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A quantum-mechanical investigation of the features of elastic potential scattering is carried out for 
energies of the order of the effective barrier. In classical scattering theory this phenomenon is known 
as orbiting (spiral scattering). It is found that for energies of the incident particle equal to the height 
of the effective barrier, a resonance appears in the scattering cross section which corresponds to a 
quasi-stationary state. The height of the effective barrier is a function of the angular momentum of 
the incident particle; thus a resonance trajectory is obtained which determines a family of resonance 
energies for different angular momenta. 

INTRODUCTION 

IT is known in the classical theory of scattering on a 
certain class of spherically-symmetric fotentials that 
there exists the phenomenon of orbiting. 1- 4 l 1 > The es­
sence of this effect is that the scattered particle inter­
acts with the scattering center in such a way that, in 
approaching this center, it makes a number of turns 
around it, after which it flies off to infinity under some 
observed scattering angle. Thus the particles are in 
interaction for a length of time, which must correspond 
to some resonance state with a definite lifetime. 

In general, orbiting occurs when the effective poten­
tial energy 

(1) 

[U(r) is the interaction potential, M is the angular mo­
mentum of the incident particle, and m is the reduced 
mass] has at least one maximum (barrier) and the en­
ergy of the incident particle is close to the height of 
this barrier. [3 ' 4 J 

The condition for the existence of a maximum of the 
effective potential energy at the point rB is 

dUet! :1 -- -0 
dr r=r B- ' 

(2) 

If conditions (2) are satisfied, the effective potential en­
ergy can be expanded in powers of r - rB around the 
point rB where the maximum EB occurs. Keeping terms 
of second order, we have 

[ (r-rB) 2 J 
Ueff(r) = EB 1 p• , 

we investigate the phenomenon at energies close to the 
barrier height EB with the approximation (3) for Ueu(r). 

First we convince ourselves that in the classical 
case a particle with energy E ~ EB revolves around the 
scattering center. According to the known formula of 
classical mechanics for the full polar angle 

~ M/r' 
Elo'=2~ dr 

l'2m [E- Uetf (r)] 
Tmin 

1lThe most detailed analysis is that of Yakovlev [3] and Faingol'd. [4]. 

FIG. 1. Classical trajectory of the scattered 
particle in the potential-a/r2 , which completes 
two revolutions around the scattering center and 
goes off at zero scattering angle. 

we find, using approximation (3), 

Mp[3+sign(E-EB)J1 EB 
Oo = n ----=-- + const. 

2rB2 l'2mEB IE-EBI 
(4) 

It is seen from ( 4) that eo - 00 for E - EB, and the par­
ticle "sits on the barrier," where it revolves practic­
ally for an infinite time with the angular velocity 

For an illustration we show in Fig. 1 the form of the 
trajectory of a particle which completes two turns 
around the center and goes off under zero scattering 
angle. 

Orbiting gives a contribution to the classical differ­
ential scattering cross section, which contains a sum 
over revolutions since particles completing different 
numbers of revolutions around the scattering center 
depending on their angular momentum can be scattered 
into one and the same angle. 

In the numerous treatises on scattering, orbiting is 
mentioned very rarely, and the question of a quantum­
mechanical treatment of orbiting is not posed at all. In 
the present paper we consider the behavior of the quan­
tum-mechanical features of the scattering at energies 
of the order of the height of the effective barrier EB. 
We shall find that for a sufficiently high and broad 
barrier a resonance appears at the incident energy 
E = EB which corresponds to a quasi-stationary state. 
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Using 

( 5) 

where rB is a function of the angular momentum M and 
the parameters of the potential, we have thus an equa­
tion for the trajectory of the resonances which deter­
mines a family of resonance energies E(L) for physical 

2 B ( values of the angular momentum M = n2L L + 1), 
L = 0, 1, ... , Lmax· 

Problems connected with the radiation from orbiting 
particles are also of interest. [51 

MODEL CALCULATION OF THE SCATTERING MATRIX 

We find an expression for the S matrix in the case 
where the effective potential energy (1) has an effective 
barrier of height EB at the point rB inside of which 
there is a potential well of depth Ew at the point r1. In 
order to obtain analytic formulas, we assume that this 
effective energy can be approximated by 

n2L(L + 1) 
2mr2 ' r > rz 

Uen(r) = Es [ 1- (r~:B)_:], r1 < r < r2, (6) 

E + !z2LjL+1) f~--1-J O<r<r, 
a 2m L r 2 r1 2 ' 

as shown in Fig. 2.2> 

The solution of the Schrodinger equation for the 
radial wave function (multiplied by r) having at infinity 
the form exp[i(kr -7TL/2)], is 

{ 
f (r) 

