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A theory is developed for the migration of energy through a phonon field between exchange pairs or an 
exchange pair and a single center, in cases when the multiplicities of the ground and excited levels of 
the single center are the same, and in the case when these multiplicities are different. Estimates of 
the orders of magnitude of the migration probability indicate that the proposed mechanism is effective 
in the optical, infrared, and radio-frequency regions. 

THE first to investigate the migration of energy via 
exchange interaction was Dexterl1 J. Energy transfer 
can occur in this case only when the wave functions of 
the interacting particles overlap and the multiplicity of 
the excited level of the acceptor equals the multiplicity 
of the excited level of the donor, and the multiplicity of 
the ground state of the donor is equal to the ground 
state of the acceptor, although the multiplicities of the 
ground and excited states may be different. These re
quirements, imposed on the interacting systems, greatly 
limit the physically possible number of migration proc
esses that can be described by the theory of inductive 
resonance. 

In addition, the theory of exchange-resonance inter
action is static in that it does not take into account the 
influence of the lattice vibrations on these processes. 
Since exchange interactions are very sensitive to chan
ges of the distance between particles, modulation of 
these distances by the lattice vibrations should have a 
very strong influence on the exchange mechanism of the 
migration. In the presence of an interaction between the 
impurities and the lattice vibrations, the phonon field is 
also a medium through which effective transfer of the 
excitation energy between the impurity centers is possi
ble l2 ' 3 J. 

Recent interesting papers by Ovsyankin and 
Feofilov l4 ' 5 J describe experiments on the observation of 
simultaneous excitation-energy transfer from two donors 
to one acceptor. The authors note that in phenomena of 
this kind an important role should be played by the 
migration of energy and by two-particle interactions 
(in particular, also exchange interactions). 

Powell et al. rsJ and Imbuschr7 J directly observed 
nonresonant energy migration between the exchange 
pair Cr3+ - Cr3+ and individual Cr3+ ions in ruby, and 
used the Forster-Dexterli,aJ theory to explain the ex
periments. However, from our point of view, the results 
ofl6 ' 7 J can be interpreted as being due to the exchange
phonon mechanism, which can also be used to explain 
phenomena similar to the Feofilov-Ovsyankin effectr4 ' 5J. 

1. OPERATOR OF INTERACTION BETWEEN EX
CHANGE PAIR AND LATTICE 

The energy of the exchange interaction of two impur
ity centers d and a is in the general case a function of 
their relative distance I rd- ral and the spin operators 
Sd and sa l9 J. Therefore the Hamiltonian of the exchange 
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interaction can be written in the form 

( 1) 

where rd(ra) are the coordinates of the particle d(a); 
- 0 - 0 0 d 0 th rd- rd + .a.rd; ra- ra + .a.ra; rd an ra are e 

equilibrium values of the coordinates with respect to 
the particles d and a; .a.rd(.a.ra) are their displacements 
due to the lattice vibrations. 

Assuming the impurity displacements to be small, 
we expand (1) in powers of .a.rda = .a.rd- .a.ra, and, con
fining ourselves to terms linear in .a.rda• we get 

In particular, the exchange interaction operator can be 
chosen in the form rwJ 

."/t:xch = losdsa exp [ -£ lraa IJ, (2b) 
rda0 

,Jt'exch =losdsa£exp[-£1rda0 IJ·~Ll.rda, (2c) 

where Ia is the exchange interval and ~ is a parameter 
characterizing the rate of decrease of the exchange 
interaction with increasing distance. Let us expand the 
displacement .a.rda in a series in the normal vibrations 
of the crystal lattice 

Araa~ ~ (-n-Y'<Dk [ak eiksrao (eiks rdau -1) + ak ;-e-iks rao (e -iksrdao- 1] 
k 2,Uw"8 8 8 ' 

• (3) 
where M is the crystal mass, <l>ks the polarization, ks 

the wave vector of the s-th mode, Wks the frequency of 
the phonon of the s-th mode, aks(aks) the operator for 
annihilation (creation) of a phonon with wave vector ks, 
and ii is Planck's constant. 

Expression (3) can be simplified by assuming that the 
inequality ksr~a « 1, which is valid up to the highest 
frequencies, is satisfied for all the normal vibrations. 
When this is taken into account, the operator (2a) can be 
rewritten in the form 

2ft" J" ~ ( 1i )''• ( k") 1 k 1 ( "' ) ( ik r + -ik r ( 4) exch = LJ 2Jlfffik rc s ~ ro .... -'k.s akse s 11- ak,/ s -r, )~ 
k8 8 
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rol r:ial = r:ia, inasmuch as the exchange integral has an 
appreciable magnitude only at small distances between 
the interacting particles, and 7J is the index of the pair. 
We shall henceforth confine ourselves to acoustic 
branches only, assuming the propagation velocities of 
the longitudinal and transverse oscillations to be equal. 

