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A general expression is obtained for the second virial coefficient of a plasma at any temperature. It 
is shown that the Coulomb corrections for an ideal gas are limited. For the pressure in light elements, 
the maximum correction is of the order of 5%. 

A general quantum-mechanical formula for the second 
virial coefficient, expressed in terms of its phase, was 
first derived by Beth and Uhlenbeck[ 1 J but is applicable 
directly only to short-range forces, and leads to diver
gences in the case of a Coulomb plasma. 

Rigorously founded rules for the elimination of 
Coulomb divergences in the second virial coefficient 
were formulated in the papers of Vedenov and Larkin [21 

and Larkin [JJ, where analytic formulas were obtained 
for this coefficient in the limits of high[21 and low[3 J 

temperatures, where the Born and quasiclassical ap
proximation are valid, respectively. In the present pa
per we carry out the calculation in the entire intermed
iate region of temperatures. 

We use the following notation: i-number of the ion, 
and in the particular case of an electron it is assumed 
that i = e; Qi = Zie-charge of ion, Qe = -e; gi-multi
plicity of degeneracy of the ground state of the ion, 
ge = 2, mi -ion mass, me= m; mij -reduced mass of 
two ions, for heavy ions (i I e) we put m/mi = 0 through
out (adiabatic approximation); ni -ion density, f3 = 1/kT; 
J.li -chemical potential of the ion; C = 0. 5772 -Euler's 
constant, and 

Si = g; (2nh2 ~/m;)"'e~"'· 

The second vi rial correction D.n to the thermo
dynamic Gibbs potential (per unit volume), which is 
proportional to ~ 2 , equals [21 

1 ( 2nh2J3 )'/, - J3~Q = 2: ~ s;s; ~ [Z;;(e2)-Z;;(O)], 
ij t) 

(1) 

(2) 

where v are all the quantum numbers (including the spin) 
for the relative motion of the two ions, and Eijv are the 
corresponding energies; allowance for the identity of 
the electrons makes it necessary to take the odd states 
in the sum over v (2) with weight 3/2 and the even ones 
with weight 1/2 when i = j = e. From dimensionality 
considerations we obtain the general form of the expan
sion of the statistical sum (2) in powers of e2 for the 
relative motion of particles with Coulomb interaction: 

00 

Zij ( e2 ) = ~ Uijsx1j2 , (3) 
8=0 

(4) 

For brevity we shall henceforth omit the indices ij. 
We consider first only part of the sum (3), which be

gins with s = 4 (and contains no divergences[21 ): 

~ 1 1 
l: (x) = LJ a,x'i2 = Z(e2)- Z (0)- Z' (O)e2 - -zZ" (O)e'- 6 z"'(O)e6, 

8==4 
( 5) 

and break (2) up into two sums-over the states of the 
discrete (d) and continuous (c) spectra. A similar de
composition will occur also in the sum (5): 

(6) 

The contribution from the discrete spectrum (it is pres
ent only when i = e, j I e or i I e, j = e) is [3] 

1 l:ct=-~--~ (e-BE,,-1+~Eiev), i,t=e, (7) 
2gi Ev<O 

since Eiev ~ e4 • We note that 

2:ct~ (fie')'~ x' as x-+0. (8) 

The sum (7) is calculated from the experimental 
terms; it converges, since the states of the higher exci
tations are hydrogenlike. 

It is convenient for us to represent (7) in an identical 
form, separating the ground state Eo = -1 of the ion
electron system, where I is the ionization potential of 
one electron, 

(9) 

In general, the contribution from the discrete spec
trum is significant only at low temperatures, when the 
ionization is incomplete, and then the first term of (9) 
is large compared with the second, since usually the 
minimum energy of excitation is of the order of I. 

In the continuous spectrum, for a pure Coulomb inter
action, the phase at large distances r equals 

1 In ( i ) ( cp1 =kr+--In2kr--+argf Z+1-- , kr~1, 10) 
ale 2 ale 

where a= aij = -fl2/mijQiQj, and the level density in 
k-space dn/dk is obtained from the requirement that the 
wave function vanish at a distance r, i.e., 

_~!!!_ = gigj ~ (2l + 1) dcp, 
die Jt l dk ' 

1 
k~-. 

r 

We introduce the notation u = ak, yu = 1, and 

w,(y) = -d arg r(z + 1- iy) I dy. 