Rht(r) = yg (z) -;- 1\h (z) 

ale (r) + ~~ (r) 

r>r 2 

r 1 <r < r 2 , 

O<r<r1 

(7) 

where a, {3, y, 6 are constants which are determined 
from the matching conditions on the wave functions in 
the points r 1 and r2, 

f(r) = i(nkr/2) 'I•H~1) (kr), 

g(z) = h' (z) = f( 3/4- 1/4iekBp) '¥(1/4- 1!4iekBp, 1/z; iz), 

k(r) = t• (r) = i(nk,r/2) 'I•H~0 (ktr), (8) 

H~1>(x) is the Hankel function, r(x) is the Gamma func­
tion, and 'i1 (a, y; x) is the confluent hypergeometric func­
tion; we have further used the notation 

h2k2 
E=--

2m ' 

The general solution Rkdr), having at infinity the form 

RkL(r) 1•-oo ~ sin(kr- 1/znL + 1\L(k)), 

is written as 

RH (r) = [R~-;:> (r)- SL(k)Rk"i! (r)], (10) 

where R;;L(r) = [R~+L(r)]*. From the condition of regu-

21 This approximation for Uefr(r) requires that the interaction po­
tential U(r) have a finite range and its singularity in the origin be 
weaker than r-2 • 

FIG. 2. Approximation for the effective potential energy. 

larity of the wave function Rkdr) in the origin we find 
that 

a• + ~· SL(k) = exp [2ii\L(k)] = ---. 
a+p 

(11) 

Using the explicit expressions for the coefficients 0! 

and {3, 

~ = W (gz, /z) W (it, ht) _ 

W(gz, hz) W(kt, li) ' 

where W(L 1)) = ~ o1)/or = 1)8~/ar are the Wron­
skians of the corresponding functions in the correspond­
ing points and 

.i(r) == k(r) -l(r) = 2i(nk1r/2)'hh(klr), 

we obtain3 > for the S matrix 
S (k)= W'(h,hz)W*(it,g1)-W'(h,gz)W*(it,ht) ( 12) 

L W (h. h2 ) W (it, gt)- W (/z, gz) W {it, h,) 

RESONANCE STATES 

The poles of the S matrix are determined by the 
zeros of the expression 

or 
F = f0,kBz {( a In /2 - _&_) \/ a In j, -_a_)} (g,hz- g,h!), 

kB&r, kB&r, kBor, kBor, ( 13) 

where the partial derivatives with respect to r1 and r2 
act on the functions with index 1 and 2, respectively. 

For the following we must write the function g1h2 
- g2h1 in explicit form. Here we must take account of 
the fact that the point z = 0 is a branc.h point for the 
functions g and h, so that g 1 = g(z 1e2111) = h!, where 
arg z1 = 0. It follows from the theory of confluent hyper­
geometric functions[7 J that 

r(a- v + 1)'¥(a, y; ize2"i) 

= [1 + e-2rriv- e2ni(a-vJ]f(a- v + 1) '¥(a, v; iz) 

+ e-2niv[e2nia -1]f(1- a)ei•'J!(y _a, y; - iz). 

Using (14), we find 

g,hz- g,h, = h(z,)h(zz) - g(z,)g(zz) 

(14) 

- iexp( 1/2nkBpe)[g(z!)- h(z 1)][g(z2)- h(z2 )]. (15) 

We are interested in the value of (15) for energies E 
of the order of EB, i.e., for small E, and we therefore 

31 For more details cf. [6 ]. 
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expand it in powers of E, keeping terms of second order. 
Since we cannot write down an explicit expression for 
the derivative of the confluent hypergeometric function 
with respect to a parameter, we use the asymptotic ex­
pressions of these functions for large values of kBp• 
since 

kB kB 
z, = -(rn- rJ.) 2 - knp, z2 = -(rn- r2 ) 2 - knp. 

p p 

Thus we are in fact expanding (15) under the condition 

e~ 1/ knP~ 1. (16) 

Writing the functions g, hand their derivatives Bg/BE, 
Bh/BE for large z in explicit form, 

g IHoo = h•l,..oo = f( 3/,- 1/,ieknp)z-'/, exp [ -i('/8'!1 

+ 1/,z- 1/,eknp In z) - 1/a:neknP ], 

og I oel,·~oo = oh·; oel,~oo = '/,(knp)l'( 3/,- 1/,ielenp)z-'i•. 