2. INTERACTION BETWEEN EXCHANGE PAIRS 
THROUGH THE PHONON FIELD 

We consider the transfer of excitation energy from 
one exchange pair to another one via the phonon field. 
For the calculation of the excitation-energy migration 
probability per unit time Wij, we shall use the formal
ism of the evolution operatorc3 ' 11 J 

( 5) 

where 

L(t)= exp(--ih-'tJe), 

Jeo describes the unperturbed spectrum of the system 
constituting the exchange pair i + exchange pair j + pho
non field; 1/!n and lJim are respectively the initial and 
final wave function in the system, which are eigenfunc
tions of :JCo . 

We shall assume that in the initial state the exchange 
pair i is excited and the exchange pair j is in the ground 
state, and that the opposite takes place in the final state. 
We shall consider here only resonant energy transfer, 
so that the state of the lattice remains unchanged. 

The process of interest to u.s,is described by second 
order perturbation theory in :JC~4c· Substituting (4) in 
(5), we get after a number of evident but cumbersome 
calculations 

W.; = __ J(_ ! ~ ~{exp [ik(r;- r;)] 
2M2ft2 I k Uk Wo-!- Wk 

~p[-ik(r; -r;)]} 

wo- Wk 

(6) 

where 
~ 

g(O)= ~ g;(w)g;(w)dw, 

and gi,j(w) are respectively the densities of the initial 
and final states of the pairs i + j, h wo is the excitation 
energy of the exchange pair. Inasmuch as we shall 
henceforth assume, for simplicity, ~hat .the pairs are 
produced by identical ions, we get I1 = Il =I. The quan
tity I, which is proportional to the exchange integral, 
assumes different values in different cases, when: 
a) both particles of the pair are excited in the initial 
state and both are in the ground state in the final state; 
b) both ions of the pair are excited in the initial state, 
and in the final state one ion is in the ground state and 
the other is excited; c) one of the pair particles is ex
cited in the initial state and the other is in the ground 
state, and the situation is reversed in the final state. 

For simplicity we shall assume henceforth that the 
exchange pairs are identical and are made up of identi
cal particles. An analysis of expression (6) shows that 
the phonons interact in the migration process like vir
tual particles, since Wij does not depend on the number 
of phonons wk. This indicates that formula (6) is appli
cable for the deseription of transport processes both in 

the microwave and in the optical range. The role of the 
phonons in such processes can be visualized as follows. 
The lattice vibrations modulate the exchange interaction 
of the exchange pair i, as the result of which the pair 
goes over from the excited to the ground state with pro
duction (absorption) of a virtual phonon, which is then 
absorbed (produced) by pair j with simultaneous transi
tion from the ground state to the excited state. 

For subsequent calculations it is necessary to sum 
over k in (6), for which purpose we use the Debye model 
of a crystal lattice, replacing the summation over k by 
integration over w from zero to the limiting Debye fre
quency wn, z axis parallel to r: 

X { exp [iwru- 1 cos 8] exp [-iwru-' cos{)]} 12 
------------ --- dq: g(O), 

wu+w (1) 0 -(1) I 
(7) 

where p is the density of the crystal, () and <P are spher
ical coordinates, and r = lri- rjl· 

In integrating (7) over w, two cases are possible, 
Wo > WD and Wo < WD· When Wo > WD, the integrand 
contains no singularities. On the other hand, when 
Wo < WD, Singular points appear in (7), making it pOSSi
ble to extend the integration to infinity and evaluating 
the resultant integral 

(' 1 wr \ 
,\ w3 sin (_--;_,-) (w02- w2 ) _, dw 
0 

by residues. It 1s clear from this that the results of the 
integration are essentially different for wo > wn and 
wo < wn, and correspond to different physical condi
tions. We shall therefore consider both these cases 
separately. 

