
SOVIET PHYSICS JETP VOLUME 28, NUMBER 4 APRIL, 1969 

GENERALLY COVARIANT QUANTIZATION OF GRAVITATION AND COSMOLOGY 

B. L. AL'TSHULER 

Submitted February 22, 1968 

Zh. Eksp. Teor. Fiz. 55, 1311-1320 (October, 1968) 

A method is proposed for a generally covariant quantization of gravitation similar to the quantization 
of "ordinary" fields in an external field gik(x). The metric of the Riemann quantization space is 
defined as the average of the Heisenberg operator for the gravitation field taken over the ground state 
of the system of interacting quantized fields and satisfies the Einstein equations. A natural definition 
of the covariant Green's function for the gravitational field is given. The possibility of spontaneous 
breaking of the group of general transformations of coordinates is considered in analogy with corre
sponding models of quantum field theory and it is shown that such an approach is equivalent to the 
condition that all the particles are compound (i.e., to the bootstrap condition). In this case a zero
mass tensor particle (graviton) must exist which is a bound state of other particles. The homogene
ous Bethe-Salpeter equation for the vertex of a scalar meson (of mass m) and a graviton is solved on 
the assumption of a purely gravitational interaction between mesons in the long wavelength region. 
The graviton mass p (introduced for the removal of infrared divergences) is expressed in terms of 
m and k (k is the gravitational constant) on the basis of the condition of a correct classical limit for 
the meson-graviton vertex. For m = mp (mp is the proton mass) this yields 1/p R> 1027 em, which is 
approximately equal to the radius of curvature of the universe in a real cosmology. 

1. THE GREEN'S FUNCTION FOR THE GRAVITA
TIONAL FIELD AND FOR THE QUANTIZATION OF 
GRAVITATION 

lNr1' 2 J, a covariant formulation of the Mach principle 
was proposed based on writing the Einstein equations in 
integral form (without a free term). In this connection 
a covariant Green's function Gft(x, y) was utilized which 

is a two-point tensor in Riemann space with the metric 
gik and is defined by the equation 

..,. 1 ~<•>(x- Y) 
ElhmnGmn"'P(x, Y) = 2(g;a.g,.P + gha.giP) l'- g • (1) 

where the differential operator E.x~m must satisfy the 
condition 1 

(2) 

In l2 J, a beautiful but a nonunique method for deter

mining 'Ei~n was proposed based on the procedure of 
linearization of the Riemann tensor. In llJ a number of 
restrictions on Eq. (1) was obtained starting from the 
correspondence of the integral form of Einstein equa
tions to the physical Mach principle, but these restric
tions also do not define the differential operator 
uniquely. In this paper we give a natural definition of 
the operator 'E:n as a second variational derivative 
with respect to the metric of the action of the gravita
tional field 

S = 2:. S Rl'- gd•x; (3) 

where x = v'81Tk, k is the gravitational constant (the sys
tem of units is adopted in which h = c = 1). 

We perform a small variation of the metric 

(4) 

with the usual subsidiary conditions 

ci (h) == (h;"- 1/2gl"hnn) ;h = 0. (5) 

The first variation of S gives, as is well knownl3 J, 

- 11<1)[2x:iSJ = S h;"(R,.;- 1/2g,.iR)l'- gd•x. (6) 

Varying (6) taking (5) into account we define E.~n by the 
relation 1 

S hlh<'I[(Rhi- 1/2gl<iR)l'-g]d4x== S hii<Elhmnhmn"f-gd•x, (7) 

whence it follows that 

E;hmn = _ 1/z(g;mghn- 1/2/Jihgmn) 0 
-R':.:. + i/2(gihRmn + gmnR;h)- tj.g;hgmnR, 

Here 0 is the covariant D' Alembertian operator. 

(8) 

The fact that in (7) one should take the variation of 
the mixed components of the left side of the Einstein 
equations is uniquely determined by condition (2). The 
differential operator (8) is symmetric with respect to an 
interchange of the pairs of indices (ik), (mn), and this 
guarantees the fact that equation (1) is self-conjugate. 

