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The thermodynamic stability of a classical system of strongly interacting charged particles is con
sidered. An investigation of various kinds of perturbation leads to the conclusion that a system of 
this kind cannot be stable against all forms of fluctuations simultaneously. The stability regions 
with respect to various kinds of fluctuations are indicated. 

1. In recent years the properties of a system of 
charged particles that exhibit strong interactions 
(dense plasma) has attracted a great deal of attention. 
A characteristic feature of a system of this kind is the 
large value of the interaction parameter, which is 
given by Ycl ~ e2{3n113 in the classical case and };qu 
~ d/ao in the quantum mechanical case ( d ~ n -l 3 is 
the mean distance between charged particles, {3 = 1/T 
is the reciprocal temperature and a0 is the Bohr 
radius ) . This situation arises from the complexity of 
a theoretical investigation of a dense plasma since the 
usual perturbation-theoretic methods do not apply. It 
is interesting to note one feature of a dense plasma, 
the fact that the classical or quantum-mechanical 
nature of its behavior is determined exclusively by 
degeneracy effects. We find that collisions between 
charged particles can be described classically. This 
follows from the smallness of the ratio of the 
de Broglie wavelength of the particle l ~ ti/mv to the 
mean amplitude of the Coulomb scattering f = e2{3. For 
a nondegenerate dense plasma 

(1) 

where A ~ ti2m-1{3n213 is the degeneracy parameter; in 
the present case A « 1 and y cl >> 1. For the case 
of a degenerate plasma with strong interactions we 
have 

l If = 1 / Ai'qu, (2) 

since A» 1 and Yqu » 1. 
The first analysis of a Coulomb system with strong 

interactions was carried out by Wigner[ 1 J who, on the 
basis of a model for the crystalization of an electron 
gas, computed the correlation energy in a positive 
charge that provided a neutralizing background at 
T = 0. Later, the calculations carried out by Wigner 
were refined inr2 ' 3 l in which calculations were made 
of the coupling energy and the zero-point energy of the 
electron crystal. In the classical region a correspond
ing investigation has been carried out by Berlin and 
Montroll r4 r, who obtained an expression for the free 
energy of the charged particles for reasonably large 
values of Ycl· An important achievement of the work 
in[ 4 J is the fact that this work did not make use of any 
physical modeli for example, crystalization. Later, it 
was shown in [s that crystalization cannot occur in a 
dense classical plasma. 

However, in the work cited above no attention has 
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been given to questions pertaining to the thermody
namic stability of the systems that were treated. For 
example, in the model used by Wigner, the quantity 
(a P ;a V )T is found to be greater than zero, which in
dicates that the system is unstable with respect to 
mechanical perturbations. On the other hand, it is 
obviously important that the conditions for thermody
namic stability be satisfied because these determine 
the possibility of the very existence of equilibrium 
strong-interaction Coulomb systems. This point has 
been made in[s] where, in particular, a stability condi
tion has been obtained for a dense classical plasma 
with respect to fast mechanical perturbations, that is 
to say, for variations in the volume of the system that 
are so rapid that the composition of the system cannot 
change. 

However, the stability of a multicomponent system 
with ionization reactions and recombination reactions 
must satisfy additional conditions beyond (a P ja V )T .~ 
< 0; these conditions are associated with other kinds 
of perturbations which can drive the plasma away from 
the equilibrium state. 

2. Let us consider the stability of a system with 
respect to a mechanical perturbation which can be 
represented as a change in the volume of the system 
that occurs on such a slow time scale that a steady
state chemical equilibrium can be maintained at all 
times. 1> We shall assume that the original number of 
atoms is N~. Let the ionization reaction 

A ~A++ e 

be characterized by the stochiometric coefficients 
va = -1 and lle,i = 1, in which case 

Na- Na0 =vas. N. = v.!;, N1 = '~>16, (3) 

where ~ is the degree to which the reaction is com
pleted (the number of elementary reactions that occur). 
The free energy of the system is a function of the 
variables T, V and ~ , that is to say F = F ( T, V, ~ ) . 
The pressure is given by the expression 

