 

n(z,t+•,) = n!(z)/(1 +K,(z) {exp[ B ~ m1,(t' +•1)dt'] -1}), (4) 
... 

t, 

Xexp[ -B~ m1,(t'+•1)dt']), 
IH 

(5) 

FIG. I. Model of a traveling
wave laser p•p(~:k-j _b ___ -_z _1_' ~ 
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where ti is the time of appearance of the pulse at the 
left mirror p(t) (Fig. 1) at z = 0, T1 is the travel time of 
the pulse between points z = 0 and z = l1, t1 = t- z/v, 
mz/t) is the pulse envelope at the entry to the active 
material, and 

B z 
K1 (z) = exr:[--,; ~ n1 (z')dz' J 

!, 

is the gain of the initial section of the pulse (weak-sig
nal gain). 

Equations (4) and (5) are used to relate the values of 
n(z) before (n1(z)) and after (n2(z)) the pulse: 

tj+T p 

n2(z)=n,(z)/(1+K1 (z){exp[B ~ m1,(t'+-r1)dt]-1}J, (6) 
li 

and the values of light intensities at the input 
(m = mz1(t)) and output (m = mz}t)) of the amplifying 
medium 

mt,(l+Tt+T)=m1,(t+Ti) /( 1-(1-G 1 ) 

t 

Xcxp{-B~ m1,(t'+,;t)dt}), 
lj 

(7) 

where T = Z/v is the travel time of the pulse through the 
active sector, and G = K1! z = z2 • 

Considering that the pulse shape does not change in 
the remaining portion of the resonator (a medium 
without dispersion) but that only its time lag increases 
up to the value of the total travel time T p through the 
resonator and that pulse intensity drops off at the mir
ror with the effective reflection coefficient p(t + Tp), we 
can write an integral equation for the envelope of a 
stationary pulse in the form 

( t.l ) mo(t)p(t+Tp) 
mo 'TP = 1-(1-G-')~(t)' 

(8) 

whe<e ~(t) = exp tB L m,(t')dt] and m,(t) ;, the envelope 

of the pulse reflected by the left -hand mirror p(t) 
(Fig. 1). Equation (8) is satisfied by solutions 

mu(t) = 0; 

mo(t + 1p) = mo(l), 1 = -- __:_p_:_(t_+'-----Tp:c_) __ 
1-- (1- G-1) ~(t) 

(9a) 

(9b) 

It is clear that (9b) are simultaneous equations provided 
that p(t) is a periodic function with a period of Tp = Tp/n, 
where n is an integer, and that 1J 

1 d [ 1- p (t + Tp) J p' (t + Tp) (10) 
mo(t)=-Bdt In 1-G-1 =B[i-p(t+Tp)]" 

At first we consider that n = 1, i.e., Tp = Tp· From (9b) 
we see that mo(t) f 0 (J3(t) < 1) only when 

F(t) = 1- P(_t)_ < 1. 
1-G-1 

The pulse begins at time ti determined from the condi
tion 

!)It follows from (10) that when the maximum value of Pmax(+) = 
p 0 tends to unity the field intensity in the resonator tends to infinity, 
while the field intensity in the output pulse m0 ut (t) = (l-p(t))m0 (t)/p(t) 
remains finite. 

F(ti) = ~ (tiJ = 1 or p (ti) G = 1. (11) 

The pulse ends at time tr determined by the relation 

p' (t>J•~•r = 0 (12) 

provided that p(t) has a maximum2J at t = tf. 
Consequently the pulse envelope (see (10)) is com

pletely determined by the form of the function p(t) 
within a time interval ti < t :s tf. To determine ti and 
consequently the pulse shape we must find gain G ex
pressed by an integral of n1(z). One relation between 
n1(z) and n2(z) is given by (6). Another is found from the 
solution of (3) for an initial distribution of population 
difference n2(z). The corresponding relation has the 
form 

w ( ) no-n, (z)=[n 0 -n2 (z)]e-", 13 

where n?l(z) is the population difference at the end of 
the excitation stage and J.J. = T piT 1· Substituting n2(z) 
found from (13) into (6) and assuming that n11l(z) = n1(z) 
we obtain an integral equation for n1(z) 

n1e"- n0 (e" -1) = n, , ~ = B(ti + Tp), (14) 
1 +(~-1-1)K1 (z) 

which is reduced to the differential equation by the sub
stitution n1 = vKi/BK1: 

