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We have been able to give a basis for and to generalize the earlier proposed phenomenological scaling 
hypotheses by considering phase transitions using the methods of quantum field theory. We show that 
the critical behavior of most quantities of physical interest such as the specific heat, correlation ra­
dius, magnetic susceptibility, etc., is determined by two unknown parameters which are connected with 
an infinite number of Feynman diagrams. The parameters are independent of the properties of the bi­
nary interaction potential but may change when non-binary interactions are included. These parame­
ters are different for systems of differing symmetry (Bose gas, Ising model, Heisenberg ferromagnet). 
The behavior of the correlations near the transition point is described not only by the above-mentioned 
parameters but also by unknown functions. We have calculated the asymptotic behavior of these func­
tions at distances r » rc (where rc is the correlation radius). Depending on the symmetry of the cor­
related quantities two kinds of asymptotic behavior may occur: (4.4) or (4.12) in three-dimensional sys­
tems and (4.4') or (4.13) in two-dimensional systems. In the two-dimensional case this result agrees 
with calculations for the Ising model. We give in the Appendix a simple diagram technique for classical 
systems such as the Ising model, a lattice of planar dipoles, or a Boltzmann gas. 

1. INTRODUCTION 

IN the phase transition region fluctuations increase 
anomalously and interact so strongly that perturbation 
theory is useless to describe this behavior. 

Patashinskii and Pokrovskii Cll were the first to 
make an attempt to select and sum Feynman diagrams 
which are important in the phase transition region. 
However, their methods when applied to the plane Ising 
model, where an exact solution exists, gave an incor­
rect answer.c 2 J Because of this a large number of pa­
pers appeared in which phenomenological hypotheses 
about the structure of the substance in the vicinity of 
the phase transition were advanced (see the reviewscs, 
4l). Accepting these hypotheses one was able to con­
struct a theory with two unknown parameters which 
were determined by the thermodynamics of the system 
and by the way the pair-correlations fall off in the tran­
sition point. The behavior of most other physical quan­
tities could be expressed in terms of these parameters. 
Some unknown functions also appeared in the theory 
which described the behavior of the correlations in the 
vicinity of the transition. 

In the present paper we study the region of the phase 
transition microscopically using only general proper­
ties (such as the Ward identity, Dyson equations, and so 
on) of many-body systems. We show that all phenome­
nological laws established earlier follow from these 
general properties. This result confirms the physical 
picture which led to the scaling hypotheses.cs, 4 J Ami­
croscopic approach to the problem enables us to pro­
ceed further than was possible with a phenomenological 
analysis. We find the asymptotic behavior of the corre­
lation functions at distances larger than the correlation 
radius. We elucidate the degree of universality of the 
unknown parameters and functions. It turns out that the 
algorithm to obtain the scaling relations is not more 
complicated than in the phenomenological approach. 
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2. CORRELATIONS IN THE CRITICAL POINT 

We consider the phase transition in the Ising model 
of arbitrary number of dimensions. We shall use a di­
agram technique (see csJ and the Appendix of the pres­
ent paper) for its analysis. The derivation of the gel.­
eral diagram equations is given in the Appendix as it is 
practically completely the same as the corresponding 
calculations for a Bose gas given in c ll. 

In the transition point the equation for the correla­
tion function of the spins D(k) in the momentum repre­
sentation has the form 

D(k) = [IT(O)- IT(k)]-•. 

TI(k) can be expressed as a functional of D(k) as is 
shown by the following diagram: 

ll(k)-D + e 

(2.1) 

(2.2) 

Equation (2.1) is valid for I k I r 0 « 1 (r 0 is the range of 
the interaction). To understand the nature of the solu­
tions of Eq. (2.1) we consider its iteration where we 
take as zeroth approximation the equation 

D-1(k) = IJiO>(O) - If'O>(k), (2.2 ') 

or analytically 
D-1 (k) 

S dk,dk2 
=- ---[D(k1)D(k2)D(k1 +kz-k)-D(k1)D(kz)D(kt +kz)]. 