The use of the retarded Green's function enables us 
to represent any solution of the Einstein equations in the 
form 

g;k(x) = aih(x)+ x2 S G<ret>:'2(x, Y) Ta.p(y)"f- g(y)d'y, (9) 

where aik(x) satisfies the homogeneous equation 
.... 
E'J':amn(x)= 0. (10) 

Indeed, according to (1), (2) and (10) the application 
to (9) of the operator E\~n gives the Einstein equations 

for the metric gik· It is evident that for Tik = 0 the 
tensor aik(x) is a solution of the Einstein equations 
in vacuo. It is shown in[lJ with a rotating cylinder as an 
example that the class of solutions of the Einstein equa
tions satisfying (9) with aik = 0 corresponds to the phys
ical Mach principle only in the case E{{tn contains the 

Riemann tensor with a definite (with respect to the term 
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involving the D' Alembertian) coefficient. It is essential 
that the procedure proposed in this paper for obtaining 
the equations for the Green's function gives a result 
which is automatieally correct from the point of view of 
the Mach principle. We note that the difference between 
the Green's function defined according to (1), (8) and the 
Green's function ofllJ does not change the results ofl 11 

for the examples discussed there, although the specific 
form of the equations in the case of the Friedmann model 
will be different. 

The Green's function introduced above goes over in 
the limiting case of the Minkowski metric into the ordin
ary Green's function for a free graviton l41 in the gauge 
(5) and can serve as a basis for quantizing weak gravi
tational waves in an arbitrary Riemann space. However, 
according to (9) it is a propagation function not only for 
weak perturbations, but for the metric as a whole. This 
enables us to postulate the following procedure for 
quantizing gravitation. We introduce formally the 
Heisenberg operator for the gravitational field bik(x) 
which satisfies the equation 

(11) 

where Tik is the Heisenberg operator for the energy
momentum tensor the form of which we do not specify 
further; the differential operator E'lrn (cf., (8)) is de
fined in a Riemann space with the metric 

g;k(x) == (Oib,.(x) IO)x, (12) 

Here the averaging is taken over the ground state of 
the system of interacting quantized fields. 

The space with the metric (12) is, generally speaking, 
not flat and not even topologically equvialent to a flat 
space. In this sense the approach proposed above dif
fers essentially from the method of quantizing the gravi
tational field as a field of particles of spin 2 in a flat 
space ls,sJ . Recently a generally covariant quantization 
of gravitation was proposed in a Riemann base spacel7 J. 
It is necessary to note that the differential operator 
Fmn introduced in this paper which is an analog of E&m 

does not satisfy condition (2). 
From (2), (11), (12) it follows that for gik the Ein

stein equations hold with the right hand side given by 

(13) 

If we demand that the covariant divergence of the 
operator fik should vanish, then from (11) it follows 
that (the vector Ci is defined in (5)) 

- 1/2 DC; (b)+ 1/2bkn (R;n; k- 1/2ginR;k) (14) 

+ 1/2b~kn ;iRkn -- 1/zb; ~kRnk + 1/,bnn;kRik- 1/,b::;;R = 0. 

From this it can be seen that the subsidiary condition 
imposed on the allowable state vectors: 

(15) 

is compatible with (11) only in the case of an empty 
base space. But if (OITik(x)IO) f 0 (i.e., Rik f 0), then 
condition (15) cannot be imposed, and this means that 
longitudinal gravitons must be observable in the non
empty regions of the base space. The reality of the 
longitudinal components of the gauge field is character
istic of models of quantum field theory in which the 
ground state is not invariant with respect to the gauge 

groupl8 J. A well known example are the plasma excita
tions in a superconductor which are formally indistin
guishable from longitudinal photons lsJ. The analogy indi
cated above requires further development within the 
framework of some specific model. 

We can introduce the operator for the free gravita
tional field aik(x) which satisfies the condition: 

<Oid,.iO> = o (16) 

and the linear homogeneous equation 

(17) 

The set of linearly independent solutions of this equa
tion specifies the spectrum of free gravitons in an ex
ternal gravitational field gik(x). 

The matrix elements of the operators can be repre
sented in an explicitly generally covariant form. For 
example, the matrix element of the operator for the 
energy-momentum tensor between single graviton 
states is given by 

<vd 1\,(x) lv•> =) a~~> (y)a~•;> (z) (18) 

X r~~pq (x, y, z)y- g(y)y- g(z)d'yd'z. 

Here the index "y" enumerates the solutions of equa
tion (17) and in flat space denotes the polarization and 
the momentum of the graviton, a(Yal{z), a(yJ)(y) are 

pq a~' 

suitably normalized positive and negative frequency 
solutions of (17), i.e., wave functions of the gravitons in 
the states IYa), IYl>· rfr!Pq(x, y, z) is a three-graviton 

vertex which is a three-point tensor. The correspon
dence between its indices and arguments is clear from 
(18). 