X[ 1/z:n - i(ln z - lj! (3/, - 1/,iekBP))] exp [ -i (1/s:n + 1/zz 

-- 1/,elenp ln z)- 1/a:nelenp], 

we find that 

(17) 

(g,h,- g,hi) I k n<>-+oo; e-.o = 1/zif2 ('/.)[G(z,, z,)- eknpH (z,, Zz) ], (18) 

where lj!(x) is the logarithmic derivative of the Gamma 
function and G and Hare given by the following expres­
sions: 

, r z,-z, - z,+zz J 
G(z1,z2)= 4(.z1z2)-i• l cos--2-+ Jf2sin--2 - , 

, { r - Z1 + Zz . Z1 - Z2 J H (zio z2) = (z1zz)- ;, ln z, ll'2 cos --2-- sm --2-

[ - z1 + z2 . z1 - z2 J z1 - z2 + ln z, _ ' 12 cos-- + s1n -- --- - :n cos---
1 2 2 2 

- z,+zz} -[1jJ( 1/.)+¢(3/4)]l'2cos--2- . (19) 

The action of the operator in (13) on the expression (18) 
leads to an equation for the determination of t::; from 
this we find that the scattering matrix has a pole at the 
energy 

(20) 

where 

That Ey > 0 can be seen by direct calculation of the 
derivatives of the functions G and H with respect to r1 
and r2. 

Thus we may conclude that for energies of the inci­
dent particle approximately equal to the height of the 
effective barrier, a quasi-stationary state (Ey > 0) oc­
curs. For sufficiently large kBp, i.e., for a sufficiently 
high and broad barrier, EE « EB and the quantity Ey 

is sufficiently small so that we obtain a resonance at 
the energy E = EB· Since the height of the effective 
barrier is a function of the angular momentum M of the 
incident particle, Eq. (5) determines, for a given inter­
action potential U(r), a family of resonance energies 
E(L) at physical values of the angular momentum 

B 
M2 = fi 2L(L + 1), L = 0, 1, ... , Lmax· 

A similar result is obtained when a square barrier 
of height EB is taken in the region r 1 < r < r 2. In this 
case we have the following solution in the region r 1 < r 
< r2: 

g = exp(rknYe), h = exp(-rlenJfe} (23) 

and for G and H we obtain the simple expressions 

correspondingly, we find for Ey 

12CEn [( 3 )' 3 ] Ev~-~ A+-- +---
(kna)3 lena 4(lena) 2 

[ . 3 ) 3 ( 2 ) ]' ( 3 )'}-1 X { B (A+ lena -lena\ A+ lena + C\ A+ lena ' 

where A, B, and Care given by (22). 

SCATTERING CROSS SECTION 

The elastic scattering cross section is given by 
fi2 00 

cr(E) = 2:nmE ~ (2L + 1) 11- SL(E) 1'. (24) 
L=O 

The terms in (24) with angular momenta 0 :5 L :5 Lmax 
have resonance character (there is a resonance for 
L = 0 when the potential energy has a barrier). There­
fore (24) takes the form 

LHP 
:nfi' (E~L)) 2 

cr(E) = -E ~ (2L + 1)~---;:;;-;-;;--;;-'-;--:=;-:-:-;;-
2m L~o (E-E<~>)'+(E<~>)'' 

(2 5) 

where E(L) is given by (5) and E(L), by (21b), where the 
B y 

terms with L > Lmax' which in the given case have no 
resonance character, are omitted. Formula (25) differs 
from the usual resonance formula in that all resonance 
energies E(L) lie on the same resonance trajectory de­
termined b~ (5). This resonance trajectory is com·· 
pletely determined by the parameters of the interaetion 
potential and is the analog of the Regge trajectory, 
although these two concepts do not coincide completely. 
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FIG. 3. Trajectory of the resonance energies for the potential {26). 

Regge considered complex angular momenta as a func­
tion of complex energies, whereas our resonance trajec­
tories are defined as poles of the S matrix for complex 
energies and real angular momenta. 

EXAMPLE 

For an illustration of our results we calculate the 
resonance trajectory for the potential 

(26) 

a special case of which (a = 0) is the known polarization 
potential. The effective potential energy for the poten­
tial (26) has a maximum at the point 

r =V ~~( _2_)''' 
B 2b2 1-5 

whose value is 

1 ( b )'2 
EB(M2)=-Vo;- (1-5) 2 (1+25), 

27 \ a 
(27) 

where 

( MZ )''' 2 b8 
0~5= 1--- :o;;;1, M .2 =-mV0-. 

\ )'rf crz - ~J ati 

For angular momenta M > Mmax there is no effective 
barrier. The resonance energies EkL) are obtained for 

values of the angular momentum M2 = h2L(L + 1) with 
L = 1, 2, ... , Lmax• where 

L"P = [ 1/ Mcr-2 + 1 - __f__J (28) 
y 11 2 4 2 

([x] is the integer part of x). The form of the curve 
EB = EB(M2 ) for the potential (26) is shown in Fig. 3. 

In conclusion the authors express their gratitude to 
L. G. Yakovlev and I. M. Fa'ingol'd for communicating 
published and unpublished results, and also to 0. B. 
Firsov for useful discussions. 
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