1. For Wo > wn, the migration probability is equal to 

W;; = _ll,_'(w_v,r) J
2 j(1J:mJIJ¢n)J<g(O), 

8rr.vf~2 !~2~J)O"' 
(7a) 

where 

Wv 1 uJvr 
-- 14--- cos 'l'v- -- (10 sin <rv- 12n), ---='<en· 

r•u r· v 

Jn the optical range, wo > wn, a characteristic feature 
is the different dependence of Wij on the distance be
tween the exchange pairs i and j; the average distance 
between the exchange pairs can be obtained by starting 
from the fact that the pair concentration is proportional 
to the square of the impurity concentration c' (c' = N/No, 
N -number of impurities, No-number of lattice points 
that can be occupied by these impurities). For the con
centrations c' ~ 10-2 employed in practice, the distance 
between exchange pairs is r ~ 10-6 -10-5 em. At such a 
value of r and at the following values of the parameters 
which enter in formula (7a) (all the data, except the 
values of the exchange integral, pertain to ruby): 

v =' 6·10' cm-sec-1 wo = 3-1015 sec-\ p = 3 g-cm-3 
wv=6·10' 3 sec-1, 1=10-"erg,r= -t0-'-10-6 cm, 

g(O) = 10-7 sec; the largest contribution to f1(wn, r) is 
made by the first term. Omitting all the other terms of 
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f1(wD, r), we obtain for the probability of energy trans
fer from one exchange period to the other the expression 

wn6 

W;; = (2n)'h2p2wo'r'v' I (¢mlll¢n) l'g(O), 

W;; ~ 10 + 10' sec -1, 

2. When Wo < WD, the transfer probability takes the 

w0r 
<Po=-. 

v 
(7b) 

For the same values of the parameters as for (7a), but 
with g(O) = 10-9 sec, we get wo = 1011 sec- 1 and Wik 
= 102-104 sec-1. 

For Wo < WD, the interaction between the exchange 
pairs remains greatly long-range. If we take into ac
count the fact that, for the total probability of migration 
from i to all the j which can absorb the excitation en
ergy, it is necessary to sum the obtained formulas over 
all the j, then we can obtain in principle large values for 
Wij· In this case, however, the summation over j is 
limited by the phonon mean free path. 

It is necessary to note also that the formulas (7a) and 
(7b) are essentially different. Whereas for wa > WD we 
have Wij - w(i4 , then for wo < WD we get Wij - w6, and 
consequently here Wij has a maximum value for frequen
cies on the order of the Debye frequency (at wo - WD we 
have Wij - 105 -107 sec-1 ). As already noted above, in 
the processes under consideration the phonons take part 
as virtual particles, and therefore formulas (7a) and (7b) 
(as well as those given below) contain parameters char
acterizing the dynamic properties of the crystal lattices 
(density, speed of sound, De bye frequency). And although 
in (7a) and (7b) there is no explicit dependence on the 
temperature, there is an implicit dependence of Wij on 
the temperature as a result of the presence in the Wij 
of the aforementioned lattice characteristics. 

3. INTERACTION OF EXCHANGE PAIR AND SINGLE 
ION 

A. Let the multiplicities of the ground state and ex
cited states of the single ion be the same. The Hamil
tonian of the perturbation ensuring energy transfer 
from the exchange pair i to the ion j can be written in 
the form 

""" ""'' '+ "'"'; .n tJ = .n exch av iph; (8) 

The expression for YtJxc is given above (see formula 
( 4)), :Je~ is the Hamiltonian of the ion -phonon interac

lph 
tion of the particle j and is given by[3J 

· i ~ ( !iw•., )'.', ik r· + -ik.r, (' (j:Jf' ) :Je. 1 =- L:.J. --2 (a.,e s J + ake • .•)d,1,. -J- . . 
lph 2 ghk 2Nlv 5 8 Uqll 1'qh---'O 

• (8~ 

Here dsqh = <P sqk~h + k~q<P sh• k0 = k/lkl, <P sq is the 
q -th component of the unit vector of polarization of the 
s-th mode of lattice vibration, uqh is the .component of 
the deformation tensor; q, h = x, y, z; :rrJ is the poten
tial energy of the j -th ion in the crystal field; in the 
case of iron-group impurities in a cubic field of symme-

try 0 71 , the expressions for ( a:;ei / Buqh)uqh=o = :yej h are 
givenin[3' 121 . q 

Substituting (8) in ( 5), using the Debye model of the 
crystal lattice, in analogy with the analysis given in [3' 111 
and in Sec. 2 of the present article, and replacing the 
summation with respect to ks by integration with respect 
to w, we obtain 

where ij/(1)1.) is the wave function of the excited (ground) 
J J 

state of the ion. 
Just as in Sec. 2, the exchange interaction will be 

different, depending on the realization of the different 
possibilities of exciting the particles in the initial and 
final states. 