The free causal Green's function for a graviton, as 
well as the retarded one, is defined by Eqs. (1) and (8). 
If the form of the perturbation is given, then the use in 
Feynman diagrams of covariant causal Green's func
tions for internal graviton lines and for internal lines of 
other fields gives a generally covariant perturbation 
theory for the S -matrix. In this case the coefficient 
functions in the expansion of the S -matrix in terms of 
the free in-fields are covariant multipoint quantities in 
a Riemann space with metric gik(x) which transform 
with respect to each argument in accordance with the 
method of transformation of the corresponding field. 

One need not specify the form of the interaction, but 
follow axiomatic quantum field theory in which the cur
rent operators (and, in particular, T ik) must, in prin
ciple, be determined on the basis of a number of general 
postulates uoJ. In this case it is necessary that all pos
sible states of free gravitons together with the free 
states of "ordinary" fields should constitute a complete 
set in Hilbert space (the completeness postulate). This 
gives meaning to the Heisenberg operators introduced 
above formally, since this defines the Hilbert space in 
which they operate. In a coordinate transformation, 
which is not a group of motions, the ground state is 
altered (cf., (12)) on the basis of which the Hilbert space 
is defined, and also the free equations are altered,, i.e., 
the spectrum of single -particle excitations is altered. 
In the usual canonical quantization scheme this denotes 
a transition to a nonequivalent representation of the 
computation relations lllJ. 
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We write (11) in integral form 

J(bik (x) = xa;k(x) + a;k (x) + J(2 s G<ret)~e(x, Y) T ~~(y)y- g (y)d'y. 
(19) 

Averaging this equation over the ground state yields 
(9). C is a numerical tensor aik(x) and, in particular, 
can define a flat base space with the Minkowski metric 
which physically corresponds to a Bose condensation of 
free long-wave gravitons in the ground state. Mach's 
principle requires that the whole gravitational field 
should be produced by matter. In other words, the 
ground state should not contain free gravitons (aik = 0). 
In this case the metric gik satisfies the equation 

g;k (x) <= x (0 ji;ik (x) I 0) = x2 S G;k~~ (x, Y) <OI T "~ (y) I 0) i- gd'y, (20) 

which is a mathematical formulation of Mach's princi
ple[1'21. Below we propose an approach one consequence 
of which is equation (20). 

2. SPONTANEOUS BREAKING OF THE GROUP OF 
GENERAL TRANSFORMATIONS OF COORDINATES 

In quantum field theory a spontaneous breaking of a 
certain group of transformations means that the spec
trum of physical particles does not have the symmetry 
of the basic equationsu21 . For example, Ys -an invariant 
theory in which the mass of the "bare" fermion is equal 
to zero, admits the existence of a physical fermion of 
finite massWJ. In this case a pseudoscalar meson of 
zero mass appears which is a bound state of fermions. 
The solution with the broken Ys-symmetry can be 
formulated phenomenologically in a Ys covariant form 
by introducing the local field for this meson(llJ. 

In the general case, according to Goldstone's theorem, 
if spontaneous breaking of a certain symmetry occurs a 
zero mass collective excitation [13 J necessarily appears. 
One can always introduce a Heisenberg field[141 corre
sponding to this particle for which the average over 
the ground state satisfies a condition of self consistency 
of type (20). In quantum electrodynamics the possibility 
of a spontaneous breaking of Lorentz-invariance was 
considered[151 , and also of translational invariance[161 

The spectrum of physical particles is evidently non
invariant with respect to the group of general trans
formations of coordinates (GTC) and this means, in par
ticular, that inertial forces will appear in the accelera
ted reference system. In complete analogy with the ex
ample given above the GTC group can be regarded as 
being spontaneously broken if the initial Hamiltonian for 
"bare" particles is not invariant with respect to it. 
This means that the latter cannot contain a kinetic en
ergy term involving derivatives of the fields and in the 
language of field theory this is equivalent to the vanish
ing of the renormalization constants for the wave func
tions of the particles. We illustrate this by considering 
the equation for the renormalized Green's function S for 
a Fermi-field with an initial mass mo[ 10J, 

1/S(p) = Z(p- mo) + 2:(p), (21) 

where p is the four-momentum of the fermion, Z is the 
renormalization constant for its wave function, ~ is the 
exact self -energy part the form of which we do not 
specify, (p - mo t 1 is the Green's function for the "bare" 

fermion. The theory is a priori Ys-invariant if, follow
ing(11J, we set mo = 0 (the interaction is assumed to be 
invariant). In exactly the same manner the theory is 
a priori invariant with respect to the GTC group if the 
first term on the right -hand side of (21) does not con
tain the kinetic energy, and for this it is necessary to 
set Z = 0. The condition for the vanishing of the re
normalization constants leads to a theory with complete 
self -consistency (i.e., to a bootstrap theory[171 ) within 
the framework of which all the particles are com
pound[181 . A bibliography relevant to this problem may 
be obtained in [191 . We note that at present there does 
not exist a consistent bootstrap theory. 