Kt' Bn0 K,' 
-e"--(e"-1)=~-.c.----. (15) 
K, v K, [1 + (B-:-1 - 1)K,] 

Solution of (15) for K1! z = z1 = 1 has the form 

I Bn. -- - (16) 
(e"-1) lnK,--"z) = -ln{B(1 +{B-1 -1)K1]}. 

v . 

It follows from (16) that 

( G )e"-1 
l}(o- ={B[1+(~-'-1)G]}-•, 

Another relation between G and /3 is found from (9b) at 
t = tf 

- 1-po 
B=1-G-1' Po=p(tc)· 

(18) 

We find from (17) and (18) 

(19) 

The parameter J.J. is usually small and therefore (19) 
can be approximated in the form 

Gpo ;::::: 1 + It In (KoPo). (20) 

The obtained relations (10), (11), (12), and (19) permit 
us to determine both the length and the shape of the pulse 
in the limiting case under consideration where any dis
persian is neglected. The pulse length found from (11) 
and (12) taking into account the small value of J.J. is equal 
to3 J 

{ Po }'/, 
l'p= -2~t-;;-ln(Kopo) , 

Po 
(21) 

where p; is the second derivative of the function p(t) at 

2) If the function p (t) has an inflexion point with p '(t)lt = t" = 0 at 
t = tf, then m 0 (t) turns to zero at this point beyond which the field 
again increases. 

3) In (21) it is assumed that Po"* 0. When Po"= 0 and p 0 "" 'i= 0 the 
expression for T p is written as 

Tp = { -24~t ~ ln(Kopo) }''•. 
po"" 
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p:p(t) p, 

FIG. 2. Model of a two-mirror 
laser. 

t = i:f. The energy in the emitted pulse is determined by 
integrating mo(t): 

tj+Tj 

1-po r v 
W=vhv-- J m0 (t)dt=!'hvBJn(KoPo). 

Po t; 
(22) 

A more detailed discussion of results4 > is given below 
after an examination of the mode locking process in the 
"conventional" (two-mirror) laser. 

2. BASIC RELATIONSHIPS IN A TWO-MIRROR LASER 

The results obtained above are now generalized to 
include the case of a two-mirror laser (Fig. 2) in which 
the pulse passes through the active material in both 
directions. To make the case more definite we consider 
the reflection coefficient of the left mirror p(t) variable 
and the reflection coefficient of the right mirror con
stant. The z coordinate is measured from the left mir
ror, and the active region of length l is located anywhere 
in the resonator whose total length is L. Let the coor
dinate of the left end face of the active element be h and 
that of the right end face la; then la -lt = l. The light 
intensity values at z = 0 and z = L in the forward 
(m = m <+>(t)) and backward (m = m <->(t)) pulses are 
related as before by (7) 5 >; the forward wave gain should 
be used in the expression for the forward wave 

[ B lo J 
G+ = exp -;;- ~ nl"1-o (z')dz' , 

z, 

and the backward wave gain in that of the backward wave 

~~ -
G- = exp [- ~ ) n\--'l (z')dz' J. 

z, 

When z = 0 

m~+> (t) = p(t)m~-> (t), (23a) 

and when z = L 

(23b) 

For the sake of simplicity we introduce the notation 
t 

~+(t) = exp [ -B ~ m~-1') (i')dt1J , 
t; 

t . 