(11) 

(12) 

The function (12) is even (see below). Using the defini
tions (6), (5), (2), (11), (10), (12), and (4) we get 

1:c(x) = ±~ r d~ e--xu'~(2Z+1) [w,( ~)- !Dz(o)- ~ll>,"(OJ(~)']. 
n 0 u 1 \U 2 u 

(13) 
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In (13) and subsequently, the upper sign corresponds to 
attraction (a> 0) and the lower to repulsion (a< 0). To 
calculate (12) we use the well known relation 

dIn r (z) I ( l 1 ) ~ y• 
<ll1(y)=Re--- =1 :3--C + :3 2 ; 

dz '~l+!-iy \ n~! n n~l+! n (n2 + y ) 

and then 

l:c{x) = + ___.!._ ~ ~ I~ (21 + 1)e-xu' (14) 
:Jt l. n~l+t 0 u< n'(u'n' + 1) 

The integral (14) diverges at small values of u, but 
in the region u = ak ;;;; a/r the level density is no longer 
expressed in terms of the asymptotic phase shift, since 
formula (10) is not valid in this region. However, there 
is no need to make <p z more precise. Indeed, the integral 
for the second derivative 'I:~ converges and is bounded 
when x = 0, so that the unknown contribution to the 
integral (14) from the region of small u determines only 
the integration constants A and B: 

l:c =A + B.x + 0 (x2). (15) 

On the other hand, it follows from (6), (8), and (5) that 
'I:c ='I:- 'I:d ~ x2 as x- 0, i.e., A= 0 and B = 0. These 
considerations remain in force also for the part of the 
sum (3) which begins with s = 3. In Larkin's paper [31 , 

the sum (3) began with s = 3, and the quasiclassical ex
pression was used for dn/ dk. 

Interchanging the order of summation in (14) and 
calculating the sums, we get 

"' " - - 1 ~ 1 r e-xu'du 
..::..c -+-.L.J-J ' 

n n~ 1 n 0 u2n2 + 1 
(16) 

where for an electron pair it is necessary to replace 
the factor 1/n in ( 16), owing to the difference in the 
weights with respect to the even and odd l, by 1/n 
+ (-1)n/2n2 • This difference, due to the exchange inter
action of the electron pair, is more conveniently taken 
into account in the sum (3) by starting it not with s = 4 
but with s = 3; for such a sum we obtain the expression 

(17) 

The first term in (17) corresponds to the term with 
s = 3, and the second to the sum beginning with s = 4. 
The integrals (16) and (17) are expanded in a Taylor 
series with respect to ..fX at the point x = 0: 

_ P" ,., "( ) 1 ~ [ 1 ( ~ 1 ) + ""'"-c X =+-L.J -t L.J--
? ml \ n2m+2 

m=O n=1 

2m ( 00 1 ) 1/ 4x] 
-·(2m+ 1) !! ~. n2m+3 v n xm, 

(18) 

"- (t 1 oo [ 1 ( oo,...:...._(--'--i)n_H) 
Q = l:c ·exc,(x) =- L; -- :3-4 m! n2m+3 

m=O n=1 

(19) 

On the other hand, the principal terms of the asymptotic 
form at large values of x are equal to 

+P"==2::c''(x)=+ 1 f(ln)'4x+~J-I:.-1-l, (20) 
)'4nx L · 2 · 24x J 

" 1 [ :n2 1 n ( :n )''• ( ( n2x )'")] Q" = l:c·exc(x) =-=- ---+-=\- cxp -3\- . 
y4nx 24 8x 13 2x 4 

(21) 
For practical purposes it suffices to retain in the 

sums (18) and (19) six terms (up to m = 5) in the region 
x < 1, and to change over to the asymptotic relations 
(20) and (21) in the region x > 1. The exponential in (21) 
is best interpolated by the term Bx-2 • The assumed 
error does not exceed 1%. The integration with respect 
to x of the functions P" and Q" is then elementary. 

Let us consider the low-temperature limit x >> 1, 
when the region of small u is significant in the integral 
(16). If u « 1, then ~ >> lal, i.e., the quasiclassical 
approximation is valid (the motion of heavy ions in the 
adiabatic approximation is always quasiclassical, since 
x is proportional to their mass). Using the principal 
term of (20), we obtain 

:Jt~ I- 3C 4] - MQ(s;;;. 4) = 3 L.J s;s;(fiQ;Q;)'IL In 14x,; + --- , 
ij 2 3 

On the other hand, the contribution from the sum (3), 
when started from s = 3, was calculated in the quasi
classical approximation (taking into account the com
pensation of the divergence in the term with s = 3 by 
Debye screening) by Larkin [31 ; it is equal to 

- flilQ(s;;;. 3) =:_:: :3 s;s;(~Q;Q;)' [1n l3xfiQ;Q;I +2C- 1
6
1 ], 

3 ij 

where 
(23) 

(24) 

The third-order term (s = 3) at arbitrary tempera
ture is of the form 

~ L; s;s; (f1Q,Q;) 3 (ln xl'fl + D;;) 
ij 

(see [21 ), so that the constant Dij in this expression is 
already determined by the asymptotic form at {3 - 00 , 

for which it is sufficient to subtract (22) from (23). 
Thus, we have found all the terms of the sum (3) at 

s;::: 3. Inl21 are calculated the terms of the sum at s = 1 
and s = 2 (some coefficients have been corrected in [41 ), 

in which the divergences were eliminated in a consis
tent manner. We present the final expression for the 
free energy: 

(25) 

Here 

[ g; ( m; )"' J -f\FE=~n; In-·-- +1+~!; 
; n, 2nl!2fl 

(26) 

is the main contribution from the Boltzmann ideal gas: 
Ii -ionization potential of all the electrons of the given 
ion, Ie = 0, and for bare nuclei also Ii = 0; 

-fiFoH = x'/12:n (27) 

is the Debye-Huckel correction, which is proportional 
to n3 / 2 and is due to the elimination of the divergence in 
the term with s = 2 (seel2 ' 31 ). The remaining terms of 
(2 5), enclosed in the parentheses, are proportional to n2 

(second vi rial correction) with accuracy to ln K, which 
is due to the elimination of the divergence in the term 
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i=l=e (28) 

is the remnant of the contribution from the discrete 
spectrum; the energy in formula (26) is reckoned from 
its principal part (see (9); see also(31 ). 

