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The dependence of the critical field strength is investigated in detail for a case which is intermediate 
with respect to those previously studied, viz. when the film thickness is of the order of the electron 
volume mean free path. Comparison of the results with experiment yields the BCS correlation 
parameter and the volume mean free path. The results are also compared with published experi
mental data on critical fields of thin films of tin, indium, and mercury. 

CRITICAL magnetic fields of thin films for diffuse 
and specular reflection of electrons from a film sur
face for various impurity concentrations have been ob
tained in the work of one of the authors[ll (quoted be
low as I and II; see also the paper by de Gennes and 
Tinkham [2 J). However, previously obtained results 
refer only to the various possible and very numerous 
limiting cases which are usually not realized under 
experimental conditions. The only exception is the 
case of Maki [3 J ( l « L, l is the mean free path and L 
the film thickness) which occurs for not too thick un
annealed films when the linearized Ginzburg- Landau 
equation is applicable in its original (for 1 - T /T c « 1 ) 
or modified form (at arbitrary temperatures). 

In present-day techniques of preparing thin films 
the volume mean free path is usually comparable with 
the film thickness; in other words, we are dealing with 
a case which is intermediate between those considered 
by de Gennes and Tinkham and Maki. The expression 
for the critical field applicable in this instance (as
suming diffuse reflection of the electrons from the 
surface) has been obtained in the Appendix. The equa
tion for the critical fields is of the form 

(1a) 

or 

( eH\2 = 72 ~ h (_!_) F (!__ \ ~ 4,14 h (_!_ \ p( !__ \ (1b) 
eli! n /ivl£2 L T,. J 'Sol£2 ' L I \ rJ 

The functions f1 ( x), f2 ( x), and F ( t ) are defined 
in the Appendix [ (A.9}, (A.14}, and (A.13) respectively) 
and their plots are shown in Figs. 1-3. The limiting 
values of these functions are as follows: 

j.(x)={1+Bftsx, x~1 
(2) 

81 /128 + 9/,.x, X :;;..1 ' 

{ 1 +Bfsx, x~1 (3} 
fz(x) == '"I +'"I x X :;;..1' 135 9 ' 

F(t)=r'N8y, t=O 
(4) 

1-t, 1-t~t' 

It is seen from the graphs that the functions fd x) 
and f2 ( x) differ little from linear functions; they can 
be approximated with good accuracy by the straight 
lines: 

ft(x) ~ 1 + 0.52x, (5) 

551 

j.(x) ~ 0.9 + 1.78x. (6} 

One can readily verify that in the limiting cases 
l « L and l » L Eqs. (1a) and (1b) are equivalent to 
expressions (3.15) and (3.22) of I. For this it is suf
ficient to utilize the corresponding limiting values (2) 
and (3} of the functions fl(x) and f2 (x). 
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FIG. I. Plot of the function f1 (x). FIG. 2. Plot of the function f2 (x). 

Strictly speaking, expressions (1a) and (1b) are ap
plicable if the following conditions 

min {£o', 12} < ~oL I (1- TIT,), 
L'po :;;.. min g., I}, 

(eH I cfi)L' ""'{ 1. 

(7) 
(8) 

(9) 

are fulfilled. The fulfillment of conditions (7) and (8) 
is in practice uniquely related to the temperature de-

1,0 
T/Tc 

FIG. 3. Plot of the function F(t). 
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FIG. 4. Experimental results on the critical fields of thin films of 
tin treated with the use of the function f 1 (x): X -data of [7], 0-data 
of [5], £;-data of [6 ]. 

pendence of the critical field: when H2 ( T) is propor
tional to F ( T /T c ) (at least in the narrow temperature 
range near Tc where F = ll. T/Tc) then if condition 
(9) is fulfilled relations (1a) and (1b) are valid, whereas 
in the opposite case they are not valid. The restriction 
(9) is not so essential, since the case when eHL2/cti 
>> 1 corresponds (for the same temperature depend
ence of the critical field) to the region where the Ginz
burg- Landau theory is applicable. This case has been 
studied in detail in Abrikosov' s papers. [ 4 l 

A comparison of expressions (1a) and (1b) obtained 
by us with experimental data provides information 
about the value of the BCS parameter ~ o and the vol
ume mean free path l if it is assumed that the volume 
mean free path is (in a given series of experiments) 
the same for films of various thicknesses. By plotting 
the dependence of H2L 3/F ( T/Tc) on L and of 
H2L2 /F ( T/Tc) on 1/L from experimental data we ob
tain curves which should correspond to the functions 
ft (Fig. 1) and fz (Fig. 2), i.e., they should approxi
mately be straight lines. From the slope of these 
straight lines and the values of these functions for 
zero argument one can determine ~ o and l. 