From a consideration of the variation of (21) in the 
case of a general transformation of coordinates it also 
follows that for Z = 0 there must exist a tensor particle 
(graviton) which is a bound state of other particles. The 
possibility of considering a graviton as a Goldstone 
particle was discussed in [201 • The introduction of a 
Heisenberg field bik(x) corresponding to this particle 
leads to the usual generally covariant formulation of the 
theory. The noninvariance of the ground state of a sys
tern of interacting particles with respect to the GTC 
group means that the average x ( Olbik(x) I 0) = gik(x) is 
different from zero. The four-space petric gik must be 
comple1;_ely created by the source (01 Tiki 0) (cf. (20)), 
where Tik is the Heisenberg operator for the energy
momentum tensor for matter (in just the same way as 
the magnetic field of a ferromagnetic is created by a 
nonzero magnetic moment density in the ground state 
and is not introduced externally). Physically (20) means 
that the metric gik is created by the vacuum fluctua
tions of the energy-momentum tensor due to the absence 
of translational invariance of the ground state, i.e., of 
the base space with the same metric gik(x). The case 
aik{x) f 0 in formulas {9) and (19) corresponds to an 
a priori breaking of symmetry (introduction of absolute 
space). 

Equation (20) is equivalent to Mach's principle corre
sponding to a definite choice of the graviton Green's 
function. According to section 1 this choice is deter
mined by the form of the gravitational action (3). This 
means that in a complete theory one must show that in 
the long wavelength region the effective Lagrangian of 
the gravitational field is proportional to the scalar 
curvature (cf. in this connection [211 ). 

The above discussion was basically of a qualitative 
nature. The next step should be the creation of a corre
sponding quantitative theory. However, attempts to con
sider a specific model of spontaneous breaking of the 
GTC group encounter a difficulty in principle which con
sists of the fact that the situation when the given sym
metry is not broken is physically senseless (gik = 0). 

We consider quantitatively on a simple example the 
condition for the bound nature of the graviton which is 
mandatory in this approach. Assuming that the graviton 
is a bound state of scalar mesons we investigate the 
homogeneous Bethe-Salpeter equation[10 J for the vertex 
r fJ.II{p) for a virtual meson and a graviton of zero energy: 

r ___ i_(' V( 2 (- )2 2) r~v(q) d' (22) 
~v(P)- (2n)' J p, p q ,q (q2 -m2 +ie)2 q, 

where p~ q are the four -momenta of the meson; p2 
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= p~ - p2 etc; V is the potential for the interaction be
tween mesons. In the right hand side of (22) we have 
used the free causal Green's function for a meson of 
mass m. 

In subsequent discussion we shall utilize the one
graviton potential for the interaction of mesons calcu
lated with the aid of the usual diagram techniquel22 ' 23 l; 

[p2q2+2(pq)m2-2m'] (23) 
V(p,q)=16nk ( )2 +. p-q ze 

where k is the gravitational constant. 
The vertex rJ.L 1,(p) describes gravitons of spin 0 and 2: 

f"v(p) = ]~Ol(p2)g"" + f(2l(p2) (2PI'P•- 1fzg"vp2), (24) 

and for p2 - m2 must go over into the usual expression 

(25) 

Here gJ.L 11 is the Minkowski metric. 
It is necessary to note that in a field theory with 

vanishing renormalization constants equation (21) loses 
its meaning. But if the vertex (24) is known then the 
complete Green's function for the particle can be ob
tained from Ward's gravitational identityl23 l (in analogy 
to the manner in which this was done by Salam in elec
trodynamics [a4 J). 

In order to solve (22) we use the method ofl25l. In the 
equations for r 10' 2 '(p2 ) obtained as a result of substitut
ing (24) into (22) we deform the path of integration in the 
complex qo-plane (on the assumption that this is per
missible) with the aid of the general formula 

.., (Jfi>f.Jf v)' 

S «<>(pz, (p- q)z, q2)d'q = i; S dv S <I>(- u,- z,- v)iilaz, 
0 u <iU-Rf (26) 

where 
u"" -p2, v ·= -q2; z = -(p- q)2, u, v, z > 0; 

R= [("Vu+)'U}z-z][z- ("fu-:...yV)z]. 