(2n) 6 

(Equations such as (2.2') were solved in Patashinskii 
and Pokrovskii's paper.C 1 l) When lklr0 "" p> one finds 

nwhen lklr0 - I one must retain in (2.1) the inhomogeneous term­
the bare Green function -(kr0 ) 2 • The analysis given below is therefore 
valid only when lklr0 < I. 
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the solution of (2.2') from dimensionality considera­
tions. Indeed, 

[D]-1 = (k]'(D]' (2.3) 

(square brackets indicate the dimensionality). Hence 

D (k) oo 1 k 1-"~o as k-+ o. (2.4) 

When substituting (2.4) into (2.2') values of I k1 1 and 
I~ I~ lkl « 1/r0 are important in the integral and (2.4) 
is thus indeed the solution of (2.2). 

To obtain the next approximation we must substitute 
(2.4) in the unconsidered diagrams. Logarithmic di­
vergences occur then. Logarithms occur in proportion 
to the iterations in ever increasing powers and may dis­
tort the zeroth approximation (2.4) so that it is no long­
er recognizable. 

For an analysis of the properties of the exact solu­
tion we use a method proposed in a paper by Gribov and 
Migdal, [ 6 J in which they considered a problem formally 
analogous to the problem of phase transitions. This 
method is based upon the unitarity condition for the 
Green function. In our theory the Green function D(Jtl) 
is real and there is no unitarity condition for it. How­
ever, it can be derived for the analytical continuation of 
D(Jtl) to negative k2• Such a possibility is connected 
with the fact that a field theory with a purely Euclidean 
metric where k2 = k~ + ky + k~, is equivalent to a the-

ory with kl = k~ -- k),- k~ for the Feynman condition 
for going round poles. Knowing D-1 (Jtl) or Im D-1 (k2) 

for negative k2 we can without any difficulty recover 
D-1 for positive k2 • For instance, if 

we have 

Im D--1 (k2) =A ( -k2)a when k2 < 0, 

(k2)a 
D-1 (k2) = A-. - + const. 

s1n Jta 

The quantity lm D-1 is obtained for k2 < 0 from the 
unitarity condition. In a Feynman kind of theory the 
unitarity condition for it is well known. [ 7 , 81 It has the 
form 

[m0-1(k)= --e- + ----<@-+ (2,5) 

where the imaginary part of the Green function corre­
sponds to the lines with a cross. Analytically 

ImD-1(k) =~ lf4 (k1,k2,k-k1-k2)1 2 

X lmD(k1)ImD(k2)ImD(k1+k2-k)dk1dk2 +... (2.5') 

In Eqs. (2.5) and (2.1) there is no dimensional pa­
rameter which can fix the scale so that D and r must 
be power functions of k2 • The powers or dimensionali­
ties of the Green function D or the many-point dia­
grams r n must in principle, as was shown in [ 61 , be 
determined from the unitarity condition and the equa­
tion for the vertex part. [lJ We have, however, no cal­
culational method to determine them. We shall thus use 
(2.5) only to express the dimensionalities of the many­
point diagrams r n in terms of the dimensionality of 
the Green function D. 

Comparing the dimensionality of the n-th term in 

1 Eq. (2.5) with D-1 we shall have2 ) 

(2.6) 

where a is the dimensionality of the space. (yVe have 
in (2. 6) taken into account the fact that in the term with 
n - 1 intermediate particles there are n - 2 integra­
tions over independent momenta.) If we give the dimen­
sionality of D, assuming that in the coordinate repre­
sentation D(r) oo r -a we can use (2. 6) and take into ac­
count that D(k) oo ka -a and we find 

(2. 7) 

The contents of Eq. (2. 7) consist in the fact that 

fn(k1,k2, ••• ,kn) = lk1la-na/2 yn( ~~~ , ~~:r····· ~~~- ). (2.8) 

We bear in mind that (2.8) is valid if all lkil « r 0 • The 
ratios of the ki can be arbitrary. Equation (2.8) is of 
interest because the r n are connected with the corre­
lation functions of n spins which in turn determine the 
reaction of the system to a magnetic field. 