~-(t) = exp [ -B ~ mt> (t' + Tu/2)dt1J 
I; 

(24) 

Considering the above discussion we can write the fol
lowing equations for the functions 13+(t) and 13-(t) provided 
that p(t) = p(t + Tp): 

~ I ~I 
_:1:_[1-(1-G--1)~-l = p(t) ~, 
~+ ~-

ILl ~+' 
-;-[1-(1- G+-1)~+1 = p,-. 
f•- ~+ 

(25) 

4lRelations (10), (I 1), (12), and (20) and their preliminary analysis 
are given in a brief communication [ 3 ]. 

SlThe effects due to the superimposition of the forward and back
ward pulses in the active region are neglected. These effects vanish al
together when 11 /v and (L -/2 )/v > T p/2. 

The solutions of (2 5) are 

[1- (1- G+-1) ll+H1- (1- G_-1) ~-1 = p1p(t}, 

~~- = [G+-(::-1)fl+r <26) 

According to (24) the beginning of the pulse (t = ti) 
corresponds to the values 13+(ti) = 1 and 13-(ti) = 1; using 
(26) to determine the beginning of the pulse ti we obtain 

G+-IG_-I = PIP(t;). 

The pulse ends at time tf corresponding to the minimum 

value of the functions 13Jt) and 13-(t) and, according to 
(26), to the maximum value of the function p{t). 

Thus (26) and (24) completely determine the shape of 
the pulse at z = 0 and z = L within the time interval 
ti < t :s tf in terms of gains G+ = K.{z)\ z = z2 and 
G_ = K_(z)\ z = z~· 

The gain equations 

K;.(z) = exp [ ~ ~ ni+> (z 1 )dz']. 
z, 

[ Bs z (-) I '] K_(z)=exp ----;; n1 (z)dz 
z, 

can be obtained in a manner similar to that employed in 
the case of a traveling-wave laser by using (6) and {3); 
the latter is now integrated within time limits from the 
passage of the pulse through point z in one direction to 
the passage through the same point in the opposite 
direction. As a result we write the following equations 

K±' B -
- = ±-no[1+(~±-1 -1)K±l 
K± v 

(27) 

XI e~-1+(1l+-1-1)K+e41•·•(e41"'-1) 
[1 +(ll+-1-1)K+][1 +(fl--1 -i)K-]e~ -1 

where 

( T2 T/,z-z) 
11>2 = 21' -+--,.--. ' 

Tp Tp ... - 1,1 

and T1 is the travel time of the pulse between the points 
z = 0 and z = h, Ta is the travel time of the pulse be
tween the points z = la and z = L, T is travel timE! of the 
pulse along the active region, J.J. = T piT 1, and 
Tp = 2(T + T1 + Ta). Equations (27) are exact within the 
limitations stated above and can be used for the numer
ical solutions by computers. The analytic solution of 
(27) however is generally difficult. On the other hand it 
was noted above that the value of J.J. is usually small. 
We consider J.J. small and find an approximate solution 
of (27) retaining only terms of the order not excE!eding 
J.J.. Assuming that 

K± = K~> +!'Kin, !l±(t) = 1 +I'll~> (t), {28) 

(t- tr) 2 

p(t)=po+Po" 2 , 

po" = p"(tr), 

we find from (26) and (27) that 
(0) (0) (O) (O) 

K+ (z)K- (z) = G+ = G_ = (PoPt)-'1•, 

-<1> -;;-(1) ln[Ko(G.)">c~<ll)_''•l 
~+ + !l- =- (G<0>G<0>)'" -1 . 

+ -

(29) 
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The equations for the determination of the function {3;1>(t) 
are found from (26) and written in the form -

W[~~l (t) Wfl- 1 )+ ~~1\t) (G~0J- 1)+ p0pi(G_fl G(IJ 

+G(OJG<Il)J+ " G(O)do) (t-tr)2 -0 - + Po P1 + - 2 - , 

~_(IJ (t) = p 1G_fl~~J (t). 