We note that in (31 , the remnant of the contribution 
made to ~:Ed from the ground state (v = 0), due to the 
last two terms in (7), has been incorrectly omitted; 

1 ( 4nli2~ )'h { 1 1 1 + ln 2 -f*'ee=- -- n.2 --+-----=-'11- '112 
2 m 16 8l'n 16 

+~ [ln(3xTJ)+- C-1_ n2 ]YJ"+ Q(..f)+P( '112 \}, 
12l'n 2 24 4 4 ' 

(29) 

where TJ = ({:lme 4/11.2 ) 112 is the contribution due to the 
interaction between the electrons. The first term in the 
curly brackets takes into account the degeneracy in the 
ideal gas of the electrons and does not depend on the 
charge; the second, third, and fourth terms take into 
account the remainder of the terms with s = 1, s = 2, 
s = 3 after compensation of the divergences in them, 
and the fifth and sixth term are proportional at high 
temperature to TJ4 ,, whereas at low temperature the prin
cipal contribution is proportional to TJ 3 (In TJ + const), and 
in this order there is no contribution from exchange, as 
should be the case in the quasiclassical approximation; 

r 2nli2~ )'" ' '{ Zi'-TJ 2 Zi"TJ3 
-~Fe;=-(-- L; neni --+-= 

' m i 8 3l'2n 

x [ ln ( ;2 XTJ ) + c ~ 1 J + P ( zi;2 ) } 

is the contribution from the interaction between the 
electrons of the continuous spectrum and the heavy 
ions; 

(30) 

It " [ 11] -~ii =-~ n;n;(~QiQ;) 3 lni3x~QiQ;I+2C-6 , i=l=e, j=l=e 
3 ij . (31) 

is the contribution from the classical interaction of the 
heavy ions (see (31 ); 

1 ( 2 ~n/iZ )"' 1 r dl\z { ~pZ } - ~Fsh =- ~nin; --- - L; (2l+ 1) J -d exp -~ dp 
2 . . mi; It z o p m,, 

., (32) 

is the contribution due to the additional phase shift 
liijz(p) resulting from the presence of electron shells 
that distort the Coulomb field near the nucleus (see (51 ); 

this term of the order of (na~ )2 , and becomes leading at 
high densities. 

The ion concentrations ni = Cin are calculated from 
the conditions of the chemical equilibrium 

iJF iJF iJF 
-+-=--, i=1, ... ,Z; an. iJni iJni-f 

(33) 

The index i indicates here the multiplicity of ionization, 
Zi = i. In the zeroth approximation (F = FB), (33) re
duce to the Saba equations. 

Let us consider hydrogen by way of an example. The 
Saba equation for the concentrations in the zeroth ap
proximation yields 

where a is the degree of ionization. The equation for 
the corrections to the concentrations in the Debye·
Huckel approximation yield 

a(1 ~a) 
!la = 18nan~3e6• 

2-a 

The ratio of the pressure correction to the pressure of 
an ideal gas is 

~ = llPoH = -~(2 )'''x•t.e-x Yl'~ 
P;d 3 :n: 9-4y2 

where x = {:JI/2, y = a -1/2. At a fixed temperature, the 
limit of the total ionization a - 1 corresponds to a low 
density n - 0. Both functions of x and y are bounded. 
With increasing density, t decreases, reaching a mini
mum at a = 0.8635, after which it increases and vanishes 
at a= 0.5. The absolute minimum is ~min= -0.0[i34 
at T = 9.06 eV and p = 5.6 x 10-3 g/cm3 • The virial 
corrections shift the minimum. 

Numerical calculations (without allowance for F,sh) 
yielded tmin = -0.0438 at T R:: 5 eV, p R:: 1 x 10-3 g;cm3 • 

In general they are of the same order of magnitude as 
the Debye-Huckel corrections, in a broad vicinity of the 
minimum. Obviously, a similar minimum should exist 
also for any substance, since t - 0 in both limits n - 0 
and n- oo. In the former case the ionization is com
plete, but the charges are far from each other; in the 
latter case, the recombination is complete and there is 
no Coulomb interaction, since the charge is equal to 
zero. The sharp increase of pressure will be due to 
repulsion of the electron shells, i.e., to the term F sh· 

A general conclusion can be drawn that apparently 
the Coulomb interaction is small (for hydrogen, helium, 
and lithium :S 5%), and that the corresponding perturba
tion -theory series in terms of the density converges 
poorly. 

In conclusion, the author is deeply grateful to N. A. 
Dmitriev and A. I. Larkin for valuable discussions. 
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