To establish this connection we note that the change 
in the free energy in a magnetic field is given by the 
following diagrams: 

+ ... (2.9) 

The functions Qn(rl> r 2, ... , rn) defined in Patashinskii 
and Pokrovskii 's paper[ 91 by the relation 

onF 
Qn(r1, ... ,rn) = oh(r1)-~-~h(rn) (2.9') 

(F is the free energy of the system in a magnetic field 
h(r)) are thus connected (in the momentum represen­
tation) with the r n by the formula 

Qn(k1, ... , kn) = D(k,) ... D(kn)fn(k~o ... , kn), 

k1 + k2 + ... + k, = 0. (2.10) 
Therefore 

(2.11) 

The change to the coordinate representation introduces 
n - 1 integrations over dak and as a result we get 

Qn(lt, ... , ln) ~ ,-na/2 (2.12) 

(we took into account that k ~ 1/r). Written out com­
pletely, Eq. (2.12) looks as follows 

Q ( ) -1 ~-n-a/2 (~ ~~ n l~o ... , ln - r1 qn I I , ... , I I . 
, r 1 r 1 I 

(2.13) 

The result (2.13) is the same as the phenomenologi­
cal formula found in [ 9 • 1Dl. 

The microscopic approach in the transition point 
· based upon the unitarity condition gives thus the formu­
i lae of the phenomenological theory. 

I 
2lrn ref. [6 ] persuasive arguments are adduced to suggest that all 

terms in the unitarity condition are of the same order. In the problem 
considered here these arguments can be strengthened if we use the fact 
that each of the terms in 1.8 [sic!] is positive. 



MICROSCOPIC DESCRIPTION OF CRITICAL PHENOMENA 535 

3, VICINITY OF THE PHASE TRANSITION AND 
THERMODYNAMICS. ALGORITHM FOR THE 
SCALE RELATIONS 

For the critical value of the temperature all terms 
in the unitarity condition (2.5) had singularities in one 
point, k2 = 0; these singularities were superimposed 
upon one another and gave the total singularity of the 
Green function D(J.t2). When the temperature is slightly 
raised the position changes. We show in the Appendix 
that Eq. (2.1) for T if. T c has the form 

1 T- T, 
D (k -c) - --=-:-::-::-c----=-c:---:- -c ro --- (3 1) 

' - -c + II (0, 0) - II (k, -c) ' T< ' 

Equation (3.1) shows that the Green function does not 
become infinite at k = 0 when T if. 0. Using the field 
theory language, one can say that when T if. 0 the quanta 
of the emitted field (the field of the fluctuations in the 
magnetic moment) have a non-vanishing physical mass. 
The Green function of such a field depends only on the 
momentum and this physical mass which determines the 
scaling (see also [ 73 ): 

:1 ( k2 ) 
D(k) = lkla-<) m2(-c) .. (3.2) 

(Here, m is the physical mass, the factor 1/lkla-a 
was added in order that as m __,. 0 the function (3.2) 
changes into the function (2.1).) 

The quantity rc = 1/m is the correlation radius. The 
problem arises how this radius is connected with T. So 
far one thing is clear: m -- 0 as T __,. 0. More detailed 
information about r c ( T) can be obtained from the Ward 
identity. This identity (as shown in the Appendix for the 
Ising model) has the form 

lq=J 
J'(k.o) =~ 

k k 

(3.3) 

In the transition point 5" (k, q) must satisfy the unitarity 
condition and it has thus a well-defined dimensionality 
y (we do not evaluate this). If we substitute (3.2) into 
(3.3) and after integration put T = 0 we get by equating 
dimensionalities: 

[D]-t [k]"-" 
[$""] = Tl = ~ = [k]', 

[k] = [-c]tl(u-v-u) == [-c]P = [r,(-c) ]-t, 

(3.4) 

The dimensionality of 5", as we stated already, is de­
termined by unitarity in the transition point and the 
same is true of the dimensionality of D. The unitarity 
condition determines thus, in principle rc( T ), 

An obvious generalization of the discussions given 
here leads to the following formula for Qu in the vicin­
ity of the transition: 

1 ( r2 rn rt \ (3 5) 
Qn(rt, ... ,rn) = jr,jna/2qn ~, ... ,~, rc(<) )" • 

This result again confirms the phenomenological the­
ory. [g, to·l 

The behavior of the correlations in the neighborhood 
of the critical point is connected with the thermodynam­
ics of the system. To establish this connection we use 

i 

the formula for the average energy E in the Ising 
model: 

(3.6) 

(C is the specific heat, Vk the interaction potential of 
the spins). It is impossible to substitute Eq. (3.2) into 
Eq. (3.6) since in the integrals large momenta k ~ 1/r0, 

for which (3.2) is incorrect, are important. A renor­
malization is necessary which makes small momenta 
k « 1/r0 important in the integrals. 