We have thus investigated the published experi
mental data on the critical magnetic fields of thin 
films of tin, indium, and mercury. The data of 
Zavaritski!,[sJ Blumberg,[eJ and of one of the authors[ 7J 
on the critical fields of thin films of tin processed by 
the indicated method are presented in Figs. 4 and 5; 
the data of Appleyard [a l for thin films of mercury are 
presented in Figs. 6 and 7. As can be seen from these 
figures, the spread of the experimental results is very 
considerable; this is apparently connected with errors 
in determining the film thickness (the thickness ap
pears in the formula as a square and cube). The large 
spread is also possibly due to differences in the 
method of preparation of films of various thicknesses
a small difference in the technique and in the tempera
ture of deposition and annealing can noticeably affect 
the mean free path of the electrons. 

In Figs. 4 and 6 the quantity (eH/cli)2L3/7.35F(T/Tc) 
is plotted as a function of L 1> so that the obtained de
pendence should correspond to ~(i 1 fr(L/l). If it is ap
proximated by a straight line, then the ordinate for 
L = 0 is according to (1a) and (6) equal to the recipro
cal of the BCS correlation parameter ~ 01 and the slope 
is equal to 0.55/~ 0 1. Analogously, the dependence of 

!)Since in the absolute system (e/ch)2 = 2.31 X 1014 , measuring 
the field in Oersteds and the film thickness in centimeters, we plot 
along the ordinate axis the quantity 0.3 14 X 1014H2 UTe/.!', T [cm-1 ]. 

Z·/05 4·105 
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FIG. 5. Experimental results on the critical fields of thin films of 
tin treated with the use of the function f2 (x): £;-data of [5 ], 0 -data 
of [6]. 

(eH/cti)2L2 /4.14F(T/Tc) on 1/L2 > correspondingto 
( n 0 r1 f2 ( l/L) is given on Figs. 5 and 7. If it is ap
proximated by a straight line then the value of the 
ordinate for zero argument is equal [in accordance with 
(1b) and (6)] to 0.9 ( l~ 0 r 1 and the slope corresponds to 
1.78~(i 1 • 

We note the clear discrepancy between the observed 
results and the Ginzburg-Landau theory: this theory 
would lead in Figs. 4 and 6 to a straight line passing 
through the origin, and in Figs. 5 and 7 to a horizontal 
straight line. 

The values of ~ 0 and l which we obtained as a re
sult of such a treatment are tabulated. Since the values 
of ~ o and l for tin determined by two methods [with 
the use of the functions f1 ( x) and fz ( x)] do not differ 
appreciably ( ~10 percent), we present their average 
values. The considerable discrepancy between the 
values of ~ o obtained from the data of Zavaritski'l[sJ 
and Blumberg[eJ can be explained by differences in the 
method of preparation of the samples and in the meas
urement of their thickness: a systematic error of the 
order of 15-20% in determining the thickness will lead 
to precisely such a discrepancy in the values of ~ o. We 
note that the data of[7 J treated in the same way led to 
approximately the same value of I; o as the results of 
Zavaritskil. The same method of determining the film 
thickness was used in these papers. 

The two methods of processing the experimental 
data described above lead in the case of mercury to 
somewhat different values of ~ o and l (based on the 
data of Appleyard [a]); both results are therefore pre
sented in the Table. The table also includes values of 
~ 0 and l for indium, obtained from the data of Toxen.[ 9 J 

For comparison the table presents values of ~ o from 
Lynton's book[1o] calculated according to the formula 

so= 0.18/iv / T,, (10) 

where the velocity v on the Fermi surface was obtained 
from data on the anomalous skin effect, as well as 
values of ~ 0 which we obtained by recalculating the 
data of Faber[u] on the critical supercooling field in 
accordance with the formula 

24v2 en tlT eli tlT 
£02 = ---~~~ ~ 0 918-~~~ (11) 

7n2U3) eHc1 T, . ellc1 T, . 

2>If the field is measured in Oersteds and the sample thickness in 
centimeters, then one plots on the ordinate axis 0.56 X 1014 

H2 UTc/L',T [cm-2 ]. 
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FIG. 6 
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FIG 7. 

FIG. 6. Experimental results on the critical fields of mercury films [8 ] 

treated with the use of the function f1 (x). 
FIG. 7. Experimental results on the critical fields of mercury films [8 ] 

treated with the aid of the function f2 (x). 

The considerable discrepancy between the values of 
~ o for tin obtained from the data of1101 and [uJ is ap
parently connected with the strong anisotropy of tin. 

Jn conclusion, it should be noted that in complex 
investigations of thin films it is extremely desirable 
to measure the residual resistivity of the investigated 
films in order to be able to check the volume mean 
free path. The accuracy in the determination of the 
thickness of the samples should be sufficiently high, 
and the method of preparing films of various thick
nesses must be absolutely identical, in order to insure 
that the volume mean free path be independent of the 
sample thickness. 