P=-(oF) =-(_!!_) -(oF) (!!) (4) 
, av T • av T, 6 a~; T, v , oY T 

Since the system is in a state of chemical (ionization-

1lThe incompleteness of analysis of the mechanical stability con
ditions without the calculations of (oP/oV)T has been pointed out by 
K. I. Seryakov. 
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recombination) equilibrium then (a F ja~ )T v = 0 and 
' 

P = -(aF I av)r,;. {5) 

We now compute the derivative of the pressure with 
respect to the volume: 

(~~)To=(~~)T,o+(*)T,)!~)T. (6) 

The derivative (aPjaV)T,~ is precisely the same as 
the derivative computed in [sJ and corresponds to a 
change in the pressure for fast changes in the volume 
in the sense indicated above. This quantity is negative 
when 

(7) 

where na is the density of neutral ~articles and n is 
the density of charged particles (in 51 we have con
sidered, for simplicity, a plasma with single ionization) 
and y jy c = ( 2rr )1/ 3e2{:in113 is the interaction parameter. 
Writing F in terms of the variables T, V and ~ 
{cf.[ 41 ) wehave 

' ' 36 'Y s 'Y 5 s F =Fid---+--ln-+--, 

and thus we find 

( ap I 
1-; • at T, v 

II y, II y, 3 II 

4 1 ( 'Y ) =--- 1--. 
3 IIV y, 

(8) 

(9) 

Differentiating the condition for chemical equilibrium 
L: lliJJ.i = 0 we find 
i 

1 as ) [ 2; ( aft; ) J 1 [ 2; ( aft,) J \ av T = - . i av T,' v;, I ' ar T, v V; . 

Substituting the expressions for the derivatives 
(ap.iJav)T,~ and (ap.iJa~ )T,V obtained from (8) 
finally we have 

( ap) ( ap) 1G 
8VT avT,, 9flVt4 7) (-y/yc-- n-1-na-1 

' 3 3 

(10) 

(11) 

It is then evident that when the condition in (7) is satis
fied the first and second terms in (11) are negative. 
Thus, the stability of the system treated in[5 J with re
spect to a fast mechanical perturbation automatically 
implies the stability of the system with respect to a 
slow {chemical equilibrium) mechanical perturbation. 
Using the method employed by Landau and Lifshitz[sJ 
it is easy to show that the derivatives ( oP/aV)T and 
(apjav)T ~ are related by an inequality which fol
lows from'the LeChatelier principle: 

( 8P) ( aP) - <- <0. 8V T,, 8V T 
(12) 

However, it is evident from (11) that (12) can only be 
satisfied when 

(13) 

that is to say, when the density of neutral particles is 
low. However, this condition is in opposition to the 
condition for mechanical stability (7). 

In order to understand this relationship we write 
Eq. (6) in the form 

{ !_P_) - (!!__) + (_!_'!_)z / ( 82F) (14) 
\ 8V T- 'JV T, 0 aV 8£ T/ 8£2 T, v. 

It follows from (14) that the additional term added to 
(aPjaV)T ~ will be negative if a 2F/ae > 0. But the 
condition a F ja~ 2 > 0 is the condition for a minimum 
in the free energy as a function of the degree of com
pleteness of the chemical reaction, i.e., the condition 
for stability of the chemical equilibrium in the system. 
Thus, although the mechanical equilibrium of a dense 
plasma as treated in[5 J is stable, the chemical equili
brium is unstable and fluctuations in the composition 
of the plasma can move the system away from the 
equilibrium state. Simultaneous stability of the chem
ical and mechanical equilibrium in a dense plasma can 
be achieved only when the dense plasma is formed 
from an easily ionized component (for example, an 
alkali metal) when this component is "dissolved" in 
a medium that cannot be ionized easily (an inert gas). 
At suffieiently high temperatures the alkali metal will 
be almost completely ionized and the condition for 
chemical stability 

na { }!__y__- }___) < n, 
· 3 Yc 3 

(15) 

can be satisfied, where na is the density of the atoms 
of the alkali metal. On the other hand, the stability 
with respect to the mechanical perturbations will be 
provided when 

na + n.4 > ( ~_y__-2 )n, (16) 
' 3 Yc 3 

let us say for a sufficiently high density of the inert 
gas ( nA is the density of the atoms of the inert gas). 