To perform this renormalization we note the follow­
ing. The specific heat C can, thanks to (3.6), be ex­
pressed in terms of diagrams of the polarization oper­
ator type: 

(the shaded rectangle is the scattering amplitude). The 
singular part of the polarization operator (3. 7) is de­
termined by the unitarity condition: 

Im~ = -o- + ~+ · ·· (3.8) 

Values of k ~ 1/rc( T) are important in (3.8) and one 
can use the self-similar function (3.2). Equating dimen­
sionalities we have 

(3.9) 

Thanks to (3.3) 5" ~ n-1/r and hence 

c ~ "" /-c'. (3.10) 

Since k ~ 1/r c ~ rf3 we have 

(3.11) 

Equation (3.11) shows that the specific heat is deter­
mined by the function rc(T) and by it alone. Equation 
(3.11) was assumed earlier[ 4 • 53 on the basis of quali-

' tative considerations. 
The discussion leading to (3.11) shows how one must 

obtain general scaling relations. It is necessary to use 
the unitarity condition and the Ward identity (if it ex­
ists). As an example we give the formula for the super­
fluid component density in helium near the ;\.-point. [ul 

The superfluid density is given, as one can easily see, 
by the vector polarization operator: [ 123 

p,~nl'f' --. ---o--- ~JYP2li'r (3.12) 

In the sum over the frequencies Wn c 133 in Eq. (3.12) 
there remains only the term n = 0 since that is just the 
one which determines the most singular part of n11 11 
(see c 13 ); D in (3.12) may denote any of the two Green 
functions which characterize the Bose system c 133 as 
one can easily show that their dimensionality is the 
same; 5"11 is the momentum vertex for which there is a 
Ward identity:[ 133 

5" ~ = iJD-1 I iik~ (f.l = 1, 2, 3). (3.13) 
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Substituting (3.13) into (3.12) we have 

(3.14) 

It is interesting that Eq. (3.14) shows that it is im­
possible to have a superfluid state in the two-dimen­
sional case[ 14 J since then 

~' = In '-+ oo as '--+ 0, 

which physically has no meaning. 

4. ASYMPTOTIC BEHAVIOR OF THE CORRELATION 
FUNCTIONS FOR r » r c( T) 

The suggested approach to the problem of phase 
transitions not only enables us to give a basis of the 
phenomenological theory but also makes it possible to 
obtain a number of new results referring to the behav­
ior of the correlation functions in the region r » r c(T) 
» r 0• In this region the correlation functions are 
damped exponentially over distances "'rc. The problem 
which we pose here consists in finding an exact index of 
the exponent for correlations of different kinds and in 
evaluating the factor multiplying the exponential. 

The possibility and the method of solution of such a 
problem follow from the following considerations. The 
index of the exponent in the r-representation is deter­
mined by the singularity in I k I in the momentum repre­
sentation which lies closest to the real axis. The factor 
is determined by the nature of this singularity. The 
singular points for negative k2 after changing to the 
pseudo-Euclidean metric become singularities of the 
Green function for positive k2 • The position and nature 
of the singular points for k2 < 0 can be studied using 
the unitarity condition. 

We now turn to realizing our planned program. Let 
F(r, T) be some correlation function and F(k2, T) its 
Fourier transform. We have 

dk 1 "" 
F(r 1)= I eikrF(k' -r)--=--1 ksinkrF(k2 <)dk 

' J ' (2n)" 2n2r ~ ' 

(r = I r I). The singularities in I k I are situated as 

G' 

I ! 1:7 
·-.......i...-" 

- ~;=-

(4.1) 

shown in the figure. Changing to integrating along the 
contour C we have 

1 .. 
F(r-r)=-- 1xe-"'lmF(-x2 <)dx (4.2) ' 2n2r J ' . 