In formula (9) and below we assume for simplicity 
that the pair is made up of identical particles. 

1. For wo > WD, the probability of energy transfer 
from the exchange period to the ion is 

Wv3 wn2 

/a(wn, r) = -;;,,2 cos 'I'D- 7 v2r" sin <rv 

26 WD 50 12 rt ( ) 
---COS<Pn+- sinqlD--, 9a 

vr4 r 5 r5 

where cpD = WDr/v. 
As seen from formula (9a), W ij has a complicated 

dependence on the distance between the interacting sys
terns. At r - 10-7 em all the terms of f3(wD, r) make 
equal contributions to the value of Wij. However, when 
r ~ 10-7 em all the terms in f3(wD, rJ, except the first, 
can be neglected, and we get for Wij 

9wD6 I 12 
W;; = 2', 2fi2 , , , ,2; (¢mlfil¢n)(¢/I:!Cqh;l¢;) 1 g(O). (9b) 

n p wo v r~ r,h 

We see thus that when r ;<: 10-7 em the interaction of the 
exchange pair with the single ion decreases much more 
slowly with distance than in the case of dipole-dipole, 
dipole-quadrupole, etc. interactions. This indicates that 
the pair effectively interacts simultaneously with a 
large number of single impurity centers via the ex
change-phonon mechanism. An estimate of the order of 
magnitude of Wij u_sing the data of Sec. 2, and for 

r = 10-7 em, (1/Jjl:/e~hlif'j> = 10-14 erg yields Wij 
= 108 sec-1. 

2. For w0 < WD, the energy migration probability is 
given by 

W = 91/'(wor)_f IJ :2i ('¢milfil'¢ni) ('¢/I:!Cqhil'¢;) l'g(O), 
" (2n)' p2h2 qh 

f,(wo, r) = '~ {eN• [ ~~:- ~:::-- ~!2 - _2!~~= 1)-] -- ~r~ } 

Using the characteristic values of the parameters 
entering in (9c) for wo = 1011 sec-1 it turns out that the 
largest contribution to W ij is made by the term propor
tiona! to r- 6v-4 (Wij = 109 sec-1). For Wo- WD = 6 
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x 1013 sec- 1 , we get Wij ~ w6r_\r_8 ; unlike formula (9b), 
the splitting frequency enters in the numerator. Conse
quently, the migration occurs with maximum efficiency 
at frequencies on the order of the Debye frequency, as 
is confirmed by our estimates (for wo ~ wD, Wij 
= 10 16 sec- 1 ). 

B. From the point of view of laser technology, and 
possibly from the point of view of a number of problems 
in biology, of greatest interest is the case when the 
multiplicity of the ground and excited levels of the single 
ion are different. For the calculation of W ij it is then 
necessary that the Hamiltonian of the ion-phonon inter
action contain, besides the orbital operators, also the 
spin operators (s) and the operators acting on the lattice 
states. Such a Hamiltonian was obtained in [llJ and is 
given by 

:Jeiphj = _h_ ~ s~i {uqhi [grad ,Jeq,,i~, Q;ll] + Jeqhi~ [grad uqh.i, Q;~j }. 
2m2c2 

~-~ <Jil 

(10) 

where m is the electron mass, c the velocity of light, 
Q~ the momentum operator of the j3-th electron of the 

j :th particle: Q~ = mr~; rf3 is the radius vector of the 
J J J 

j3-th electron of the j -th particle; the dot denotes differ-
entiation with respect to time; 

2;i-;~= ~ [;;e,+~r;~]; 
~ 

.'Ito is the Hamiltonian which gives the spectrum of the 
aggregate system made up of the exchange pair plus the 
ion j; s~ is the spin operator of the j3-th electron of the 

J 
j-th particle; 

; 1 "' ( hwk, )''' lk r- + -lk r-
grad Uq•, = -- :r £../ 2Jlv,' (ak/ ' '+ a",e s ') k,d'""' 

k, (lOa) 

Expressions for grad 'E :;rJ3h are given in[llJ, 
J3 q 

= L; (fJ.1£~1fdu0,)u ~o · 
q': qh ' 

uqh is the tensor component of the deformations due to 
the acoustic vibrations. The subsequent calculations 
are perfectly similar to those described above. Omitting 
all the calculations, we confine ourselves only to the 
final results (as before, we use the Debye model of a 
crystal). 