We find the pulse shape from (24) and (30) 

m~+J (t) =-~ J.t~l'l' (t) = _1:_ p,'hpo" (t- tc) 
B B po'i•(1-p!)+r,'1•(1-po)' 

(30) 

ti < t ~ tc, 

mt>( t +~)= -~J.t~(IY(t)= ~-p.;-Y'p,po"(t-t~ • 
2 B Bpo'h(1-p,)+p,'i•(1-po) 

m~+>(t)=O, mt>(t+ i)=o for tc-~p~t<ti. 

(31) 

Using (30) and taking (29) into account we make the 
substitution t = ti and tf - ti = T p and obtain an expres
sion for the pulse length: 

Tp={ -2~-t Po" In[K0 (p0p1)'h]f. {32) 

Equations (31) determine a triangular pulse with a verti
calleading edge at t = ti. The pulse length is propor
tional to J.J. 112 and is the same for pulses traveling in the 
+ z and -z directions. 

The energy emitted by the laser per cycle, i.e. the 
energy w<-J in a pulse emitted through mirror p{t) plus 
energy w<•J in a pulse emitted through mirror P1 can be 
determined by integrating mJ•>(t) and mt>{t). Retaining 
only terms not exceeding the order of J.J. we find 

1- ti+Tp 
H+>+ lV(+J = vhv [--P_o ~ m~+J (t)dt 

Po , . 
ti+'Tp 1 

+ 1 - Pt ~ mt;_> ( t + :""_) dt J = ~-thv _'J__ In [Ko(p0p1) '!']. (33) 
Pt 'i 2 . B 

3. DISCUSSION OF RESULTS AND NUMERICAL 
COMPUTATIONS 

The above equations show that in a small J.J. approxi
mat ion there is no significant difference in the mode
locking process between the ordinary laser and the 
traveling-wave laser. Indeed, (21) and (32) defining 
pulse length and (22) and (33) defining the total emitted 
energy differ only in the form of the argument under 
the logarithmic sign: Kapo and Ka(pap1) 112 respectively. 
However these quantities coincide in lasers with the 
same intensity of excitation of the active material (the 
same value of Ko) and the same pump threshold value 
((pa)tw = (papl)t/:d) and consequently the lengths and 
total energies of the pulses also coincide. The pulse 
shape is also the same in both cases, representing a 
triangle with a steep leading edge. We see from (10) 
that the pulse shape is different only when the expres
sion 

p(ti) =r>o+Po"(ti-tr) 2 /2 

is essentially invalid. Using (9b) and (19) we can find 
the required law of variation of p(t) from a given pulse 
shape. We note however that when Tp << Tp pulse shapes 

that differ from the triangular can be obtained only with 
nonsinusoidal loss modulation. 

In the case of the traveling wave laser the above 
computations can be readily shown valid also for 
Tp = nTp if J.J. is interpreted as J.J.new = Tp/T1 = 11/n in 

the corresponding equations. The pulse length is shor
tened here (in comparsion to the T p = T p regime) n 112 

times and the energy per pulse is increased n times. 
When T p = nT p pulses of other periodicity (multiples of 
T p), such as pulses with the period T P' can also be 
generated. The problem of stability of any particular 
regime calls for a special analysis. 

Incidentally we note that in the investigation of the 
corresponding system of equations we did not consider 
the known unstable solutions. These include the trivial 
solution ma{t) = 0 for example that is unstable when 
Kapo > 1. The equations are also satisfied by a solution 
that coincides over a portion of the interval (for exam
ple in the region t1 < t ~ tf, where ti < t1 ~ tf) with the 
function mo{t) determined by (10), turns to infinity at 
t = t1 (as o(t - t1)) with the energy 

t, 

.\ mo(l)dt 

'i 
and is equal to zero at all other times. One of the un
stable solutions, o(t -b) at t1 = tf with the energy 

'r 
~ ma(t)dt, 

is obtained in the case of exact phase-locking of the 
laser modes without dispersion. We readily find that in 
all these cases the effective gain p{t)K{L, t) is larger 
than unity in the interval ti < t < t1 and consequently in 
real systems such a solution is transformed into a sta
ble solution because of spontaneous emission or even a 
small dispersion. 