X, 

It is clear that the quantities K0 and Im F depend on 
which correlation function we consider. 

We start with the correlations of the magnetic mo­
ments, i.e., with the Green function which occurs in the 

diagrams. The first singularity of such a Green func­
tion in k2 = -k2 is a simple pole at k2 = m2 = 1/r~(T). 
This fact follows from the Lehmann expansion for 
D(k2).[BJ Hence, the asymptotic behavior of D(r, T) has 
the form 

D(r, <) = r-1 exp {-r /rc(<)} as r-+ oo (4.3) 

Using (3.5) and (3.4) we can rewrite Eq. (4.3) in the 
form 

'"~ ~ D(r,T)=--;::;ile-n whenr<~~i. (4.4) 

In a two-dimensional system the multiplying factor 
in (4.4) would be r-1 ; 2 • This was confirmed by Kadan­
off's calculations[ 15 J in the Ising model near the transi­
tion point. The formula from that paper has the form 

,;1/4 
D(r,-r)=~-e-n when r<~i. (r<) '/, 

(4.4') 

The pole is not always the leading singularity since 
the residue in it may vanish either by chance or due to 
symmetry. To explain what was said we consider the 
energy density correlation function in the Ising model 
above the transition point. This function is given by the 
diagrams 

<erEr'> ~ -Q- + -<J)---- (4.5) 

One sees easily that the pole term in (4.5) 

(4.6) 

vanishes identically since above the transition ternary 
vertices are forbidden by the symmetry of the prob­
lem. 

In a Bose gas the pole term is absent in the particle 
density correlation function (polarization operator) for 
the same reason above the transition. 

The asymptotic behavior of correlations of this kind 
is determined by the singularity following after the 
pole-a two-particle branch point at k2 =4m2 = 4r~(T) 
and is proportional to exp ( -r /r c). 

It is necessary when evaluating the multiplying fac­
tor to analyze the nature of the branch point. This 
analysis should be done strictly using the unitarity con­
dition but a simpler and more straightforward method 
consists in summing the main diagrams. The correla­
tion function studied can be written in the form 

tm--®- = -v- (4. 7) 

s-~ ~ ~ -<+--ex+ ~ + ... (4.7 1) 

(The heavy dot indicates all diagrams which do not con­
tain two-particle states.) 

We consider the second term in (4. 7'), gr< 2 >. Direct 
calculation gives 

,ff/(2) co d3k 00 _1~[;~---iq'_ 
(k2 - m2 + iO) ( (q- k)>- m2 + iO) -yq> 2m+ yq2 

~ln(4m2 -q2)as q2 -+4m2• (4.8) 

When obtaining Eq. (4.8) we assumed the heavy dot in 
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(4. 7') to be constant. As q2 - 4m2 this is permissible 
since the diagrams occurring in it have by definition no 
singularity in that point. 

The summation of the geometric series (4. 7'}, each 
term of which is logarithmically large as q2 - 4m2 

. ' giVes 

fJ -In-• (4m2 --q2), q2 -+4m'. 

Substituting (4. 9) into (4. 7) we get 

ImF(q2)oo 

00 1 sd3k6(k'-m')6((q-k) 2-m2 ) 
ln2 (4m2- q') 

a (q'- 4m2 ) 

- ln'J4ni2 - ci'l 

(4.9} 

(4.10) 

Equation (2.10) solves the problem of the determina­
tion of the nature of the two-particle branch point. Sub­
stituting (4.10) into (4.2) we get (as r - oo) 

1 "" dx e-zm, 
F(r)oo-~ e-"' oo--

r ln2 (2m- x) r2 ln2 r · 
2m 

(4.11) 

Using the self-similarity of (3.5) we can rewrite (4.11) 
in the form 

,;3 ~-z exp ( -21'tP) 
F(r,-r)- (rrP)'ln' (rrP) whenr~P>t, (4.12) 

When we repeat the discussions given here for the 
two-dimensional Ising model we get instead of (4.12) the 
equation 

(4.13) 

This is confirmed by a direct evaluation of the energy 
correlation function (see [ 15 1 ). 