1. For the optical range (wo > wn), the probability 
of migration from the exchange period to the ion can be 
written in the form 

W- = ----1----1 L; {-1-A I (1)• 'IG ,iltiJ) 
o 2•' J(;lp2ml.c41 rJh W 02 q t J r, t J 

For the case when 'E ::;el'lh has the symmetry of group 
J3 q 

OTJ, we get 

[ wn3 wn2 • 12wn 12 l 
AuE = 8 -,-3 cos <j!n- 5-3. 2sm !JlD- -_,-cos !pn +-sin 'PD _, 

r v r v Vt ~ r5 _. 

[ 3wn3 wn2 . 36wn 54 9n J 
A,,A = 16 -2-3 cos <pn- 14:::,--2 , sm !Jln- --cos 'Pn +--:-sin <pn--

r v ,-v r4v ru r'J ' 

[ wn' wn2 18wn 24 l 
Bz,A ( x) = 8 - 2 . sin !pn + 6 ---.:;;----3 cos !JlD - --sin <p n - - cos q; n , 

r V'"' ,--v r4u2 r5LJ _ 

[ Wv3 wv2 
B"F' (x) = B,F, (Y) = 16 --cos <fn + 9-- sin <pn-r3u3 r4u2 

wn 132 J 
- 45 ;;;(;COS 'fD -~COS 'JID' , 

[ wn3 wn2 45wn 132 l 
BuE(z) = 16 --sin <pn- 9 --cos <pn--- sin<pn +--cos 'Pn. · r2u4 r3u3 r4u2 rsu _ ' 

The remaining coefficients vanish. 
Although formula (11) is quite cumbersome in form, 

in concrete calculations it always turns out that the 
majority of the terms can be neglected. Thus, if we as
sume that I( 1/!j1Qf11/!j)l = 10-19 g-cm-sec-1 , 

1(1/!~1 grad :;cl'lJh.ll/!.)1 = 10-6 erg, (1j!:J_JeJ3j 11/1. )I 
J q J J qh J 

= 10-14 erg-cm- 1 , and if we use the values of the re
maining parameters as given above, then 

w,, = 2, , , ~~2 ,, ,[ ~'<1P/IRq";ltiJ;><1Pm'll'I1Pn'>l'g(OJ,(l2) 
Jt p r v m c m0 . qh 

Wij = 10 10 sec- 1 at r = 10-7 em. 
It is interesting to note that the dependence of Wij on 

the distance for (12) (Wij ~ r-8 ) approaches the depen
dences for quadrupole-quadrupole interactions, and is 
much stronger than in the case of (9b). 

2. For Wo < wn, the transfer probability is 

W;;= ' 1 I ~{Aqh'<tiJ/IGqh'iltiJ;>+_i__<tiJ/IRqh'iltiJ) }· 
2Hn3p2m4c4 qlt wo 

.( tPm1 lfi I tPni) l'g(O) • 

R~h and G~h are obtained from R~h and GJh by making 

the substitutions Bqh - Bqh and Aqh - Aqh, where 

(2 . 1440n - +')-,-
ruwoV ' 

B ' ( ) B ' ( ) 8 . [ 19iwo2 88w0 3w03 312i + 600 J 
llF2 X = ~F2 y = neHPo --+ --- --, +,----- , 

r2v4 r3vt. rv·) - rvz 

The remaining coefficients vanish. 
Using the presented values of the parameters that 

enter in formula (13), and discarding all the terms that 
make a negligible contrib~tion to Wij' we obtain for the 
case Wo << wn and r = 10 em 

W;; = 2':rflo2~4c'r"v' I hh(tiJ/IRqh'iltiJ;)(¢milfiltllni) I' g(O), (14) 
• q 

W,; = 10' sec - 1 

On the other hand, for the case wo ~ WD and r = 10-7 em 
we get 
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From a comparison of formulas (12), (14), (14a) and 
the corresponding estimates we see that the mechanism 
of the exchange-phonon energy migration from an ex
change pair to an impurity center having levels with 
different multiplicity for the ground and excited states, 
has the longest range of action and the largest efficiency 
for frequencies on the order of the Debye frequency. 