It should be noted that meeting the requirements for 
mechanical and chemical stability does still not 
guarantee complete thermodynamic stability for a 
plasma. A multicomponent system also requires sta
bility with respect to diffusion which, in the absence 
of the chemical reaction, can be reduced to a require
ment in terms of a positive definite quadratic form:[ 7 J 

~ft"bN,oNh > o, ft;> = (aft, 1 aNkh ,.. (17) 
i, k 

If chemical reactions occur in the system and these 
are independent of the diffusion the analogous condi
tion can easily be shown to be 

~ '''" V;Vn(61;) 2+ ~ ftmn bNmbN, > 0. (18) 
i, k m,n 

In any case, in order for this quadratic form to be 
positive definite it is necessary that the diagonal ele
ments be greater than zero. 

2; ftih V;Vk > 0, 
i, k 

ftmm > 0. 

(19a) 

(19b) 

The condition in (19a) represents the condition for 
stability of the chemical equilibrium (15). However, it 
is not possible to satisfy the condition in (19b) since 
the quantity 

(20) 

is negative at large values of y /yc. Thus, if we as
sume that the diffusion and the chemical reaction pro
ceed independently as has been done in the derivation 
of the condition in (18), a dense plasma is always un
stable against diffusion even if the stability require-
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ments for chemical and mechanical equilibrium are 
satisfied. 

Since the rate of the chemical reaction, ionization
recombination, is significantly greater than the diffu
sion rate it is reasonable to assume that the diffusion 
occurs in the presence of a local chemical equilibrium 
at each point of the system, that is to say, the follow
ing relation is not violated by diffusion: 

Jla= J.te+ lli· (21) 

We shall not attempt to examine the general rather 
complicated conditions for stability with respect to 
diffusion in a system characterized by rapid chemical 
reactions. However, we may note that the mathematical 
problem reduces to the search for aminim"\lm, with 
respect to the number of particles, for the free energy 
of the system with the affinity of the chemical reactions 
:E J..LP'i = 0. 
i 

The stability conditions obtained in this way can be 
written in the following form for our case: 

:JlAA > 0, 

z z 
J.tee + 2 Jleee Jla + 16 Jlee - 16 !la !lee Jl;•• > 0, 

f.laa J.l.aa Jl.aa 

where 
I il2J.te ) 

!leee = \ -iJ-" 2 ' 
He T, V 

( il2J.ta) 
!laaa = iJN z a T, v 

(22a) 

(22b) 

It is evident that the condition in (22b) cannot be satis
fied for large values of y / y c. 

Thus, in the case in which rapid chemical reactions 
occur a dense plasma is unstable against diffusion. 

3. The analysis presented above shows that a dense 
plasma in which y c1 >> 1 cannot exist as a stable 
system under any conditions. It should be noted, how
ever, that the time required for the plasma to loose 
equilibrium by virtue of diffusion is probably much 

greater than the time associated with losses that derive 
from other instabilities. The question of what the 
ultimate equilibrium state is for a system as a result 
of various kinds of instabilities remains open. It is 
clear, however, that if the system divides into phases[s] 
then either one of these can be a Coulomb system 
characterized by y cl >> 1. [s] We note that it is also of 
definite interest to examine the effect of the departure 
from ideal conditions in the neutral gas on the stability 
of the plasma when the conditions for mechanical sta
bility are satisfied. 

In conclusion the authors wish to thank A. M. Sem
enov for many valuable discussions. The authors are 
also indebted to A. A. Rukhadze for his interest in the 
work and for valuable comments and to A. v. Voronel' 
and M. Sh. Giterman for discussion of a number of 
points in the work. 
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