The asymptotic behaviors (4.12) and (4.14) are com­
pletely universal and are determined merely by the 
number of measurements and the symmetry properties 
of the quantity whose correlations we study. We must 
bear in mind that the proportionality coefficients in 
(4.12) and (4.14) may vanish-this does not contradict 
unitarity. We see no basis for this so long as we are 
dealing with correlations of scalar quantities such as 
E:r. When we consider vectorial transverse correlations 
threshold zeroes of the vertex parts arise.[sJ This 
changes the asymptotic behavior (4.12). We shall, how­
ever, not write down the corresponding formulae as 
they are only of methodological interest. 

5. QUALITATIVE PROPERTIES AND DEGREE OF 
UNIVERSALITY OF THE CORRELATION 
FUNCTIONS 

We were able in Sec. 3 to connect the thermodynam­
ics of the system and the correlation functions at large 
distances. Another approach to thermodynamics is pos­
sible. In the Ising model the average energy is equal to 

(5.1) 
rr' 

(V is the interaction potential) and is determined by 
the temperature dependence of the correlation ( arar') 
for I r - r' I ~ r 0• In the momentum representation 
large momenta ~ 1/r0 correspond to distances ~r0 ; 

D(k, T) has for any k a singularity as T- 0. This sin­
gularity arises as follows. 

Because of unitarity D(k2, T) has a singularity in k2 

"th •td! 22 2/2 m e pom s K = -n m = -n rc(T) corresponding to 
then-particle threshold. If we consider the T-depend­
ence using the formula rc(T) oo T-(3 we are led to the 
conclusion that the singularities in T for fixed k2 lie in 
the points 

(5.2) 

As N - oo the singularities (5.2) bunch at the point 
T = 0 and this point is thus singular for all k2• The sin­
gularity arising from the bunching of thresholds creates 
thermodynamic singularities in (5.1).3 > 

We consider the problem of the dimensionless pa-
' rameters and functions. Since the bare Green function 

disappeared in Eqs. (2.1) and (2. 5) in the Ising model 
with binary interactions the critical parameters and 
functions are independent on the range and strength of 
this interaction. This fact is confirmed by calculations 
in the planar Ising model with interactions along two 
diagonals. [ 161 The situation is similar to what occurs 
in quantum field theory. In the latter case, because of 
the renormalization of the interaction its properties at 
very small distances determine the magnitude of the 
(charge and mass) constants and do not affect the form 
of the Green function at large distances. 

The problem of the change in the critical properties 
of the Ising model when non-binary interactions are in­
cluded is much more complicated. We give some argu­
ments in favor of the view that there is indeed such a 
chan_ge. We consider the correlation function ( E:rE:r') 
(E:r 1s the energy density). This function must have 
singularities at the thresholds in k-space when k2 

= -(2n)2/r~(T). A direct evaluation of this function in 
the planar Ising lattice shows that all thresholds with 
n > 1 disappear; the only singularity is for k2 

= -4/r~(T).4 > We assume that this property is con­
nected with the specific form of the interaction 
ln cosh qJ (see Appendix) so that the correlation func­
tion (E:rf:r') cannot be universal. Of course it is im­
possible to exclude the opposite possibility ~ompletely. 

We note in conclusion that we see no reasons for 
expecting that the critical properties of systems with 
different kinds of symmetry (the Ising model, Bose gas, 
Heisenberg ferromagnet) should be the same. The same 
conclusion was earlier reached by Yaks and Larkin [21 

on the basis of other considerations. 
The author is grateful to A. A. Migdal for informa­

tion about the results of [ 61 before publication and to 
V. G. Yaks, A. I. Larkin, V. L. Pokrovskii and cowork­
ers in the Seminarium of the Institute for Theoretical 
Physics for manifold discussions and important hints. 

APPENDIX 

We consider the partition function of the Ising model 
with an arbitrary interaction potential: 

3>1n the planar Ising model the Green function has for all k a singu­
larity Tln T. [ 161 This is, as we showed above, connected with the logar­
ithmic behavior of the specific heat in this model. In the general case 
the singularity of the Green function has the form T3/3-l. 