Taking in (22) the potential (23) and integrating in 
(26) with respect to the variable z we obtain finally 

k .. 
r<•>(u) = n q K(u,v) [ : 9(u- v) +S(v- u)] (27) 

0 

} r<•>(v)dv 
+mzv (v+m2)Z, 

k f [ v3 J 1~2l(v) f<2l(u) =-·-J K(u,v) -9(u-v) +e(v-u) ----dv, 
3n ua (v + m2)2 

0 (28) 
where 

(29) 

These equations can be investigated in the domain of 
negative values of the arguments, and, in particular, 
near the mass shell of the meson (u, v- -m2 ). The ex
istence in the theory of ultraviolet divergences means 
that (27) and (28) are not Fredholm equations, and 
consequently do not give a good boundary value problem 
(in the non-relativistic case a similar situation denotes 
a fall towards a center). This difficulty is removed by 
the introduction of a form -factor which cuts off the 
potential for the interaction (23) in the region of large 
transferred momenta, i.e., for z = -{p - q)2 > K. It 
can also be shown that the use in (22) of a potential with 
a form -factor leads to an exponential falling off of the 
Bethe-Salpeter wave function for u > A2 • However, the 

problem of ultraviolet divergences goes beyond the 
framework of the present paper, particularly since 
equations (27), (28) have no physical sense in the high 
frequency region where we cannot neglect nongravita
tional interactions in the potential (for example, the 
strong interaction). 

It is essential for us that (27) and (28) are exact in 
the infrared region, i.e., for u, v close to (-m2 ). The 
real interaction potential in this region is determined 
by the graviton pole and the diagram with the three
graviton vertex neglected on the right-hand side of (22) 
is indeed equal to zero as a result of the smallness of 
the interaction between soft gravitons l26 l. In order to 
investigate (27) and (28) in the infrared region we re
place expression (29) by its value on the mass shell: 

K(u, v)-+ m'. (30) 

It is essential that the part of (27) and (28) neglected 
in this replacement is free of infrared divergences. We 
substitute (30) into (27) and (28) and differentiate the re
sultant integral equations twice, and this gives for 
r(s)(u) (cf. laS]) 

[ d2 s + 2 d km• 1 J 
~+-----+- r<•>(u) =0. 
du2 u du n u(u+m2)2. (31) 

Here s = 0, 2. Solutions of these equations free of 
singularities at u = 0 are given by the hypergeometric 
functions: 

r<•>(u) =const·F(a, ~. s+2, u/(u+m2)), 
(32) 

where 
a= 1- ~. ~ = 1/z - 1/zl'1 + 4km2 /n ~ -km2 /n. (33) 

From (32) it is easy to determine the behavior of r(s)(u) 
as u- -m2 

(34) 

The boundary conditions for r(s)(u) follow from the con
dition that the vertex (24) should have the correct long
wave limit, i.e., so that (24) should go over into (25) for 
u = -m2 • In order to eliminate the infrared divergences 
(cf., (34)) the whole discussion can be carried out in an 
external gravitational field with an average curvature 
p2 , and this also means that the graviton will acquire a 
mass p. Qualitatively this can be easily taken into ac
count by requiring that (24) should go over into (25) for 
u = -(m + p)2 • Contracting (24) and (25) with the metric 
tensor we obtain for r 10 '(u) two conditions which must 
be satisfied for u = -(m + p) 2 : 

(35) 

The first of these conditions determines the normaliza
tion constant in (34) while the second one gives the rela
tion between k, m, p (cf., (33), (34)): 

p/m = km2 /2n. (36) 

If we substitute here m = mp (mp is the proton mass) 
we obtain 1/p = 0.8 x 1027 em, which approximately coin
cides with the radius of curvature of the universe. This 
means that the general procedure for self -consistency 
in a Riemann space with real cosmology gives the cor
rect value for the mass of an elementary particle (the 
gravitational constant fixes a quantity of the dimensions 
of length). The relation (36) between the radius of the 
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universe, the gravitational constant and the proton mass 
was first discussed in l27J • The use of the graviton 
Green's function introduced above in principle enables 
us to discuss the Bethe-Salpeter equation in a generally 
covariant form and to obtain the mass m as a functional 
of the cosmological metric. In particular, m must vary 
with time. Physically this implies renormalization in a 
variable external gravitational field. Such an approach 
is essentially different from a theory with a variable 
mass based on the introduction of a long range scalar 
field[28 J. 

Relation (36) was recently discussed from another 
point of view in connection with the introduction into the 
theory of the cosmological constant A ( p2 ~A) [29' 30 l. In 
this case relation (36) does not imply variability of the 
mass m, but is simply a definition of A. The coincidence 
between 1/..fA. and the radius of the universe is not acci
dental as a result of long delay in the expansion of the 
universe at this stage of cosmological evolution[3oJ. 
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