APPENDIX 

The problem of finding the critical field reduces, as 
is well known, to finding the maximum field for which 
there exists a nontrivial solution of the integral equa
tion 

+L/2 

-~~L'l'(z!)= ~ K(z 1,z2)L'l'(z2)dzz, {A.1) 
\' 1·1 -L/2 

where the kernel of the integral equation can be repre
sented in the form 

J( (z1, z2) = 4nT 2; <D (w; z,, z2). (A.2) 
ro>O 

The functions <P ( w; z 1, Z2) for pure films have been 
obtained for diffuse and specular reflection laws in I 

. and II. Analogous functions for contaminated films 
<1> 7 ( w; z1, z2) can be found, as was shown in I, from 
the integral equation3 ) 

(A.3) 

If we expand the function <P ( w; z1, z2) which is sym
metrical with respect to Z1 and Z2 in the eigenfunc-

3lHere as in I and II we consider only the case of isotropic scattering 
on the impurities. As was shown by Maki [3 ] and by de Gennes and Tink
ham, ['] for very contaminated films the critical fields depend on the 
transport times and the mean free path. 

tions: 

then 

where 

1·10'.cm I "··10', em :1 Method of determination 

Tin 
0.6 '"l] .. " 1.1 3 'R From the cnt1cal magnetic 1el s 

2.0 2 ' 3 of the films 

2:3 From the anomalous skin effect ry 
4. 2 From the supercooling field 

Mercury* 
0,5 1. 2 } j From the critical magnetic fields 'I 0, 7 0,9 of the films 

Indium 

0.8 3.1! From the critical magnetic fields 
of the f!Jms 

4/! From the anomalous skin effect 

!):2 From the supercooling field 

Experi
mental 

data 

['] 
['] 
!'] 

(10] 

["] 

('] 

['] 

["] 

["] 

*Upper line-data obtained with the use of f1 (L/l), and 
lower line-with the use of f2 (1/L). 

2; !pn ( w, z,) 'Pn (w, z,) 

An(w) 
(A.4) 

(A.5) 

(A.6) 

As has been shown in I, for eHL2 << 1 the solution 
of Eq. (A.1) corresponding for given T to maximum H 
(or for given H to maximum T) does not depend on the 
z coordinate, so that only the functions '{Jo ( w, z ) which 
are almost independent of z are in this instance im
portant in the kernel K{z 1, z2) of (A.2). Then, taking 
into account (A.5) and (A.6), the equation for the criti
cal field takes on the following form: 

1 "t 

~~T = 4nT ~J1.o(w+1/2-r) -1 
(A.7) 

The maximum eigenvalue of .\ o ( w ) can be found by 
integrating the general expression for <P ( w; z 1 , z2 ) 4 ) 

obtained in I [see (A.1)] over z 1 and z2 with the con
dition eHL 2 « 1: 

(A.8) 

where 
+% "00 d 

J,-1 (x) = 4x2 ~ .~ d£, d£, ~ : ([12 - 1) (1;,2- sz2) 2 exp [-2Xf11 Si- S21] 
--· . 1 

+Y, oo d 1 \ 1 2 [ 1 
+ 8x J,;d(; ~ : ([1-ft (-;;- (;2 ) exp -2x[1 (r; +--;;- )]. {A.9) 

These expressions are not difficult to integrate; as 
a result one obtains a very cumbersome formula which 
we do not present here. The limiting values of h (x) 
have been presented above in (2); the graph of the func
tion is shown in Fig. 1. 

4lwe consider here the more realistic case of diffuse reflection. Spec
ular reflection has been studied by Thompson and Baratoff. [12 •13 ] It 
appears useful to compare the experimental data also with their re
sults. [12,13] However, in view of the large spread of the experimental 
points, it has so far been impossible to differentiate between diffuse 
and specular reflection on the basis of experiments on the critical fields 
of thin films. 
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Substituting (A.8) in (A.7) and taking into account the 
fact that for 

(eH) 2L'I ~ 1 (A.lO) 

one can neglect the second term of (A.8) (if w -2::. 1/T), 
we obtain the equation 

_1_=!w.TL ~[zw+ (eH)'L3v _,(!'_)]·-' (A.ll) 
vI t.l LJ 16 it t · 

w>O 

Summing over w with account of the cut-off at the 
Debye frequencies, we find an equation for the critical 
field: 

(A.12) 

From (A.12) one can obtain H as an implicit func
tion of the temperature. If one introduces the function 
F ( T /Tc) defined by the expression 

lnt=,P (~)-tt(~+~F(t)), (A.l3) 
, 2 2 n 2t 

then one obtains for the critical field the formula (la). 
The graph of the function F ( t) is shown in Fig. 3 and 
its limiting values are given in (4). 

In place of f1 ( x) one can introduce the function 

16 ( 1 ) h(x)= -It - . 
9x x 

(A.14) 

The critical field is then given by expression (lb). 
The limits of applicability of (la) and (lb) [see (7) 

and (8)] follow from (A.lO) and from the condition of 

applicability of the quasi-classical approximation (see 
I and II) respectively. 
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