4>This follows from the following considerations. The planar Ising 
lattice is equivalent to a perfect Fermi gas. [141 The correlation function 
<e,e,·> is the polarization operator of this perfect gas and has thus 
only the two-particle threshold. 
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Z=~exp{~ ~~V,.,a,a.-}. Or=±1. (A.l) 
(err·' r,r' 

To obtain a diagram technique we rewrite (A.l) in the 
form 

= e" IIexp(lnchrpr) lo=O = e" exp ( ~lnch<pr )I _, 
r r" q>r-0 

(A.2) 

Comparing (A.2) with the well-known equations of quan­
tum field theory we check that the problem is reduced 
to an evaluation of the S-matri.x of a scalar field with a 
bare propagator fJVrr' and a self force ln cosh cp. 

The correlation function ( arar') is proportional to 
the Green function ( CfJrCfJr'). To evaluate ( CfJrCfJr') we 
can use a Feynman diagram technique. The function 
( CfJrCfJr') is given by the diagrams in (2.2). The bare 
propagator {JV rr' is associated with the lines. The 
vertex with n tails is found by n-fold differentiation of 
ln cosh cp for cp = 0. If in a diagram there is an inter­
section containing m lines, we must divide it by m! to 
take identical behavior into account. The vertex coordi­
nates ri run through all points of the lattice. If we 
change to the momentum representation5 > and introduce 
the self-energy part n the connection between D and 
II is given by the equation 

~vk 1 
D(k) = ~Vk + ~Vkii(k)~Vk + ... = 1- ~Vkn= T/Vk- II(k, T), 

(A.3) 
where T = 1/{J. The transition temperature is deter­
mined by the equation 

Tc I Vo = II (0, Tc). (A.4) 

Using (A.4) we can write (A.3) in the form 

{ T T }-1 
D(k,T)= Vk- ;.-(II(k,T)-II(O,Tc)] . (A.5) 

Introducing the variable T = (T - T c)/T c we can for 
small k2 and T write in place of (A. 5) 

D(k, -r) =• {a-r+ bk2 - [II(k, -r)- II(0,0)]}-1• (A.6) 

(a and b are constants). When T = 0 we can neglect the 
term bk2 in (A.6) compared to II and we get the result 
(2.1): 

]) (k, 0) = [II (0) - II (k) ]-1• (A. 7) 

To derive the Ward identity (3.3) it is sufficient to 
note that 

iJDo(k,-r)==~-1~~Do2(k,,;). (A.8) 
ih: iJ,; a"t + bk2 

When differentiating the diagrams for II with respect 
to T each line in turn splits into two because of (A.8), 
for instance: 

~ ~:7- = ~ + -@- + -e- (A.9) 

5>we take the integrals over the momenta from zero to 2rr/r0 where 
r 0 is the size of the cell. 

The diagrams obtained are diagrams for 5" (k, 0) as one 
should prove. 

Applying a method analogous to the one used to de­
rive (A.2) we can derive a diagram technique in any 
classical system. For the dipole lattice of [ 2 l we have 

Z = S II dn, exp ( 1~ ~ ~ V,,,n,n,-) = [~II S exp(n,rp,)dn, J =o 
r r,r' r IJ'r 

={ e~ exp (~.In [Io( I 'Pr I)])} 
0 

=o' 
r r 

(Io is a Bessel function of imaginary argument). This is 
the theory of the complex field 1/J = (cpx + icpy)/12 with 
propagator fJV rr' and interaction energy 

In I 0 (l'ljl-+,jl) = 1 /2-ljl-+,jl + ... 
For the Boltzmann gas 

EN p N 
Z= ~ N! Sexp{- 2~ V(ri-ri)} lldr; 

~v 1, 3 t=t 

where 
1 (' 6 6 

~ =-- J drdr'~V(r-r') ----.-
2 6<p (r) 6<p (r') 

N 

E = (m/2n~)'he~~. PN = ~ 6(r- r;) 
i=t 

( J1 is the chemical potential). In this case the propaga­
tor will thus be -fJV(r- r') and the potential energy 
~eCfJ. 

In all three cases the diagram technique is very con­
venient to consider phase transitions. 
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