DISCUSSION 

Although the obtained expressions for the probabili
ties of the excitation energy migration via the virtual 
phonon field do not contain the temperature explicitly, 
they do depend on a number of parameters whose tem
perature dependence determines the temperature depen
dence of Wij· This includes, primarily, the factor g(O) 
formula (6)) which, as usual[l' 8 ' 91 , occurs as a result 

of the summation over the final states of the system of 
impurities i and j and averaging over the initial states; 
the factor g(O) takes into account the finite nature of the 
lifetime of the states of the impurity particles, which 
depends on the temperature of the host lattice, two
particle interactions, etc. If the widths of the excited 
states of particles i and j are much larger than the 
width of the levels of the ground states, but much 
smaller than the energy interval between the ground and 
excited states, then gi(w) and gj(w) describe respec
tively the normalized density of the excited states i and 
j. If at the same time (Wijf1 is much larger than the 
time necessary to establish thermal equilibrium in the 
system of sublevels of the excited state i, then g(O) can 
be reduced to an expression analogous to the overlap 
integral of the emission spectra (i) and absorption spec
tra (j} in the well known Forster-Dexter formulas£ 1 ' 81 

for the probability of energy migration due to dipole
dipole interactions. 

Other parameters which determine the implicit tem
perature dependence of Wij are the crystal density p and 
the velocity of sound v, which enters in the expressions 
for Wij raised to rather high powers. 

It should be noted that the exchange pair can be pro
duced also by two ions which are in an excited state. If 
the crystal contains besides such pairs (we shall call 
them dynamic) also other impurities that have energy 
levels equal to the energy of the pair with the two exci
ted ions, then the pair can give up all of its excitation 
energy to the ion, and both its particles turn out to be 
in the ground state. It is possible here that the exchange 
interaction of the particles in the ground state is much 
weaker than the exchange interaction of the dynamic 
pair, i.e., the interaction of the dynamic pair with the 
lattice is strong. Therefore the transition of both ions 
of such a pair to the ground state is equivalent to vanish
ing of the pair. The inverse situation is also quite 
probable. It seems to us that the described mechanism 
is one of the possible ones capable of explaining the 
Feofilov-Ovsyankin effect£4 ' 5 • The migration probabil
ity is calculated in this case by means of the formulas 
of Sec. 3, in which we substitute 2wo for wo, correspond
ing to excitation of both ions forming the exchange pair. 

We have confined ourselves to consideration of only 
resonant migration of energy. However, the mechanism 
described by us can be extended also to include the non-

resonant case, when the process of energy exchange via 
virtual phonons is accompanied simultaneously by the 
creation or annihilation of real phonons£131 • Here the 
formulas contain an explicit dependence on the tempera
ture. The form of this dependence is determined by the 
processes (single-phonon or multi-phonon) that accom
pany the energy transfer. When phonon production ac
companies migration we have Wij ~ (n~w + 1); in ab
sorption we have Wij - n~w, where 

[ (Mw) 1-' n"'" = exp - - 1 , 
ksT _, 

h ~w is the energy difference between the excited levels 
of the interacting systems, kB is the Boltzmann constant, 
and Tis the temperature. 

The probability of this process can be obtained from 
formula (5) in the third perturbation-theory order in the 
ion-phonon and exchange interactions. In view of the 
unusual complexity of the resultant formulas for Wij• 
we do not present them in this paper. 

Nonresonant energy migration between the CrS+ - CrS+ 
exchange pair and a single CrS+ ion in AlaOs was ob
served inr6 ' 71 • To interpret the obtained results, 
Imbuschr71 used the theory of inductive resonance and 
reached the conclusion that the migration has a quad
rupole-quadrupole mechanism. However, the formulas 
used by him are valid only in the case of rigorous 
resonance between the interacting systems, and inas
much as the observed process is essentially a nonreson
ant one, it follows, in our opinion, that the question of 
the mechanism of energy migration between the exchange 
pair and the single ion in ruby remains open and calls 
for further study. In addition, the operator of the quad
rupole-quadrupole interaction does not contain an opera
tor responsible for the change of the multiplicity of the 
states of the single ion, whereas the ground and excited 
levels of Cr3+ in ruby have different multiplicities. 

In particular, using formula (12) of the present paper 
and the characteristic values of the parameters of the 
interaction of single Cr3+ ions with the Ah Os lattice 
and Ji = 10-15 erg (value of the exchange-interaction en
ergy of the CrS+- CrS+ pair), we get Wij ~ 104 sec-1 • 

This exceeds the experimentally observed value. But the 
process considered by lmbusch is nonresonant and 
should be described by the next order of perturbation 
theory in the ion-phonon interaction r131 , which should 
naturally lead to a decrease of Wij· 

In conclusion, we consider it our pleasant duty to 
thank U. Kh. Kopvillem for his interest in the work and 
valuable remarks. 
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