A significant feature of all pulses (regardless of the 
form of p{t)) is the vertical leading edge. This is due to 
the fact that the quantity p{t)K{L, t) is less than unity at 
t < ti and in the absence of dispersion for any initial 
distribution the field, beginning with some time instant, 
damps out at t < ti and tends to zero. When t > ti in the 
absence of a pulse the quantity p{t)K{L, t) > 1; conse
quently with weak initial pulses the field grows until the 
quantity p{t)K{L, t) turns into unity due to the gain 
saturation effect. These two processes cause a jump in 
the field at t = ti. The finite value of the jump is due to 
the fact that p(ti)K(L, t) = 1. 

If the stationary pulse began at time b such that 
p(tl)K{L, t1) > 1 the field intensity at the leading edge 
would be infinite as was noted above. 

Numerical computation for a traveling wave laser as 
performed in l31 for the function 

p ( t) = Po ( 1 - a cos 211 t )/ ( 1 + a) , 
~p 

showed that for the solid state laser (with Kapa = 3, 

(34) 

Tp = 10-8 sec, and T1 = 10-3 sec) the pulse length T~0 · 5 l 
measured at 0.5 of the maximum intensity equals 
0.5 x 10-11 sec for a= 1 and 10-11 sec for a= 0.2. For 
a gas laser (with KaPo = 1.05, Tp = 10-8 sec, and T1 
= 10-7 sec) the pulse length measured at the same level 
equals 10-10 sec for a = 1 and 2 X 10-10 sec for a = 0.2. 
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FIG. 3. Graphs of the function p(t) and the corresponding shapes 
of output pulses from a traveling-wave laser for K 0 p0 = 1.05, Tp = 10-11 
sec, and T1 = I o-7 sec. Pulse lengths are determined by (21) or (21 ').Dashed 
lines are envelopes plotted from the formula Tpp'(t)/21Tp(t). The output 
pulses of a traveling-wave laser for K 0 p0 = 3; Tp = I o-s sec, and T1 = I 0-3 

sec are drawn to a larger scale. 

These computations remain valid for the ordinary laser 
if ( ) 1/2 -

PoPl ord - Potw· 
To illustrate the effect of the form of the function 

p(t) on pulse parameters we consider the function 

p(t)= Po [ 1- Sa ,(9cos 2" t-cos 6" t J]/ (1 +a), 
Tp Tp 

(35) 

for which p~ = 0. It is easily shown that with the same 
laser parameters the pulse length T~0 • 5 > at the 0.5 level 
is in the above case five times longer at a = 1 and four 
times longer at a = 0.2 in a solid state laser. In a gas 
laser the pulse length remains approximately the same. 
This example shows that flattening of the curve p(t) 
near the maximum can result in a considerable 
lengthening of the pulse and a corresponding decrease 
of power in the pulse. 

Figure 3 shows the shapes of output pulses 

mout 
1-p(t) 

p(t) mo(t), 

obtained from expressions for the traveling-wave laser 
with reflection coefficients p{t) determined by (34) 
(curves a) and (3 5) (curves b). 

We note that the pulse shape can be significantly 
changed by a very slight change in the quantity that de
termines modulation, for example in the case of a small 

increase in voltage at the electro -optical shutter, pro
ducing a weak over-modulation condition. 

In conclusion we again note that the above results are 
obtained without taking dispersion in the elements and 
material of the laser into account. However when the 
length of the pulse obtained in this manner is signifi
cantly larger than the reciprocal width of the corre
sponding band (the gain bandwidth of the active medium 
for example) the finite value of the latter will merely 
cause a slight deformation of the leading edge of the 
pulse and a smoothing of its trailing edge. 
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